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Architectures of Hadoop and HPC
infrastructures

In HPC architecture, data nodes are separated from
compute nodes and they are connected via high-
performance network.

two types of data storage services: persistent global-shared
parallel file system on data nodes (large) and temporal local
file system on compute nodes (small).
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Architectures of Hadoop and HPC
infrastructures

In Hadoop architecture, compute node and data node are
co-located in the same physical machine.

The local storage device on each node is also used as part of the
primary persistent data storage.

The computational task is scheduled to the physical machine
where the required data is stored in order to achieve maximum

data locality.
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Data-intensive Computing on
HPC: how to store the data

Using the parallel storage on HPC.

Provides high storage capacity with low cost data fault
tolerance,

But has scalability issues limited by network and aggregate
/O bandwidth of storage nodes.

Deployed distributed file system for data-intensive
computing, such as Hadoop distributed file system
(HDFS), on compute nodes.

Delivers high aggregate 1/O throughput,

But it suffers with a high cost for data fault tolerance and low
data storage capacity.




I/O throughputs of a single compute
node on national HPC clusters
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Compute Node Storage Space
Statistics on National HPC Clusters
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Our solution: Two-level Storage
System

Combined an in-memory file system on the compute
nodes and a parallel file system on data nodes.

As the compute nodes on HPC clusters often have been
equipped with large memory, the in-memory file system can

also have storage capacity comparable to local storage-
based HDFS.

t
t

t

ne 1/O throughputs of in-memory file system are much faster
nan those of local disk.

ne parallel file system provides the data-fault tolerance and

large storage capacity.

the two-level storage will take advantages of both in-memory
file system and parallel file system.
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A prototype of two-level storage
system
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OrangeFS Underlying Implementation

OrangeFS-Server
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Tachyon/OFS
Plug-in

OrangeFS
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OrangeFS
Direct Interface

OrangeFS
Library

Integrating Tachyon-0.6.0,
an in-memory with the
OrangeFS-2.9.0, a paraliel
file system.

Tachyon-OFS Plug-in: a
Java plug-in that provides
the interface to transform
the functionalities of
Tachyon in-memory file
system to the
functionalities of OrangeFS
parallel file system.

OrangeFS JNI Shim: a
Java API that forwards all
function calls from
Tachyon-OFS Plug-in to
the OrangeFS Direct
Interface.




Data Layout Mapping

Compute Node 1 Compute Node 2
@ Input File 1 Input File 2
Tachyon Block Block 1 Block 2 Block 3 Block 1 Block 2 Block 3
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/O Modes of Two-level Storage
System

Three write modes
data is stored only in Tachyon
data is bypass Tachyon and written to OrangeFS
data is synchronously written to OrangeFS
whenever data is created or updated in Tachyon

Three read modes

data is read from Tachyon only

data is read from OrangeFS directly without
caching it in Tachyon

data is read from both Tachyon and OrangeFS.

This is the primary usage pattern in data-intensive
computing by caching reusable data to improve read

performance with a matched data eviction policy, such as
LRU/LFU.




MODELING I/O THROUGHPUTS
OF DIFFERENT STORAGES
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MODELING I/O THROUGHPUTS OF
DIFFERENT STORAGES

I/O Modeling of HDFS

HDFS
The read throughput of each node, q,° ">, is

u, &local access
HDFS _

qread o

{min (p, D, u) &remote access (1)

the write throughput of each node, ¢"’2’> | can be estimated
as

HDFS _ 1
Dyrite = mln( P ZNCD /“l) (2)




MODELING I/O THROUGHPUTS OF
DIFFERENT STORAGES

I/O Modeling of OrangeFS

the read throughput, 97>, and write throughput, g% | of
each compute node

OFS _ _OFS _ .. - 1. M M,
Dyrite = reqa — THN (p’ﬁcb'ﬁp' v M ) (3)

I/O Modeling of Tachyon

Tachyon

the read throughput of each node, g, """ , is

Tachyon { v, local

read

(4)

. 1
min (p, v D, v) , remote

Tachyon .

the write throughput of each compute node, g .~ is just
limited by the throughput to memory:
Tachyon — v (5)

write




MODELING I/O THROUGHPUTS
OF DIFFERENT STORAGES

I/O modeling of the Proposed Two-level Storage

the write throughput of each compute node on two-
level storage, q'> ., is bounded by the write

throughput to OrangeFS:

OFS
Tachyon ) _ qOF.S (6)

write erte write

TLS _—_ i
Dyrite min(q

Let f be the ratio of the size of data in Tachyon over
the total size of data, D. the read throughput of each

compute node is
TLS — /( + OFS) (7)

read
read

If f =1, all data is read from Tachyon only and if f = 0, all
data is read from OrangeFS only. The higher the value of f,
the higher read throughput the two-level system can

provide.




Comparing Aggregate /O
Throughputs of Different Storages

A case study:
network bandwidth is setto 1,170 MB/s per node.

local disk read throughput is 237 MB/s and the local disk write
throughputis 116 MB/s.

local memory throughputis 6,267 MB/s.
two parallel file system aggregate throughputs: 10 GB/s and 50 GB/s.

Two-level (f=0.5, 50GB/s) HDFS

Two-level (f=0.2, 50GB/s) Parallel FS (50GB/s) HDFS

Two-level (f=0.5, 10GB/s) Parallel FS (10GB/s) Parallel FS, Two-level (50GB/s)
Two-level (f=0.2, 10GB/s) Parallel FS, Two-level (10GB/s)
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Experiment Setup

< All experiments are performed on Palmetto HPC
cluster hosted at Clemson University.

Intel Xeon ES5-2670 v2 20%2.50 GHz

1 TB 7200RPM SATA

12 TB LSI Logic MegaRAID SAS

128 GB DDR3-1600

Network

Intel 10 Gigabit Ethernet

Switch

Brocade MLXe-32 with 6.4 Tbps backplane




Experiment 1: Characterizing the 1/O
Performance of Two-level Storage

Experiment1: we use the Tachyon built-in
performance evaluation program as the benchmark
tool to measure the average read throughput received
from two-level storage under a range of data sizes
with different skip sizes.

We allocate 16 GB for Tachyon storage space




The storage mountain of two-
level storage system
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Experiment 2: Evaluate
Performance using Terasort

We run the Terasort benchmark on a 17-node
Hadoop cluster with 2-node OrangeFS as back-end
storage system.

One machine as the head node to host YARN's _
Resource Manager (RM) and Tachyon's Master service.

16 compute nodes in Hadoop cluster. On each compute
node, we assign 16 containers to occupy 16 CPU slots
and Iheavde the rest of 4 CPU slots to handle extra system
overhead.

The Ca%acity of Tachyon storage on each compute node
Is 32 GB.

We first run the TeraGen stage using a Map-
only job to generate 256G data, then run the
TeraSort stage using one Map/Reduce cycle.
Mapper reads the data from storage and Reducer
writes the sorted data back to storage.

Before each test, we empty OS page caches to
measure actual I/O costs.




Experiment 2: Evaluate
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CONCLUSSION AND
DISCUSSION

Our theoretical modeling and experimental evaluation
show that the two-level can increase read
throughput, which will scale up with the number of
compute nodes for Hadoop.

In our two-level storage, local data always has a copy
in OrangeFS; thus, OrangeFS provides faulit-
tolerance for Tachyon.

Public HPC clusters are usually shared by a lot of
users. Deploying Tachyon on HPC may lead to
resource conflict.
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