
Component Based Tool Framework
Overview & Tutorial

The Component Based Tool Framework (hereafter “CBTF”), developed by the Krell Institute1 under
contract for the U.S. Department of Energy, is an open-source software framework for constructing
debugging and performance tools (hereafter simply “tools”) from a set of reusable components. This
document describes the design goals for CBTF, its underlying concepts, and implementation details.
Additionally, tutorials illustrating how to create and use CBTF components are provided.

Design Goals
Facilitating increased software componentization of tools was the principal design goal for CBTF.
There are many benefits to such increased componentization:

• Less Duplicated Effort: Virtually all tools require certain key functionality such as data collection,
symbol table processing, and view generation. Because existing tools tend to be monolithic, this
functionality is usually designed and implemented anew for every new tool. When this functionality
doesn’t represent the developer’s primary research interest, it represents a huge wasted effort.

• Increased Reconfigurability: Modern supercomputers - especially at petascale and above - vary
widely in their architecture. This presents a challenge for tools. A particular configuration of data
collection and processing that works well for one architecture may be completely infeasible for
another. Componentizing tools allows improved reconfigurability for different architectures.

• Improved Scalability: During the last decade, the largest supercomputers have seen their node
counts increase by several orders of magnitude. This trend is expected to continue for the exascale
systems projected to be available by 2020. In order for tools to handle the quantity of data collected
on such systems, multiple levels of data processing will be required. By componentizing tools, data
processing can be more easily replicated and distributed.

Underlying Concepts
CBTF is based on the notion of dataflow programming2. Individual software components are modeled
as black boxes that accept messages on zero or more inputs, internally perform some task, and then
produce messages on zero or more outputs:

1 http://www.krellinst.org/

2 http://en.wikipedia.org/wiki/Dataflow_programming

http://www.krellinst.org
http://www.krellinst.org
http://en.wikipedia.org/wiki/Dataflow_programming
http://en.wikipedia.org/wiki/Dataflow_programming

Component

Inputs Outputs

Figure 1: Abstract Model of a CBTF Component

Networks of these components are then constructed by connecting together the inputs and outputs of
one or more component instances:

Component A
Instance #1

Component A
Instance #2

Component B
Instance

Component Network

Inputs

Output

Figure 2: Example of a CBTF Component Network

Several important aspects of CBTF component networks are illustrated in the figure above:

• As with C++ where one can create multiple instances of a class, more than one instance of a given
component type may be used within a single component network.

• Component networks need not be simple, straight, pipelines. Such configurations are perfectly
legal, of course. But more complex arrangements - including cycles - are allowed as well.

• Connections between components need not be one-to-one. It is possible for a single component
output to be attached to multiple inputs. And, alternatively, multiple component outputs may be
attached to a single input.

• Component networks themselves can be viewed as components. This allows component networks
to be built out of other component networks.

Finally, the component network concept can be extended across more than one node, resulting in a
distributed component network:

Node #3
Node #1

Node #2

Output

Distributed Component Network

Figure 3: Example of a CBTF Distributed Component Network

Note that none of these concepts are specific to tools. I.e. CBTF has in no way dictated the scope of
what each component does or the content of the messages exchanged between those components.
While originally envisioned as a framework for constructing tools, CBTF can actually be used to
construct virtually any software system for which the dataflow programming paradigm is a sensible
choice.

Implementation Details
CBTF is currently split into three layered C++ software libraries, with each layer building upon the
capabilities of the lower layers:

Boost

libcbtf
Xerces-C

MRNet

libcbtf-mrnetlibcbtf-tcpip

Qt

cbtf-gui

libcbtf-xml

Figure 4: CBTF Software Stack

Blue in the above diagram denotes the following existing open source software packages:

! Boost! ! http://www.boost.org/
! Xerces-C! http://xerces.apache.org/xerces-c/
! MRNet! http://www.paradyn.org/mrnet/
! Qt! ! http://qt.nokia.com/

Green denotes CBTF software libraries that have been completed to date. Red denotes planned
future CBTF functionality. One can utilize a lower-level library (e.g. libcbtf) without requiring the
higher-level library (e.g. libcbtf-mrnet) but not vice-versa.

