
8/3/2010CScADS WorkShop 20101

Building a Community Infrastructure for

Scalable

On-Line Performance Analysis Tools

a.k.a.

Component Based Tool Framework

“CBTF”

Jim Galarowicz

Bill Hachfeld, Don Maghrak

The Krell Institute

• Open|SpeedShop update

• CBTF project overview

• CBTF project current implementation

• Usage Examples

• CBTF project future directions

CBTF Agenda
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010CScADS WorkShop 20102

Highlights:

• Release 1.9.3.4 (www.openspeedshop.org)

• Ported to Cray-XT

• Porting to PPC and Blue Gene

• Unwinding - signal context, getting at hardware counters

• Improvements to scaling (Pepc 12k run on Jaguar)

• Improvements to online (Dyninst/MRNet) version of

Open|SpeedShop

• Testing on multiple platforms, scaling

Open|SpeedShop status
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010CScADS WorkShop 20103

http://www.openspeedshop.org/

8/3/2010CScADS WorkShop 20104

• CBTF Project Goals/Objectives: (Big Picture)

• Attempting to build a framework that can be used to connect
together the various components that make up a typical
performance tool.

• And, importantly, to be able to deploy them across a petascale
system in various configurations, depending on the architecture
of that system.

• Framework should be relatively easy to use.

Project Goals/ObjectivesBuilding a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

• CBTF Project Team
• Funded Team (jointly funded OASCR / NNSA)

• The Krell Institute

• University of Maryland

• University of Wisconsin

• Oak Ridge National Laboratory

• Lawrence Livermore National Laboratory

• Unfunded Collaborators

• Los Alamos National Laboratory

• Sandia National Laboratories

• Carnegie Mellon University

CBTF Project Team
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010
CScADS WorkShop 20105

8/3/2010

CScADS WorkShop 20106

• CBTF Implementation
• Krell: Designing and implementing, with full CBTF team input

• Set of libraries that define:
• Component interfaces

• Tool component binding mechanism

• Initial transport network components and binding mechanism

• Krell: Refactoring Open|SpeedShop in the existing source tree.
(componentizing)

• UW: Design support, research on binary rewriting, new Dyninst
features, as well as MRNet.

• UMD: Design support, research into Active Harmony component or
component network

• LLNL: Design support, application & tool need identification

• ORNL: Design support, application & tool need identification,
source and wiki hosting.

Current CBTF ImplementationBuilding a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010

CScADS WorkShop 20107

• CBTF Implementation

• CBTF API overview

• Single process API usage example

• XML specification of component network for single
process

• Single process XML usage example

• XML based specification of MRNet based component
network

Current CBTF ImplementationBuilding a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010CScADS WorkShop 20108

8/3/2010CScADS WorkShop 20109

8/3/2010
10

CBTF API Usage ExampleBuilding a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

A B

“in” “in”

int int

0.0.1 0.0.2

“out” “out”

int int

out=in / 2 out=in * 2

// Component type used by the unit test for the Component class.

class __attribute__ ((visibility ("hidden"))) TestComponentA :

public Component

{

public:

/** Factory function for this component type. */

static Component::Instance factoryFunction()

{ return Component::Instance(reinterpret_cast<Component*>(new TestComponentA()));}

private:

/** Default constructor. */

TestComponentA() :Component(Type(typeid(TestComponentA)), Version(0, 0, 1))

{ declareInput<int>(

"in", boost::bind(&TestComponentA::inHandler, this, _1)

);

declareOutput<int>("out");

}

/** Handler for the "in" input.*/

void inHandler(const int& in)

{ printf("in an instance of TestComponentA, in=%d\n", in);

emitOutput<int>("out", in / 2); }

}; // class TestComponentA

KRELL_INSTITUTE_CBTF_REGISTER_FACTORY_FUNCTION(TestComponentA)

8/3/2010CScADS WorkShop 2010
11

CBTF API Usage ExampleBuilding a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

must tell cbtf about plugins avail.

registerPlugin(A)

registerPlugin(B)

create the instantiation of the plugin

instance_of_a1=instantiate(Type(A))

instance_of_a2=instantiate(Type(A))

…

instance_of_b2=instantiate(Type(B))

now connect the components

connect(instance_of_a1, “out”,

instance_of_a2, “in”)

connect(instance_of_a2, “out”,

instance_of_a3, “in”)

…

connect(instance_of_b1, “out”,

instance_of_b3, “in”);

A B

“in” “in”

int int

0.0.1 0.0.2

A1 A2

A3

B1

B2

“out” “out”

int int

out=in / 2 out=in * 2

VIN

VOUT

8/3/2010CScADS WorkShop 2010
12

CBTF-XML Usage ExampleBuilding a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

….

<MonolithicTool xmlns=“…/XML/MonolithicTool.xsd">

<Plugins xmlns=“…/XML/Types.xsd">

<SearchPath>.</SearchPath>

<Required>plugin.la</Required>

</Plugins>

<Network xmlns=“…/XML/Types.xsd">

<Component>

<Name>A1</Name>

<Type>TestComponentA</Type>

</Component>

…

<Connection>

<From>

<Name>A1</Name>

<Output>out</Output>

</From>

<To>

<Name>A2</Name>

<Input>in</Input>

</To>

</Connection>

…

</Network>

</MonolithicTool>

A B

“in” “in”

int int

0.0.1 0.0.2

A1 A2

A3

B1

B2

“out” “out”

int int

out=in / 2 out=in * 2

VIN

VOUT

The call:

Monolithic tool ("tool.xml");

creates the network

8/3/2010CScADS WorkShop 201013

MRNet component

network example

libcbtf-mrnet XML example
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010CScADS WorkShop 201014

• XML libcbtf-mrnet notes/highlights
• Similar to the single process XML definition

• MRNet tool specification file

• Specifies the component networks across the MRNet tree

• What level to put the network in the tree

• How to connect the components on that level

• Topology neutral (passes the topology through to MRNet)

• Network specifications are relative to the backend, frontend node level

• Can specify all node levels get a component network or node levels based on a

relative value

• Only way to specify the MRNet tool networks is through XML

• With single process tool, user could create a component network via the base

library in addition to the XML specification file.

