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Two Trends of Big Data Analytics

* More Interactive
— Online processing is favored
— Approximate algs are great

e 100% accuracy is often not necessary
e Trade accuracy for performance and responsiveness

* More Cloud-Based
— Pay as you go
— Can save more with early termination
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Online Analytics

* Processes Data Incrementally

— Processes a (small) portion at a time
— Provides online estimate

e Early Termination
— Stops when the estimate is good enough
— Saves time and resources

e Example: Online Aggregation

AVG Confidence Interval
g 2.6336 95 0.0652539

14% done |-




MapReduce

 Major Advantage

— Hides all the parallelization complexities by
simplified API

e Limitation

— Mainly designed for batch processing
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Challenges

e Online Mode + Batch Mode

— Online mode is similar to iterative processing
e Each iteration processes a portion and estimates

— Backward compatibility
e Old batch mode code should still work
e Should not break the original API

e Runtime Estimation + Synced Termination

— No more communication among workers after
shuffling

— How to obtain a global estimate at each iteration?
— How to terminate each node synchronously?
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Challenges Cont’d

e Associates Termination Condition with the
App Semantics
— Accuracy

* Online aggregation
— Threshold (not necessarily accuracy)
e Top-k
— Convergence or delta of a series of estimates

e Clustering and regression
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Bridging the Gap

e Addresses All the Challenges
— Applies online sampling and adds 2 optional functions

e Customizable runtime estimation and early termination
e Falls back to batch mode by default
— Master node combines local estimates and controls
termination
e Unlike ETL, the output of online analytics is usually small

— Evaluates termination condition based on the
estimates of the past few sampling iterations


演示者
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Some existing works only do some hacking on the MR and break the batch mode.


Precursor System: Smart

e Smart is Our MR-like Framework (SC’15)
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Online Sampling Early Termination
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3 major extensions
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Online Sampling

e Stratified Sampling without Replacement
— Stratified

e Good accuracy

— Without Replacement

e Sampled data continues to increase strictly until early
termination or full scan

e Sample size is constant -> no tricky dynamic sample size
adjustment
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Runtime Estimation and Early
Termination

e Runtime Estimation

— Further reduces sampling data in the time
dimension

— Reuses the same merge (reduce) func. to reduce
all the data processed so far

— Estimates based on the total input size and the
running reduction results

e Early Termination

— Evaluates the most recent snapshot(s) of
estimates
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Extended System APIs

* Running Estimation Func.

— Gives total input size + stats of the data processed
so far

— Estimates based on the partial input

— E.g., totally 10 GB data, after processing 1 GB data,
sum=1 | > estimated sum = 10

— By default, returns the results of the data
processed so far (i.e., no magnification or
adjustment)
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Extended System APIs (Cont’d)

e Early Termination Func.

— Evaluates accuracy or threshold -> retrieves the
most recent estimate

— Evaluates convenience or delta -> retrieves the
most recent 2 or more estimates

— By default, returns false to disable early
termination and fall back to the batch mode
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UNIVERSITY

Experiments

e Setup
— 32 nodes * 8 cores, 12 GB memory
— 112 GB Ocean Dataset
* Apps:
— Online Aggregation: accuracy based termination
— Top-k: threshold based termination
— K-means: convergence based termination
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Performance Evaluation
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(c) K-Means

(b) Top-K

Lazy Loading: partial I/O + partial
computation

Full loading: full I/O + partial
computation

Baseline: batch processing

Lazy loading is up to 30x faster than
baseline, and up to 11x faster than full
loading
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Which Factors Delay Termination?

Selectivity = sampled data size / total input size
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Selectivity < sample size
Selectivity o< # of nodes
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Which Factors Affect Accuracy?
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 No noticeable diff on varying # of nodes
e More strict termination condition => higher accuracy
e Sample size for each sampling iteration also somehow

affects accuracy
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Sample size is not equivalent to sampling rate here. Sample size is the size used for sampling a data block at a time. Sampling rate is commonly used for the total sampled data.
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Conclusion

 Online Analytics + MR

— Big data analytics can be done incrementally and
stopped early to bring timely insight

— Need for approximate algs on MR

e Critical Extensions

— Online sampling
— Extended APlIs

e Flexible runtime estimation
e Early termination condition w.r.t. app semantics
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