
Huansong Fu,  Yue  Zhu,  Weikuan Yu
Florida  State  University

Presenter:  Huansong Fu

A  Case  Study  of  MapReduce Speculation  
for  Failure  Recovery



S-­2

Outline

• Background
• Motivation

– Issues with existing speculation and breakdown of job 
performance

• Design
– FARMS and FAS

• Experiments
• Conclusion



S-­3

Outline

• Background
• Motivation

– Issues with existing speculation and breakdown of job 
performance

• Design
– FARMS and FAS

• Experiments
• Conclusion



S-­4

Big  Data  Era
• Big data capacity is massive

– The volume of the digital universe is stupendous.
– The value of the big data has massive potential.

Source:
[1]	
  J.	
  Gantz et	
  al.,	
  “The	
  digital	
   universe	
  in	
  2020:	
  Big	
  data,	
  bigger	
  digital	
   shadows,	
  and	
  biggest	
  growth	
  in	
  the	
   far	
  east.	
  “
[2]	
  J.	
  Manyika,	
  et	
  al.,	
  “Big	
  data:	
  The	
  next	
  frontier	
  for	
  innovation,	
   competition,	
   and	
  productivity.”



S-­5

Hadoop  MapReduce  for  Big  Data
• Hadoop is the representative implementation of MapReduce.

– Aim to expedite the big data processing.
– Harness the computing power from commodity machines.

• It has many advantages in…
– Scalability
– Availability
– Data locality
– Programming model diversity

• Already with strong foundations, and still grows in popularity.
• It has been evolved into its next generation called YARN.



S-­6

MapReduce  Programing  Model

• Simple but enables good distributed computing
• Mainly consists of the phase of map and reduce

– Also has sort, shuffle and merge

Map

Input

Reduce

Map

Map

Reduce

Input
Split  1

Input
Split  2

Input  
Split  3

Output  1

Output  2

shuffle
merge

sort



S-­7

The  Next  Generation  Hadoop(YARN)

• ResourceManager, NodeManager and AppMaster
– A global ResourceManager orchestrates all resources.
– Per-node NodeManager reports to ResourceManager with local resource and 

status.
– Per-job AppMaster requests resources for the job.

NodeManager

AppMaster

Container

NodeManager

Container

Container

NodeManager

Container

Container

Resource
ManagerClient

Job submission

Node  Status

MapReduce  status

Resource    request



S-­8

Fault  Tolerance  of  YARN

• Received far less attention than other topics
– Such as performance improvement, scheduling optimization, data 

availability, etc.

• Failures are norm rather than exception
– 3% failure rate with jobs [1]

– 5 node failures per job (a job has an average of 268 nodes) [2]

– 8% annual failure rate with hardware [3]

• YARN suffers serious performance degradation from failures.
– Speculation cannot eliminate negative impacts of failures.
– It affects small jobs the most significantly, which are the majority of jobs 

that are in real use. [4]

References:
[1]Kavulya,	
  et	
  al.	
  "An	
  analysis	
  of	
  traces	
  from	
  a	
  production	
   mapreduce cluster."	
  (CCGrid 2010).
[2]Dean,	
  Jeffrey.	
  "Experiences	
  with	
  MapReduce,	
  an	
  abstraction	
   for	
  large-­‐scale	
  computation."	
   (PACT	
  2006).
[3]Vishwanath,	
   et	
  al.	
  "Characterizing	
   cloud	
   computing	
   hardware	
  reliability."	
   (SOCC	
  2010).
[4]G.	
  Ananthanarayanan,	
  et	
  all.	
  “Pacman:	
  coordinated	
  memory	
  caching	
   for	
  parallel	
  jobs.”	
  (USENIX	
  2012).



S-­9

Outline

• Background
• Motivation

– Issues with existing speculation and breakdown of job 
performance

• Design
– FARMS and FAS

• Experiments
• Conclusion



S-­10

Speculation  Mechanism  in  YARN

• Although YARN has data replication and regeneration to ensure 
the availability of data upon failures, they cannot guarantee 
optimal job performance in the heterogeneous environment.

• Thus, YARN also has speculationmechanism to speed up the 
job turnaround time.
– Basically, it is to make a copy of the slowest task (a.k.a. straggler) 

intermittently.
– Any one copy of the straggler will let the job proceed.

• However, we found that the existing speculation has some major 
problems in the presence of failures, especially for small jobs.
– Speculation does not guard against node failures very well.
– Small jobs are more susceptible to a given slowdown.



S-­11

Issues  with  Existing  Speculation

• I. Intra-node only
– When many tasks are converged on a single node, a node failure can 

make every task equally slow, and no task is regarded as straggler.

• II. Prospective only
– If tasks are completed, they are excluded from speculation candidates.

T1T1
Data  lost

T1’
Timeout

Time

Node  BNode  A

Timeout

T1

T2

T3

T4

T1’

T2’

T3’

T4’

Time



S-­12

The  Performance  Breakdown

• 1GB jobs are seriously slowed down
– 0% ~ 50% has intra-node issue, 50% ~ 100% has prospective issue.

• 10GB jobs are less affected
– Free from intra-node issue, but still suffer from prospective issue.

20

200

2000

20000

0% 20% 40% 60% 80% 100%

Jo
b  
E
xe
cu
tio
n  
Ti
m
e(
s)

Percentage  of  Map  phase

Job  affected

No  failure

0

200

400

600

800

0% 20% 40% 60% 80% 100%

Jo
b  
E
xe
cu
tio
n  
Ti
m
e(
s)

Percentage  of  Map  phase

Job  affected

No  failure

(a)  1  GB  Wordcount  job (b)  10  GB  Wordcount  job



S-­13

Can  Lower  Timeout  Help?