The CBTF source code is heavily documented using Doxygen (http://www.doxygen.org/) and this
documentation should be considered the definitive reference for the APIs of the CBTF libraries. Some
of the details of each library are discussed below, however, to provide the reader with further context
for understanding the tutorials.

libcbtf

This library provides the basic mechanisms to perform the following tasks:

• Defining Components: All CBTF components are implemented as C++ classes that inherit from the
Component base class defined in libcbtf. Such component classes provide a default constructor
that declares the component’s type, version, inputs, and outputs via the Component class’s

http://www.boost.org
http://www.boost.org
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://www.paradyn.org/mrnet
http://www.paradyn.org/mrnet
http://qt.nokia.com
http://qt.nokia.com
http://www.doxygen.org
http://www.doxygen.org

protected methods. Additionally, components must also provide a factory function for creating
component instances. Beyond these requirements component classes are free to define any
additional methods, data members, etc. that are required to accomplish their functionality.

• Registering Plugins: One or more CBTF component classes can be bundled together into a single
shared library. This shared library can then by dynamically loaded as a plugin by a tool using the
Component class’ registerPlugin static method. The components bundled in the plugin are
then available for instantiation or metadata queries via the APIs described below. Note that CBTF
does not provide a specific plugin discovery policy - only the mechanism by which plugins are
loaded.

• Query Metadata: Once plugins containing CBTF component classes have been registered, a tool
can dynamically determine the available components, their versions, inputs, and outputs via static
methods defined by the Component class. This allows tools to utilize components in a generic
manner - at least on a limited basis - without prior knowledge of what those components are.

• Instantiate Components: New instances of a CBTF component are created using the Component
class’ instantiate static method. The caller may optionally specify a specific component version
to be instantiate, with the default being to instantiate the most recent available version. Component
instances are only returned as shared pointers. Thus all component instances are automatically
destroyed when their last shared pointer is released.

• Connect Components: Finally, multiple CBTF components can be connected into a component
network using the Component class’ connect static method. Existing connections may also be
removed via the disconnect static method.

TODO: DESCRIPTION OF THE THREADING MODEL
TODO: DESCRIPTION OF THE VERSIONING SYSTEM

Alone, with minimal additional dependencies (i.e. only Boost), this library can be used to define
components. And while this library can, in theory, be used to construct tools from components, it is
fairly tedious to build large component networks using individual calls to the connect method.

libcbtf-xml

The CBTF XML library simplifies the construction of complex component networks by allowing the
instantiated components, and the connections between them, to be entirely specified within a single
XML file. The schema for these files (“Network.xsd”) can be found in the libcbtf-xml source code.

These XML files are registered with CBTF via this library’s one and only externally visible API function
- registerXML. Since component networks are, themselves, components, they can be instantiated
and connected using the mechanisms described above once their XML file has been registered.

...

libcbtf-mrnet

...

Tutorials
The following tutorials present the construction of a tool that utilizes a CBTF distributed component
network to execute an arbitrary command (such as “top” or “ps”) on multiple nodes. Output from the
executed command is gathered up and displayed by the tool.

Creating Components

Multiple components are used by this tool. All of those components will be contained within a single
source file that begins by including header files and using namespaces.

#include <boost/bind.hpp>
#include <mrnet/MRNet.h>
#include <stdio.h>
#include <string>
#include <sys/param.h>
#include <typeinfo>

#include <KrellInstitute/CBTF/Component.hpp>
#include <KrellInstitute/CBTF/Type.hpp>
#include <KrellInstitute/CBTF/Version.hpp>

using namespace KrellInstitute::CBTF;
using namespace std;

Most of the above includes are for standard Linux, C++, and Boost header files. MRNet is referenced
as well. Note that all of CBTF’s header files are found in the above-referenced directory.

