
University of Maryland

Automated Performance Tuning

 Goal: Maximize achieved performance

 Problems:
– Large number of parameters to tune

– Shape of objective function unknown

– Multiple libraries and coupled applications

– Analytical model may not be available

 Requirements:
– Runtime tuning for long running programs

– Don’t try too many configurations

– Avoid gradients

University of Maryland

Active Harmony

 Runtime performance optimization
– Can also support training runs

 Automatic library selection (code)
– Monitor library performance

– Switch library if necessary

 Automatic performance tuning (parameter)
– Monitor system performance

– Adjust runtime parameters

 Hooks for Compiler Frameworks
– Working to integrate USC/ISI Chill

– Looking at others too

University of Maryland

Harmony API

/* initialize */
harmony_startup (0);

harmony_application_setup_file (“setup.tcl”);

/* register tunable parameters : */

/* void *harmony_add_variable(char *appName, char *bundleName, int type); */
x = (int*) harmony_add_variable (“test_tuning”, “x”, VAR_INT);

y = (int*) harmony_add_variable (“test_tuning”, “y”, VAR_INT);

/* program main loop */

/* update tunable parameters’ value */
harmony_request_all ();

......

/* report performance result */
harmony_performance_update (performance_result);

/* finalize */
harmony_end ();

4

University of Maryland

Parallel Rank Ordering Algorithm

5

kN simplex
(here k=2, N=2)

New search iteration begins with one
of the accepted simplices

The algorithm appears in
SC 2005 proceedings.

University of Maryland

Harmony Internals

University of Maryland

A Bit More About Harmony Search

 Pre-execution
– Sensitivity Discovery Phase

– Used to Order not Eliminate search dimensions

 Online
– Use Parallel Rank Order Search

• Different configurations on different nodes

University of Maryland
9

Integrating Compiler Transformations

University of Maryland

Compiler Transformations

 Described as a series of Recipes

 Recipes consist of a sequence of operations
– permute([stmt],order): change the loop order

– tile(stmt,loop,size,[outer-loop]): tile loop at level loop

– unroll(stmt,loop,size): unroll stmt's loop at level loop

– datacopy(stmt,loop,array,[index]):

• Make a local copy of the data

– split(stmt,loop,condition): split stmt's loop level loop
into multiple loops

– nonsingular(matrix)