8/3/2010CScADS WorkShop 201015

• Summary of the Component Interface Libraries
• libcbtf

• Provides Cores Services:

• Component Abstraction

• Metadata

• Interconnection

• Minimal Dependencies (GNU Build Tools & Boost)

• libcbtf-xml
• Provides XML-Based Definition of Single-Process Component Networks

• Depends on libcbtf and Xerces-C

• libcbtf-mrnet
• Provides XML-Based Definition of MRNet-Based Distributed Component

Networks

• Depends on libcbtf, libcbtf-xml, and MRNet

CBTF Component InterfaceBuilding a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

• Current Status

• Held several design meetings with the extended CBTF team

• Created a CBTF wiki hosted at ORNL

(http://ft.ornl.gov/doku/cbtfw/start)

• Doing a number of improvements and decompositions in

Open|SpeedShop

• Designing and developing the CBTF infrastructure

• libcbtf, libcbtf-xml - first version near completion

• libcbtf-mrnet – two to three months away

• Source hosted at ORNL

Current Status
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010CScADS WorkShop 201016

http://ft.ornl.gov/doku/cbtfw/start

• Next steps (Krell)

• Continue to design and develop the CBTF infrastructure

• Begin decomposing Open|SpeedShop internal structure and re-

engineer into CBTF components

• Components for Dyninst specific instrumentation

• Components for Offline (libmonitor) instrumentation

• Components for MRNet filtering

• Component for distributed cluster analysis

• Components for the internal Open|SpeedShop infrastructure

• Database, Process Control, Instrumentor, UI clients, Symbol Proc.

What are the next steps?
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010CScADS WorkShop 201017

Questions?

jeg@krellinst.org

Questions?
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010CScADS WorkShop 201018

mailto:jeg@krellinst.org

Supplemental Information Section

Supplemental Information
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010CScADS WorkShop 201019

8/3/2010CScADS WorkShop 201020

• Project Goals/Objectives:

• Create a toolbox of components

• For building high-level end user tools

• Quickly build tool prototypes.

• Tools should be easily configurable/adjustable w/o rebuilding.

• Able to mix components from other groups.

• We would like contributors to define the interfaces with us, or give
feedback, so that we can share components later in both
directions.

Project Goals/ObjectivesBuilding a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

Services

Services

Services

Services
Services

CBT FrameworkLaunchers

ComponentComponent Component

A
p
p
lic

at
io

n

21

(views?)(db creation?)(transport?)

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools Conceptual Picture

1. User starts the tool which starts the framework

2. Framework uses launchers to start all components

3. Framework initiates pipeline components

4. Framework identifies data connections

5. Framework connects pipeline components

6. Pipeline components rely on service components

(existing stand alone packages like libmonitor or a

specific Dyninst component).

22

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools
Initialization Order

8/3/2010CScADS WorkShop 201023

• Details of the Component Interface Library (libcbtf)

• Provides Cores Services:

• Component Abstraction

• Main class: Component.hpp

• Key point: Do not need source header file, all that is
needed is object code

• Metadata

• Information about the Component

• Type, Version, Build String, Inputs, Outputs

• Interconnection

• Forms the connection between components

• Arguments passed via C++ callback function (shared
pointer)

CBTF Component

Interface Library

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010CScADS WorkShop 201024

• Details of the Component Binding Interface (libcbtf-xml)

• Provides XML-Based Definition of Single-Process Component
Networks

• Gives ability to create a component network within a single
process

• Monolithic tool (tool.xml) creates the network for the user

• Uses the low level library: libcbtf under the hood

• XML schema defines what is a legal specification

• Three options to find available plugins containing
components:

• Direct file specification

• Plugin Path environment variable

• Install Path

CBTF Component

Binding Interface

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010CScADS WorkShop 201025

• CBTF Transfer Mechanism Component (libcbtf-mrnet)

• Provides XML-Based Definition of MRNet-Based Distributed
Component Networks
• Must use the XML definitions to define MRNet component network

• Specifies what the components are

• Where to put the components

• How to connect the components

• Assumptions:

• At each level of the network we assume the same component
network for all nodes (homogenous network)

• Depends on libcbtf, libcbtf-xml, and MRNet

CBTF Transfer

Mechanism Component

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010CScADS WorkShop 201026

• Long Term Project Results/Deliverables:

• Set of reusable components for creating performance tools

• Proof of concept:

• Special purpose tool based on need at ORNL

• Modified version of gprof using reusable components

• Tool or Open|SpeedShop experiment based on Active Harmony

• Components that do online data aggregation, reduction, filtering,

and transfer at high scale

• A new, more modular Open|SpeedShop performance tool

Project Results/Deliverables
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

8/3/2010CScADS WorkShop 201027