The class for the tool’s main component - the one that executes the command - is defined next.

class __attribute__ ((visibility ("hidden"))) ExecuteCommand :
 public Component
{

As already noted previously, all CBTF components must inherit from the Component class. They
should also be marked with hidden visibility. Hiding the class declaration causes its symbols to not be
exported by the linker. This is necessary in order to allow multiple definitions of the same class, but
with different versions, to peacefully co-exist in CBTF.

All CBTF components must have a public factory function with the name factoryFunction. This is
the means by which CBTF dynamically discovers the components type, version, etc. and by which it
creates instances of the component.

public:

 static Component::Instance factoryFunction()
 {
 return Component::Instance(
 reinterpret_cast<Component*>(new ExecuteCommand())
);
 }

All CBTF components should also have a private default constructor. This constructor defines the
type of the component, the version of the component, and the input/output names and their types. A
binding of inputs to the function that will handle those inputs is also specified at this time.

private:

 ExecuteCommand() :
 Component(Type(typeid(ExecuteCommand)), Version(0, 0, 1))
 {
 declareInput<string>(
 "command",
 boost::bind(&ExecuteCommand::commandHandler, this, _1)
);
 declareOutput<vector<string> >("output");
 }

A handler for the command input must be defined. It is invoked every time someone provides a value
for that input. In this case, the requested command is immediately executed, its output is gathered,
and emitted on the component’s output.

Note that components don’t have to follow this precise model. Inputs can be queued or even ignored.
Components may also emit outputs in a completely asynchronous manner. For example, the default
constructor might create a thread which monitors, say, /proc, and emits an output every time a
particular process’ CPU usage exceeds 50%.

 void commandHandler(const string& command)
 {
 vector<string> output;

 char hostname[MAXHOSTNAMELEN];
 gethostname(hostname, MAXHOSTNAMELEN);

 output.push_back(string(
 "Output of \"" + command + "\" from host \"" +
 hostname + "\"."
));

 FILE *fd = popen(command.c_str(), "r");

 if (fd != NULL)
 {
 char buffer[BUFSIZ];
 memset(&buffer, 0, sizeof(buffer));

 while (fgets(buffer, sizeof(buffer), fd))
 {
 string line(buffer);

 if (!line.empty())
 {
 if (line[line.length() - 1] == '\n')
 {
 line.erase(line.length() - 1);
 }
 output.push_back(line);
 }
 }
 pclose(fd);
 }
 else
 {
 output.push_back(string("Error executing this command!"));
 }

 emitOutput<vector<string> >("output", output);
 }

Finally, to complete this component, its class is closed and registered with CBTF. A macro provided
by CBTF, which generates a statically initialized C++ structure, is used to perform the registration.

}; // class ExecuteCommand

KRELL_INSTITUTE_CBTF_REGISTER_FACTORY_FUNCTION(ExecuteCommand)

The remainder of the components used by this tool are conversion components that translate several
datatypes to and from a MRNet packet. These are used in order to bind various component inputs
and outputs to the upward and downward streams that MRNet provides. The implementation of these
components are very similar in nature to the above component, so the complete definition of only one
is shown below.

class __attribute__ ((visibility ("hidden"))) ConvertStringToPacket :
 public Component
{

public:

 static Component::Instance factoryFunction()
 {

 return Component::Instance(
 reinterpret_cast<Component*>(new ConvertStringToPacket())
);
 }

private:

 ConvertStringToPacket() :
 Component(Type(typeid(ConvertStringToPacket)), Version(0, 0, 1))
 {
 declareInput<string>(
 "in", boost::bind(&ConvertStringToPacket::inHandler, this, _1)
);
 declareOutput<MRN::PacketPtr>("out");
 }

 void inHandler(const string& in)
 {
 emitOutput<MRN::PacketPtr>(
 "out", MRN::PacketPtr(new MRN::Packet(0, 0, "%s", in.c_str()))
);
 }

