
1

SJM: an SCM-based Journaling Mechanism

with Write Reduction for File Systems

2

Outline

1 Introduction

2 Related work

4 Performance evaluation

3 Design and implementation

5 Conclusions

3

1. Introduction

ReRAMMemristor

PCM STT-MRAM

Storage

Class

Memory

Non-volatility,

Fast access speed

Byte-addressability Local (in-place) update

Low-energy consumption

4

• Consistency of file system

– Quickly restore file systems

• Journaling mechanisms

– “Write twice” problem

• Disk-based device

– Journaling Block Device

– Significant cost (slowdown)

Introduction

Write reduction
 Only maintains the

log blocks of the
latest version

 Write back according
to frequency and
sequentiality

 Delay recycling

5

Outline

1 Introduction

2 Related work

4 Performance evaluation

3 Design and implementation

5 Conclusions

6

Related work

File system consistency
‒ Consistency levels (metadata, data, and version)
‒ E.g. CoW (Copy-on-Write)
‒ E.g. Soft-updates

Shortcut-JFS: differential logging and in-place checkpointing to remove the

unnecessary overhead of block copying. (PCM)

LOC (Loose-Ordering Consistency) reduces the commit overhead for writes

within a transaction. (Persistent memory)

CDDSs (Consistent and Durable Data Structures) use versioning to allow

atomic updates without requiring logging. (NVM)

UBJ uses a double circular linked list of all kinds of transactions in a JBD memory
transaction management buffer.

7

Related work

• Accelerated storage system using SCM:

– Non-volatile characteristics: Versioning file system for
PCM; SCM-based DBMSs logging.

– Metadata access optimization: FSMAC using NVM.

– Caching and journaling : In-place commit scheme avoids
logging by making use of NVM.

– Hybrid storage model: PMBD directly access persistent
memory (logic block I/O).

Merit and demerit:
 SCM-based approaches to reduce overhead.
 Byte-accessibility of SCM is not explored and exploited.
 Leveraging SCM in storage system in the near future.

8

Outline

1 Introduction

2 Related work

4 Performance evaluation

3 Design and implementation

5 Conclusions

9

SJM design and implementation

• SJM overview
– SCM and DRAM are mounted on the memory bus in parallel

– Data flow 1&2 depict DRAM interaction with the file system

– Data flow 4&3 memory transaction write vs. data recovery process

– Data flow 5 write the valid log records to the file system

10

SJM design and implementation

•Journaling Block Device (JBD) log mode:
— Writeback
— Ordered
— Journal

• Write operation:
— Append-write
— Over-write
— A part is append-write, and another part is an over-written

SJM log mode:
 Write-ahead of the over-write data, or
 The part of over-write data in the write operation based

on an ordered pattern of JBD
 Reduce the log submit and ensure version consistency

11

SJM design and implementation

• SJM transaction mechanism
– Process 1 (P1) is an append-write data synchronization process

– Process 2 (P2) is a write log process

– Process 3 (P3) is a log write-back process: At the appropriate time,
synchronizes the valid log record in the logging device to the file system

12

SJM design and implementation

• SJM space management
– SJM logical layout (checkpoint area, commit area, and free

area)

– SJM physical layout (the SJM log space can be divided into
three successive parts: super block (Superblock), log record
label (Label) and log record (Logrecord))

13

SJM design and implementation

• XOR update scheme
– SJM integrates ordered mode and journal mode

– In addition, taking the characteristics of byte-addressing and support for
local modification of SCM into account, SJM uses the old log version
further to reduce log

– Assume that a data block number is D and the size of the data block is 4KB
in a file system; delta_1, delta_2, and delta_3 are the first/second/third
amendment part, respectively.