• Intuitively, to decrease timeouts can help reduce failure penalty. 
• But it also produces a lot of false negative decisions that can 

stall the job progress.
– We conduct test to show that it is not feasible in the heterogeneous 

environment.

0%

20%

40%

60%

80%

100%

0 50 100 150 200

Pr
og
re
ss

Time(s)

Map
Reduce

Job  progress  with  lower  timeout



S-­14

Proposed  Solutions

• Make YARN failure-cognizant.
– YARN does not know that failure occurs, let alone the countermeasures.

• A new speculation mechanism.
– Launch speculative copies in batch upon node failures.
– Take completed tasks for speculation as well.

• Enhanced scheduling upon failure.
– Limit the false positive & false negative decisions on failure occurrence.
– Schedule tasks wisely based on failure decision.



S-­15

Outline

• Background
• Motivation

– Issues with existing speculation and breakdown of job 
performance

• Design
– FARMS and FAS

• Experiments
• Conclusion



S-­16

Centralized  Failure  Analyzer  (CFA)

• A new component in YARN that is responsible for globally 
collect and analysis of failure information.
– It requests application info from the RM, e.g., job IDs, task IDs, 

container assignments, etc.
– Node status is reported from NM via heartbeat to RM and then CFA.
– The failure analytics results are supplied through HDFS to each 

AppMaster, which schedules tasks accordingly in a job.
– The extra I/O is lightweight and incurs minimal overheads.

HDFS
Resource
Manager

App
Master

NM

CFA

Heartbeat  report Analytics  result



S-­17

N2

N1

N2

N1

T1

T2

T3

T4

T5

T6

T1

T2

T3

T4

T5

T6

N1  is  chosen   for  speculating

T3’ T2’ T1’

T1

T2

T3

T4

T5

T6

T1’

T1

T2

T3

T4

T5

T6

T1’

T2’

T3’

T1’

Optimized  Speculation  Mechanism

• Failure-Aware, Retrospective and Multiplicative Speculation. 
(FARMS)
– Tasks are speculated upon the lost of node.
– Completed tasks are speculated based on node status and fetch need.
– Tasks are speculated in a multiplicative manner.



S-­18

Workflow  of  FAS

• The Fast Analytics Scheduling (FAS) redesigns the scheduling 
policy in the presence of failures.
– Use a dynamic threshold instead of fixed timeouts.
– The threshold needs to be aggressive enough to gain performance 

improvement, but also conservative enough to adjust to environment.

start

Threshold

update

faulty done

parallel

speculate

resumes

compete

reference



S-­19

Outline

• Background
• Motivation

– Issues with existing speculation and breakdown of job 
performance

• Design
– FARMS and FAS

• Experiments
• Conclusion



S-­20

Experimental  Setup

• Hardware Setup: 
– 21 server nodes featuring with four 2.67 GHZ hex-core Intel Xeon 

X5650 CPUs, 24GB memory and one 500GB hard disk.
– Nodes are connected through 1 Gigabit Ethernet. 

• Software Setup: 
– YARN version is 2.6.0.
– One master node of the cluster is dedicated to run ResourceManager and 

NameNode. 

• Benchmarks: 
– Terasort, WordCount, and Secondarysort.



S-­21

Evaluation  of  FARMS

• Test against node failure.
• FARMS leverages the failure analytics information and 

provides much faster job recovery performance.
– Smaller jobs benefits more than larger jobs.
– Performance variations are almost eliminated.

(a)  1GB  Wordcount  jobs (b)  10GB  Wordcount  jobs

Wordcount 1g

0

200

400

600

800

1000

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Jo
b 

Ex
ec

ut
io

n 
Ti

m
e(

s)

Failure spot on map phase

Original YARN
Ours
No Failure

Wordcount 10g

100

200

300

400

500

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Jo
b 

Ex
ec

ut
io

n 
Ti

m
e(

s)

Failure spot on map phase

Original YARN
Ours
No Failure



S-­22

Evaluation  of  FAS

• Test against an unstable cluster (network & node problems).
• FAS can adapt to heterogeneous environment well.

– It provides near-original performance in the presence of network 
congestions & failures.

– The false decision for speculation seldom occurs.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

50

100

150

200

250

300

1 2 3 4 5

Ad
di
tio
na
l  s
pe
cu
la
te
d  
ta
sk
s  
ra
te
  p
er
  jo
b

Av
er
ag
e  
ex
ec
ut
io
n  
tim
e(
s)

Number  of  nodes

Orig-­Time

Ours-­Time

Additional  tasks



S-­23

Overall  Performance

• Test a combination of benchmarks against node failure and 
networking problems.

• Test set is generated based on real-world production use.
– In overall, we can achieve 15.3% performance improvement.

Overall  test

Overall test for DISCS

0

200

400

600

800

1000

1200

1400

1600

#1(1GB) #2(10GB) #3(50GB) #4(100GB)

Ti
m

e 
(s

)

Group in data size

No Failure

Failure(Original YARN)

Failure(FARMS+FAS)



S-­24

Conclusion
• Revealed the issues with the existing speculation mechanism in 

MapReduce framework.

• Demonstrated how those issues can cause the performance breakdown 
of MapReduce applications, especially for small jobs.

• Brought about a combination of techniques to solve the issues.

• Conducted experiments whose results show that our solution can 
achieve much better performance upon failures.



S-­25

Sponsors  of  Our  Research



S-­26

Thank  You  and  Questions?