}; // class ConvertStringToPacket

KRELL_INSTITUTE_CBTF_REGISTER_FACTORY_FUNCTION(ConvertStringToPacket)

class __attribute__ ((visibility ("hidden"))) ConvertStringListToPacket :
 public Component
{
 ...
}; // class ConvertStringListToPacket

KRELL_INSTITUTE_CBTF_REGISTER_FACTORY_FUNCTION(ConvertStringListToPacket)

class __attribute__ ((visibility ("hidden"))) ConvertPacketToString :
 public Component
{
 ...
}; // class ConvertPacketToString

KRELL_INSTITUTE_CBTF_REGISTER_FACTORY_FUNCTION(ConvertPacketToString)

class __attribute__ ((visibility ("hidden"))) ConvertPacketToStringList :
 public Component
{
 ...
}; // class ConvertPacketToStringList

KRELL_INSTITUTE_CBTF_REGISTER_FACTORY_FUNCTION(ConvertPacketToStringList)

All that remains to complete the plugin for this tool is to compile the above source file and link it
against libcbtf into a shared library.

Writing XML

A distributed component network must now be defined which combines the above components into a
useful configuration. As described above, XML is the language used for this purpose. The XML begins
with the <MRNet> root element:

<?xml version="1.0" encoding="utf-8"?>
<MRNet xmlns="http://www.krellinst.org/CBTF/MRNet.xsd">

Every CBTF distributed component network is encapsulated as if it were a single component with
inputs and outputs. I.e. component networks - distributed or not - are themselves components. Thus
we must specify the CBTF type, version, inputs, and outputs of this distributed component. The inputs
and outputs of the component must be connected to inputs and outputs of the frontend component
network that will be defined shortly.

 <Type>TutorialTool</Type>
 <Version>1.0.0</Version>

 <Input>
 <Name>command</Name>
 <To><Input>command_to_frontend</Input></To>
 </Input>

 <Output>
 <Name>output</Name>
 <From><Output>output_from_frontend</Output></From>
 </Output>

The next section specifies the component network to be placed on the frontend of the MRNet tree. A
single non-distributed, local, component network is located on the frontend. Like every other
component network, it is itself a component and thus must specify its CBTF type, version, inputs, and
outputs.

 <Frontend>
 <Network>
 <Type>TutorialTool_Frontend</Type>
 <Version>1.0.0</Version>

All component networks must specify the plugins which contain the components they use. Note that a
plugin in this case may refer to a shared library containing components like the one described in the
previous section. But it may also refer to an XML file that defines one or more component networks
which, once again, are themselves components. Search paths can be specified in order to avoid
repeatedly specifying a full path for the plugin. In the following, the plugin defined in the previous

http://www.krellinst.org/CBTF/MRNet.xsd
http://www.krellinst.org/CBTF/MRNet.xsd

section is assumed to be named TutorialToolPlugin, and resides in the /opt/TutorialTool
directory.

 <SearchPath>/opt/TutorialTool</SearchPath>

 <Plugin>TutorialToolPlugin</Plugin>

 <Component>
 <Name>convert_command</Name>
 <Type>ConvertStringToPacket</Type>
 </Component>

 <Component>
 <Name>convert_output</Name>
 <Type>ConvertPacketToStringList</Type>
 </Component>

 <Input>
 <Name>command_to_frontend</Name>
 <To>
 <Name>convert_command</Name>
 <Input>in</Input>
 </To>
 </Input>

 <Input>
 <Name>output_from_network</Name>
 <To>
 <Name>convert_output</Name>
 <Input>in</Input>
 </To>
 </Input>

 <Output>
 <Name>command_to_network</Name>
 <From>
 <Name>convert_command</Name>
 <Output>out</Output>
 </From>
 </Output>

 <Output>
 <Name>output_from_frontend</Name>
 <From>
 <Name>convert_output</Name>
 <Output>out</Output>
 </From>
 </Output>

 </Network>

For CBTF’s purposes, MRNet’s communication mechanism is abstracted as zero or more
symbolically-named upward or downward data streams of a single type. The frontend has incoming
upward streams and outgoing downward streams. The backends have incoming downward streams
and outgoing upward streams. Filters have all four stream types.

