
Software Frameworks

Ciera Jaspan
O|SS Meeting



Why frameworks?

• Reuse a software architecture
• Embed quality attributes into the architecture
• And abstract them away from plugins

• Extensible to unanticipated functionality
• Reuse of existing plugins to the framework
• Build a community of common APIs and reusable

implementations



Architecture and Quality Attributes

• Quality attributes
• Performance
• Security
• Scalability
• *-ility

• All QA’s have tradeoffs with each other
• Old way: hack quality attributes in after development
• New way: Embed quality attributes into the

architecture
• More cost effective, less refactoring
• Handled at high level, not scattered in program

• Works if you know your QA tradeoffs up front
• A fatal flaw for many, but O|SS already has identified these



Libraries

• Libraries should be familiar
• Call outside class to do some task
• We control
• Program flow
• Architecture

• The library does a routine, and passes back data

Library

I/OCollections Swing
Math



Frameworks

• Frameworks controls
• Program flow
• Architecture

• Calls back to customized code
• The Hollywood principle: “Don’t call us; we’ll call

you.”

Framework

SwingEclipse
Spring

Applet



Components and plugins

• Component: a software runtime entity
• A single object, or
• Many interconnected objects

• Plugin: a component which adds customized
functionality to a framework
• API
• May refer to a single API or the combination of many small

APIs
• May refer to the interface to a library or a framework
• Can define a standard

• Extension point: the API which a plugin must
implement to be called by the framework



Other frameworks

• Eclipse (IDE)
• Tree-like plugin infrastructure

• Spring (Web Applications)
• Provides standard components, but any can be replaced

with customized plugins

• Firefox (Browser)
• Provides basic functionality without any plugins



Interesting wrinkles

• A plugin can also use libraries (and almost always
does)
• A component could be a plugin to more than one

framework
• Collectors: plugin to O|SS and DynInst
• Aggregator: plugin to O|SS and MRNet

• It could take more than one component to make a
plugin
• A collector plugin with no view is useless
• Probably have a collector, aggregator, analysis and view

• A plugin could be a framework itself



Framework design guidelines

• Embed quality attributes, not functionality
• Performance
• Scalability
• Extensibility
• Parallelism

• Keep the framework small: possibly only loading and
connecting plugins
• Determine architecture first, APIs second
• Where are the components running?
• How does the framework load plugins?
• How does data pass through the APIs?

• Build a community alongside the framework
• Tutorials, examples, help forums



How are plugins loaded?

• Most frameworks create plugins dynamically
• Config file contains relevant info (usually human readable)
• Can add plugins without recompiling framework

• Would also be good for O|SS
• Could have “required” and “optional” plugins
• Required: Collector, Analysis, View…
• Optional: Transporter, Storage…
• Can use “standard” plugins if none specified

• User of the config file must check compatiblity
• Could do on O|SS side, but very difficult
• Subject of a lot of research…

• Experts create config files for common experiments



How does data get to plugins?

•Option 1: Interacting through the framework
• Framework calls plugins and passes data on their behalf
• Gives framework more control
• Eclipse does this, as does ASP.NET
• Config file specifies extension point and location of plugin

•Option 2: Direct connections between plugins
• Framework only connects the plugins through interfaces
• Sacrifice control for performance
• Spring does this
• Config file also specifies how to connect plugins together
• If APIs are well done, framework can still intervene later



API design guidance from Josh Bloch

• YouTube on APIs
• Josh Bloch, “How To Design A Good API and Why it Matters”
• Also has 50 points of advice for designing APIs

• Simple clear names: if it’s hard to name, it’s doing too
many things
• Keep it as small as possible; you can always add it later
• Keep out implementation details
• Document religiously
• Consider affect on performance (and other quality

attributes too!)
• Principle of Least Surprise
• Fail fast when things go wrong; compile time is best



Plan for iteration

• API locality is more important than the perfect
API
• Put common functionality together behind an interface,

even if it’s not perfect
• Makes it easier to adjust later
• Prevents analysis paralysis

• Try them out on existing plugins
• Research says at least three
• Existing examples and proposed analyses might be

sufficient
• Don’t stabilize until there are external plugins as well



A starting O|SS architecture

• Framework reads a config file
• What format?

• Framework loads plugins accordingly
• Should it also load other libraries the plugin requires?
• Where does the framework create the plugins at?

• Framework connects plugins directly
• Should it check to see if they are compatible?

•Optional plugin points, with default plugins
• MRNet?

• Framework starts the components running
• APIs contain a small lifecycle which is used by O|SS
• APIs communicate through a simple abstraction



Proposed architecture diagram



Dynamic architecture view, creation time



Dynamic architecture view, experiment run time



Suggested static architecture view



Types of plugins: Things to identify

• Is it high priority to create an API for?
• Is there a common default implementation?
• What is it responsible for? (one thing!)
• What libraries does this plugins here frequently use?
• Don’t invest too much time, but look for architectural mismatch

• What machine is the plugin running on?
• Does it always run there, or can that be configured?

• Can there be multiple plugins of the same type? (multiple
collectors?)
• Or multiple instances of exactly the same plugin? (multiple

IOCollectors?)

• What are the inputs? (form and location)
• What are the outputs? (form and location)



 Types of plugins: from CScADS

• Instrumentor
• Collector
• Storage
• Transport
• Aggregator
• Analysis
• User Interface





Architectural mismatch

• Components that do not match our needs well
• Components that do not match needs of other

components
• Types of mismatch
• Data model
• Protocols
• Control model
• Infrastructure
• Topology
• Construction process


