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Big  Data  Era
• Big data capacity is massive

– The volume of the digital universe is stupendous.
– The value of the big data has massive potential.

Source:
[1]	
  J.	
  Gantz et	
  al.,	
  “The	
  digital	
   universe	
  in	
  2020:	
  Big	
  data,	
  bigger	
  digital	
   shadows,	
  and	
  biggest	
  growth	
  in	
  the	
   far	
  east.	
  “
[2]	
  J.	
  Manyika,	
  et	
  al.,	
  “Big	
  data:	
  The	
  next	
  frontier	
  for	
  innovation,	
   competition,	
   and	
  productivity.”
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Hadoop  MapReduce  for  Big  Data
• Hadoop is the representative implementation of MapReduce.

– Aim to expedite the big data processing.
– Harness the computing power from commodity machines.

• It has many advantages in…
– Scalability
– Availability
– Data locality
– Programming model diversity

• Already with strong foundations, and still grows in popularity.
• It has been evolved into its next generation called YARN.
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MapReduce  Programing  Model

• Simple but enables good distributed computing
• Mainly consists of the phase of map and reduce

– Also has sort, shuffle and merge
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The  Next  Generation  Hadoop(YARN)

• ResourceManager, NodeManager and AppMaster
– A global ResourceManager orchestrates all resources.
– Per-node NodeManager reports to ResourceManager with local resource and 

status.
– Per-job AppMaster requests resources for the job.
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Fault  Tolerance  of  YARN

• Received far less attention than other topics
– Such as performance improvement, scheduling optimization, data 

availability, etc.

• Failures are norm rather than exception
– 3% failure rate with jobs [1]

– 5 node failures per job (a job has an average of 268 nodes) [2]

– 8% annual failure rate with hardware [3]

• YARN suffers serious performance degradation from failures.
– Speculation cannot eliminate negative impacts of failures.
– It affects small jobs the most significantly, which are the majority of jobs 

that are in real use. [4]

References:
[1]Kavulya,	
  et	
  al.	
  "An	
  analysis	
  of	
  traces	
  from	
  a	
  production	
   mapreduce cluster."	
  (CCGrid 2010).
[2]Dean,	
  Jeffrey.	
  "Experiences	
  with	
  MapReduce,	
  an	
  abstraction	
   for	
  large-­‐scale	
  computation."	
   (PACT	
  2006).
[3]Vishwanath,	
   et	
  al.	
  "Characterizing	
   cloud	
   computing	
   hardware	
  reliability."	
   (SOCC	
  2010).
[4]G.	
  Ananthanarayanan,	
  et	
  all.	
  “Pacman:	
  coordinated	
  memory	
  caching	
   for	
  parallel	
  jobs.”	
  (USENIX	
  2012).
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Speculation  Mechanism  in  YARN

• Although YARN has data replication and regeneration to ensure 
the availability of data upon failures, they cannot guarantee 
optimal job performance in the heterogeneous environment.

• Thus, YARN also has speculationmechanism to speed up the 
job turnaround time.
– Basically, it is to make a copy of the slowest task (a.k.a. straggler) 

intermittently.
– Any one copy of the straggler will let the job proceed.

• However, we found that the existing speculation has some major 
problems in the presence of failures, especially for small jobs.
– Speculation does not guard against node failures very well.
– Small jobs are more susceptible to a given slowdown.
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Issues  with  Existing  Speculation

• I. Intra-node only
– When many tasks are converged on a single node, a node failure can 

make every task equally slow, and no task is regarded as straggler.

• II. Prospective only
– If tasks are completed, they are excluded from speculation candidates.
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The  Performance  Breakdown

• 1GB jobs are seriously slowed down
– 0% ~ 50% has intra-node issue, 50% ~ 100% has prospective issue.

• 10GB jobs are less affected
– Free from intra-node issue, but still suffer from prospective issue.
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Can  Lower  Timeout  Help?

• Intuitively, to decrease timeouts can help reduce failure penalty. 
• But it also produces a lot of false negative decisions that can 

stall the job progress.
– We conduct test to show that it is not feasible in the heterogeneous 

environment.
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Proposed  Solutions

• Make YARN failure-cognizant.
– YARN does not know that failure occurs, let alone the countermeasures.

• A new speculation mechanism.
– Launch speculative copies in batch upon node failures.
– Take completed tasks for speculation as well.

• Enhanced scheduling upon failure.
– Limit the false positive & false negative decisions on failure occurrence.
– Schedule tasks wisely based on failure decision.
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Centralized  Failure  Analyzer  (CFA)

• A new component in YARN that is responsible for globally 
collect and analysis of failure information.
– It requests application info from the RM, e.g., job IDs, task IDs, 

container assignments, etc.
– Node status is reported from NM via heartbeat to RM and then CFA.
– The failure analytics results are supplied through HDFS to each 

AppMaster, which schedules tasks accordingly in a job.
– The extra I/O is lightweight and incurs minimal overheads.
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Optimized  Speculation  Mechanism

• Failure-Aware, Retrospective and Multiplicative Speculation. 
(FARMS)
– Tasks are speculated upon the lost of node.
– Completed tasks are speculated based on node status and fetch need.
– Tasks are speculated in a multiplicative manner.
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Workflow  of  FAS

• The Fast Analytics Scheduling (FAS) redesigns the scheduling 
policy in the presence of failures.
– Use a dynamic threshold instead of fixed timeouts.
– The threshold needs to be aggressive enough to gain performance 

improvement, but also conservative enough to adjust to environment.
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Experimental  Setup

• Hardware Setup: 
– 21 server nodes featuring with four 2.67 GHZ hex-core Intel Xeon 

X5650 CPUs, 24GB memory and one 500GB hard disk.
– Nodes are connected through 1 Gigabit Ethernet. 

• Software Setup: 
– YARN version is 2.6.0.
– One master node of the cluster is dedicated to run ResourceManager and 

NameNode. 

• Benchmarks: 
– Terasort, WordCount, and Secondarysort.
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Evaluation  of  FARMS

• Test against node failure.
• FARMS leverages the failure analytics information and 

provides much faster job recovery performance.
– Smaller jobs benefits more than larger jobs.
– Performance variations are almost eliminated.
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Evaluation  of  FAS

• Test against an unstable cluster (network & node problems).
• FAS can adapt to heterogeneous environment well.

– It provides near-original performance in the presence of network 
congestions & failures.

– The false decision for speculation seldom occurs.
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Overall  Performance

• Test a combination of benchmarks against node failure and 
networking problems.

• Test set is generated based on real-world production use.
– In overall, we can achieve 15.3% performance improvement.
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Conclusion
• Revealed the issues with the existing speculation mechanism in 

MapReduce framework.

• Demonstrated how those issues can cause the performance breakdown 
of MapReduce applications, especially for small jobs.

• Brought about a combination of techniques to solve the issues.

• Conducted experiments whose results show that our solution can 
achieve much better performance upon failures.
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Sponsors  of  Our  Research
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Thank  You  and  Questions?