A particular input or output from a non-distributed, local, component network (such as the one defined
above for the frontend) can be bound to an appropriate incoming/outgoing upward/downward stream
using the notation shown below. In this example, there is a single incoming upward stream named
output_stream bound to the output_from_network input of the above network, as well as a
single outgoing downward stream to carry the command to all the backends.

If a given named stream is not bound at a particular filter level of the MRNet tree, messages on it
simply continue upward or downward in their original direction of travel. I.e. in this example, since
there are no filters defined below, values sent downward on command_stream by the frontend will
simply continue along their way until they reach the backends.

If a given upward named stream is not bound within the frontend, values received on that stream are
simply discarded. By the same token, if a given downward named stream is not bound within the
backends, values received on that stream are simply discarded as well.

The component network input or output to which a stream is bound must (currently) always be of the
MRN::PacketPtr type. Hence the plugin described above contained numerous conversion
components that can translate data to/from MRN::PacketPtr. And this XML file contains numerous
instantiations of these components.

 <IncomingUpstream>
 <Name>output_stream</Name>
 <To><Input>output_from_network</Input></To>
 </IncomingUpstream>

 <OutgoingDownstream>
 <Name>command_stream</Name>
 <From><Output>command_to_network</Output></From>
 </OutgoingDownstream>

 </Frontend>

This tutorial does not place component networks within the filters running on the MRNet frontend,
communication processes, or backends. But if it did, this is where they would be specified. Instead,
the following section specifies the component network to be placed on every backend (daemon) in
the MRNet tree.

 <Backend>

Just as with the frontend, a complete non-distributed component network must be specified for
execution on the backends. Note that if lightweight MRNet is being used with the MRNet backend

attach mode, this section should be omitted because the lightweight MRNet backend - being C-only
code - will not be capable of instantiating a CBTF component network.

 <Network>

 <Type>TutorialTool_Backend</Type>
 <Version>1.0.0</Version>

 <SearchPath>/opt/TutorialTool</SearchPath>

 <Plugin>TutorialToolPlugin</Plugin>

 <Component>
 <Name>convert_command</Name>
 <Type>ConvertPacketToString</Type>
 </Component>

 <Component>
 <Name>execute_command</Name>
 <Type>ExecuteCommand</Type>
 </Component>

 <Component>
 <Name>convert_output</Name>
 <Type>ConvertStringListToPacket</Type>
 </Component>

 <Input>
 <Name>command_from_network</Name>
 <To>
 <Name>convert_command</Name>
 <Input>in</Input>
 </To>
 </Input>

 <Connection>
 <From>
 <Name>convert_command</Name>
 <Output>out</Output>
 </From>
 <To>
 <Name>execute_command</Name>
 <Input>command</Input>
 </To>
 </Connection>

 <Connection>
 <From>
 <Name>execute_command</Name>

 <Output>output</Output>
 </From>
 <To>
 <Name>convert_output</Name>
 <Input>in</Input>
 </To>
 </Connection>

 <Output>
 <Name>output_to_network</Name>
 <From>
 <Name>convert_output</Name>
 <Output>out</Output>
 </From>
 </Output>

 </Network>

 <IncomingDownstream>
 <Name>command_stream</Name>
 <To><Input>command_from_network</Input></To>
 </IncomingDownstream>

 <OutgoingUpstream>
 <Name>output_stream</Name>
 <From><Output>output_to_network</Output></From>
 </OutgoingUpstream>

 </Backend>
</MRNet>

This XML is placed into a file named TutorialTool.xml which is used in the next tutorial.

