
Antero Benchmark Suite: Quick Start Guide

Dakar Team

Future Technologies Group

Oak Ridge National Laboratory

September 2009

1 Introduction

The Antero Benchmark Suite (Antero) is a collection of benchmark programs testing the per-
formance and stability of systems using computing devices with non-traditional architectures for
general purpose computing, and the software used to program them. Its initial focus is on systems
containing Graphics Processing Units (GPUs) and multi-core processors, and on the OpenCL [3]
programming standard. It can be used on clusters as well as individual hosts.

OpenCL is an open standard for programming a variety of types of computing devices. The
OpenCL specification describes a language for programming kernels to run on an OpenCL-capable
device, and an Application Programming Interface (API) for transferring data to such devices and
running kernels on them. The OpenCL specification was ratified by The Khronos Group in late
2008. At the time of this writing, OpenCL implementations are just becoming publicly available.
These early OpenCL implementations support running OpenCL kernels on GPUs and commodity
multi-core processors, though not all implementations support both device types.

In addition to OpenCL-based benchmark programs, Antero also includes a Compute Unified
Device Architecture (CUDA) [4] version of many of its benchmarks for comparison with the OpenCL
version. CUDA, developed by NVIDIA, is an approach for programming NVIDIA GPUs for gen-
eral purpose computing that predates OpenCL. Like OpenCL, CUDA-based programs use a host
program running on the system’s CPU to run kernels on an accelerator device (in this case, a GPU).

This document provides a quick start guide for using Antero. We first detail the supported
platforms for using Antero (Section 2), followed by an overview of the Antero source code (Section 3),
how to configure it (Section 4), build it (Section 5), and run it (Section 6).

2 Supported Platforms

The Dakar team intends Antero to be useful on any platform with an OpenCL implementation.
However, due to limited resources the Dakar team develops and tests Antero primarily on UNIX-
like platforms. In particular, the Dakar team uses Linux and Mac OS X systems for development
and testing.

2.1 Linux

• A recent RedHat-family OS distribution (Fedora or RHEL).

1

• A working OpenCL implementation. The Dakar team has used the following implementations:

– NVIDIA GPU Computing SDK version 2.3a beta

– ATI Stream SDK version 2.0 beta2

• (Optional) CUDA 2.3 or later.

This list describes the platforms to which the Dakar team has access for development and
testing. Antero may work on other Linux distributions with other OpenCL implementations than
those listed here. Modifications may be needed for differing OpenCL header and library paths,
differing system library versions, and differing compiler versions/vendors.

2.2 Mac OS X

• Mac OS X 10.6 (”Snow Leopard”) or later.

• Xcode 3.2 or later.

• (Optional) CUDA 2.3 or later, preferring 2.3.1a or later for better support of the Xcode
default gcc/g++ version.

2.3 Clusters

In addition to individual systems, Antero can also build parallel benchmark programs for clusters.
Each cluster node must meet the requirements described earlier in this section for the OS distri-
bution used on that node. Also, the cluster must have a working implementation of the Message
Passing Interface (MPI) [1, 2] library.

2.4 Documentation

The Dakar team maintains Antero documentation as LATEX and BibTEX files. Although the Antero
distribution includes PDF files for all documentation, the documentation can be rebuilt on a system
with LATEX and BibTEX installed.

3 Source Tree

Antero is distributed as a compressed tar archive. Let $ANTERO ROOT represent the directory
that will hold the Antero source tree. The Antero archive can be uncompressed and extracted using

$ cd $ANTERO_ROOT

$ tar xvjf antero-x.y.tar.bz2

2

The Antero source tree directory structure is as follows:

$ANTERO_ROOT

bin # benchmark executables are built here

config # Antero configuration files

doc # Antero documentation files

lib # Antero auxiliary libraries are built here

src # Antero source files

common # programming-model independent helper code

cuda # CUDA-based benchmarks

cudabench

level1

stability

cublas

cufft

mpi # MPI-specific benchmarks

common

contention

opencl # OpenCL benchmarks

common # code needed for all OpenCL benchmarks

level0 # low-level OpenCL benchmarks

level1 # higher-level OpenCL benchmarks

oclblas

stability # OpenCL-based stability benchmarks

oclFFT

util

4 Configuring

For configuration, Antero uses a collection of files in the $ANTERO ROOT/config directory. There
are several types of files in this directory.

• Default configuration

• OS-specific configuration

• Programming model-specific configuration

• System-specific configuration

These types of files are described in the rest of this section.

4.1 Default Configuration

The first type of Antero configuration file includes default settings that are independent of the OS,
programming model, and specific system on which Antero is being built and run. The config.mk

file controls the order of including configuration files. The base.mk file defines the default compiler

3

and adds Antero directories to the include and linker paths. The targets.mk file defines the make
rules used for building Antero.

4.2 OS-Specific Configuration

If it exists, the Antero build process will read configuration settings from a file called $OS.mk where
$OS is the output of running uname -s. This is the file to use for any settings that are known not
to vary from system to system among those using that OS distribution.

4.3 Programming Interface Configuration

The next type of Antero configuration file includes configuration for a particular programming
model.

• opencl.mk contains OpenCL settings. If they exist, this file will also read opencl-$OS.mk

and opencl-$OS-$OCL VENDOR.mk.

• cuda.mk contains CUDA-specific settings. If it exists, this file will also read cuda-$OS.mk.

• mpi.mk contains MPI-specific settings.

4.4 System Specific Configuration

If it exists, the Antero build process will read a file named $hostname.mk where $hostname is the
output of running the hostname command. This is the place to indicate where OpenCL and/or
CUDA is installed on a particular system, the vendor of the OpenCL implementation installed on
that system (because the include and library paths vary from implementation to implementation),
and any other configuration overrides. The Antero distribution includes several examples of system-
specific configuration files.

5 Building

After editing the configuration files, build the entire Antero suite by:

$ cd $ANTERO_ROOT

$ make

Some branches of the Antero directory tree may give expected build failures. For instance,
on systems without a CUDA installation, the Antero makefiles will attempt to build the CUDA
benchmark programs but will fail. By default, these failures are not fatal errors for the Antero
build process.

6 Running

At this time, there is no unified script for running all Antero benchmarks. After building An-
tero, benchmark programs will be left in the $ANTERO ROOT/bin directory. Run single-process
benchmark programs with commands like:

4

$ cd $ANTERO_ROOT/bin

$./TriadBenchmark.prog

and MPI benchmark programs with commands like:

$ cd $ANTERO_ROOT/bin

$ mpirun -np 128 $PWD/TriadBenchmark.mpiprog

Revision History

• 0.1 September 2009

References

[1] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming

with the Message Passing Interface, 2nd edition. MIT Press, Cambridge, MA, 1999.

[2] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features of the

Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

[3] The Khronos Group. The opencl specification, version 1.0, document revision 43. specification,
The Khronos Group, 2009.

[4] NVIDIA. Nvidia cuda reference manual, version 2.3. manual, 2009.

5