The data block D is the first modified and a log block L1=D + delta_1

The data block D is the second modified and a log block L2=L1+ delta_2

The data block D is the third modified and a log block L3=L2 + delta_3

L3 = L2 + delta_3 = (L1 +delta_2) + delta_3 = L1 + (delta_2+delta_3)

14

SJM design and implementation

• SJM update scheme
– P is the relationship block

For the log block L1 which is in the log device and the log block L3 which is about to write
to the log device, the system only needs to read the log block L1 and L3, then perform a
XOR operation to obtain the relationship block P (e.g. p=L1 XOR L3)

– L1(i) represents the i-th bytes of log block L1, L3(i) represents the i-th
bytes of log block L3, and P(i) represents the i-th bytes of relationship
block P.

15

SJM design and implementation

All zero bytes?
Yes

No
Not update

The i-th byte of the log block L3 and

L1 are different?

No

Yes

L1(i) = P(i) ⊕ L1(i)

L1(i)=L3(i)

16

Outline

1 Introduction

2 Related work

4 Performance evaluation

3 Design and implementation

5 Conclusions

17

4. Performance evaluation

Items Description

Machine CPU: Pentium®, Dual-Core 2.93GHz

OS Fedora 17, Linux 3.12

RAM 1GB DDR

Disk driver WD5000AADS-00S9B0 500GB HDD

Benchmark

IOZone (version 3.4.0)

PostMark (version 1.51)

Filebench (version 1.4.9)

 Memory was used to simulate the SCM
 “ext2_SJM”: proposed mechanism
 “ext3_JBD”: ext3fs that uses the same capacity

ramdisk as its journaling device and adopts the JBD
mechanism (data = journal)

 “ext2_no”: the original ext2fs without journaling

18

4. Performance evaluation

• Large file test
– IOzone

Write performance comparison of
different mechanisms for large file
size

• ext2_no does not have additional journaling overhead, write
performance of ext2_no is best;

• ext3_JBD is the other extreme, where each write operation
will maintain a write ahead log, so ext3_JBD has the lowest
performance

• Although ext2_SJM also incurs a log overhead, it is only the
metadata log

19

4. Performance evaluation

• Large file test
– IOzone

Write/rewrite performance
comparison of ext2_SJM
mechanism for large file size

• ext2_SJM: a write operation only needs to do the metadata
log while a rewrite operation needs to do the entire data
(data and metadata) log

• although we avoid the cost of file creation and data block
allocation, all rewrite operations are over-writes, so the SJM
rewrite operation incurs roughly a 2x cost, as such it leads to
a sharp decline in writing performance.

20

4. Performance evaluation

• Large file test
– IOzone

Rewrite performance comparison
of different mechanisms for large
file sizes

• the ext3_JBD rewrite operation was higher than that of the
write operation speed, so the relative speed advantage of a
ext2_SJM rewrite is reduced.

• SJM employs the write-back strategy to optimize the write-
back of log data, so the speed of ext2_SJM is still higher than
that of ext3 JBD.

21

4. Performance evaluation

• Small file test
– PostMark

Write performance comparison of
different mechanisms for small file
sizes

• the metadata write operation is intensive when writing
small files and metadata updates occupy a very large
proportion of the write operations.

• The ext2_no first writes the data, and then writes the
metadata, so this mechanism breaks up the metadata
update and the data update.

22

4. Performance evaluation

• Different load test
– Filebench

Write performance comparison of
different mechanisms for different
workloads

• most of the requests are large data requests in the fileserver
load

• performance of ext3_JBD is decreased as a result of the log
overhead

• ext3_JBD possesses the function of merging small writes
into larger writes, the write performance of ext3_JBD is the
best

23

Outline

1 Introduction

2 Related work

4 Performance evaluation

3 Design and implementation

5 Conclusions

24

Conclusions

• The SJM is put forward to address the inefficiencies
of the JBD block device journaling mechanism of
Linux

• The proposed design utilizes the SCM more as a
storage device

• Small file write performance

• It has some aspects needed to be further polished, it
may give some hints for other researchers to do
further work

25

Thank You!