Creating Tools

Now that all the necessary components have been created, and a XML description of the tool’s
distributed component network has been written, it is time to construct the tool itself. The tool, as with
the component plugin, is contained within a single source file that begins by including header files and
using namespaces.

#include <iostream>
#include <boost/program_options.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <KrellInstitute/CBTF/BoostExts.hpp>
#include <KrellInstitute/CBTF/Component.hpp>
#include <KrellInstitute/CBTF/Type.hpp>
#include <KrellInstitute/CBTF/ValueSink.hpp>

#include <KrellInstitute/CBTF/ValueSource.hpp>
#include <KrellInstitute/CBTF/XML.hpp>
#include <string>

using namespace boost;
using namespace KrellInstitute::CBTF;
using namespace std;

Most of the tool’s implementation is wrapped in a class that uses the Boost.Thread library to execute
the tool within a separate thread. The following is boilerplate for this class that is not specific to CBTF.

class TutorialTool
{

public:

 TutorialTool()
 {
 }

 void start(const string& topology,
 const string& cmd,
 const unsigned int& numBE)
 {
 dm_thread = thread(
 &TutorialTool::run, this, topology, cmd, numBE
);
 }

 void join()
 {
 dm_thread.join();
 }

 void run(const string& topology,
 const string& cmd,
 const unsigned int& numBE)
 {

In order to make use of the CBTF distributed component network TutorialTool defined in
TutorialTool.xml, that file must first be registered with CBTF.

 registerXML("TutorialTool.xml");

The plugin BasicMRNetLaunchers contains, as one might expect, two MRNet launchers - one that
uses MRNet’s backend create mode, and one that uses MRNet’s backend attach mode. Since the
distributed component network TutorialTool should be usable regardless of the type of launcher
employed, TutorialTool does not specify a launcher. Instead, one will be created explicitly shortly.

This means, however, that TutorialTool doesn’t list BasicMRNetLaunchers in its list of plugins.
Thus it must be registered manually here.

 Component::registerPlugin(“BasicMRNetLaunchers”);

Create an instance of the TutorialTool distributed component network. This constructs the
component network that resides on the frontend, but does not yet attempt to construct the filter and
backend component networks. This full network is not instantiated until a MRNet Network object is
received on the Network input. This inputs is not defined in TutorialTool.xml - it is automatically
added by CBTF to all MRNet-based CBTF distributed component networks.

 Component::Instance network = Component::instantiate(
 Type("TutorialTool")
);

Now create an instance of the basic MRNet launcher that uses the backend create mode. This
component takes a MRNet topology file as input and has a Network output that is of the MRNet
Network type.

 Component::Instance launcher = Component::instantiate(
 Type("BasicMRNetLauncherUsingBackendCreate")
);

Instruct CBTF to connect the Network output of the launcher component to the Network input of the
TutorialTool instance.

 Component::connect(launcher, "Network", network, "Network");

In order to pass values between regular C++ code and a CBTF component network, bridge objects
are used. The CBTF ValueSource and ValueSink template classes function as these bridges. In
this example there are two inputs to, and one output from, the TutorialTool + launcher
combination:

topology_file: The name of the topology file describing the MRNet network to be
constructed. This will be passed into the launcher.

command: The command to be executed. This is passed into the TutorialTool component.

outputs: The outputs of the command. This is generated by the TutorialTool component.

Note that unlike most other CBTF components, the ValueSource and ValueSink components are
explicitly instantiated via their instantiate method. In order for CBTF to connect these bridge
components into the network, they must be cast to a Component::Instance.

 shared_ptr<ValueSource<filesystem::path> > topology_file =
 ValueSource<filesystem::path>::instantiate();

 shared_ptr<ValueSource<string> > command =

 ValueSource<string>::instantiate();

 shared_ptr<ValueSink<vector<string> > > outputs =
 ValueSink<vector<string> >::instantiate();

 Component::Instance topology_file_component =
 reinterpret_pointer_cast<Component>(topology_file);

 Component::Instance command_component =
 reinterpret_pointer_cast<Component>(command);

 Component::Instance outputs_component =
 reinterpret_pointer_cast<Component>(outputs);

Connect the bridges to the appropriate inputs and output of the launcher and TutorialTool
components.

 Component::connect(
 topology_file_component, "value", launcher, "TopologyFile"
);

 Component::connect(
 command_component, "value", network, "command"
);

 Component::connect(
 network, "output", outputs_component, "value"
);

Now that all the components have been connected, it is time to get things rolling. The
BasicMRNetLauncherUsingBackendCreate launcher needs a single input - the path of the
MRNet topology file. Once this value is passed in, the launcher calls MRNet to construct the MRNet
network and then emits the Network object on its output, where it travels to the TutorialTool
component and causes the complete CBTF distributed component network to be created.

 *topology_file = topology;

Send a command down the MRNet network to the backends for execution.

 *command = cmd;

Loop until command outputs have been received from all backends.

 for (int num_received = 0; num_received < numBE; ++num_received)
 {

The following line, which calls ValueSink<...>::operator(), will block until a value is available
on the component output to which it is attached.

 vector<string> output = *outputs;

Display the received command output on the standard output stream and finish this method and the
class.

 for (vector<string>::const_iterator
 i = output.begin(); i != output.end(); ++i)
 {
 cout << *i << endl;
 }
 }
 } // run

private:
 thread dm_thread;

}; // class TutorialTool

The main function for the tutorial tool can now be written.

int main(int argc, char** argv)
{

Specify the default topology file location and command that will be used if they aren’t specified in the
command-line arguments.

 char const* home = getenv("HOME");
 string default_topology(home);
 default_topology += "/.cbtf/cbtf_topology";
 string default_cmd = "ps -ef";

Parse the command-line arguments using the Boost.Program_options library.

 unsigned int numBE;
 string topology;
 string cmd;

 program_options::options_description desc("daemonToolDemo options");

 desc.add_options()
 ("help,h", "Produce this help message.")

 ("numBE",
 program_options::value<unsigned int>(&numBE)->default_value(1),
 "Number of expected mrnet backends. Default is 1, This should "
 "match the number of nodes in your topology and job allocation.")

 ("topology",

 program_options::value<string>(&topology)->
 default_value(default_topology),
 "Path name to a valid mrnet topology file. (i.e. from
mrnet_topgen),")

 ("cmd",
 program_options::value<string>(&cmd)->default_value(default_cmd),
 "Command to execute on backend tool daemon. Must be in quotes "
 "if command has arguments.")
 ;

 program_options::variables_map vm;

 program_options::store(
 program_options::parse_command_line(argc, argv, desc), vm
);
 program_options::notify(vm);

 program_options::positional_options_description p;
 program_options::store(
 program_options::command_line_parser(argc, argv).
 options(desc).positional(p).run(), vm
);
 program_options::notify(vm);

 if (vm.count("help"))
 {
 cout << desc << endl;
 return 1;
 }

 cout << "Running command " << cmd
 << "\nNumber of mrnet backends: " << numBE
 << endl;

Construct an instance of TutorialTool, initiate a separate thread to run the command, and then wait for
that thread to complete.

 TutorialTool tutorial_tool;
 tutorial_tool.start(topology, cmd, numBE);
 tutorial_tool.join();
}

To complete the tool, this source file is compiled and linked against libcbtf, libcbtf-xml, and libcbtf-
mrnet. It does not need to be linked against TutorialToolPlugin since that plugin is loaded
dynamically by the above code.

