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Outline

• Case Study #1:

– DCA++: Quantum Monte Carlo, Materials Science

– Jeremy Meredith (ORNL)

• Case Study #2:

– S3D: Compressible Flow, Turbulent Combustion

– Kyle Spafford (ORNL), Gregory Reutsch, Norbert Juffa (NVIDIA) 

• Case Study #3

– LAMMPS: Molecular Dynamics

– Mike Brown, Paul Crozier, Steve Plimpton, Peng Wang
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“Recipe” For Accelerating Applications

1. Profile your existing code to find where time is being 
spent

2. Choose kernels that represent a high fraction of runtime 
and map well to GPU hardware

3. Extract test harness and test problem

4. Implement and optimize kernels

5. Integrate with application, and minimize PCIe transfers
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App #1: DCA++

• Quantum Monte Carlo materials science code

• Used for the study of high-temperature superconductors
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Quantum Cluster Approximation
in the DCA++ code
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Hirsch-Fye auxiliary field
QMC cluster solver
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Finding a Target for Acceleration 
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CPU-only Performance
(linear scale)
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Initial GPU port

• Target the matrix-matrix multiply (GEMM)

– majority of runtime, more so for large configurations

– We’ll use the cublas library (linear algebra routines on the GPU)

• GPU memory exists on the card itself

– Must send arrays over PCI-Express bus

– Example:

• Send A,B,C to GPU over PCIe

• Perform GPU-based GEMM on A,B,C

• Read result C from GPU over PCIe
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Initial GPU port:
GEMM only, naïve data transfer

• Speedups:

– 1.6x (nl=20 nc=4)

– 10.3x (nl=100 nc=24)

• Effort:

– minimal LOC

– compilation environment

CPU vs initial GPU, nl=20
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Memory Management

• Worst approach

– Allocate and transfer to GPU for each call

– Completely transparent to application

• Slightly less naïve approach

– Allocate once and transfer to GPU for each call

– Internal API changes or CPU-GPU mapping

• Lazy transfers

– Only transfer to/from GPU when needed

– ―Real‖ effort
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Smart Data Transfers

• Required implementing an ―Array Handler‖
• Track when arrays are modified

• Track when arrays will be needed

• Encapsulate CPU/GPU array mapping

• Transfer only when something has changed

– Instrument application to utilize it
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Smart Data Transfers:
Advantage over Naïve Transfers
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Minimizing PCIe Transfers

• Functions that are otherwise insignificant become 
bottlenecks (because PCIe is so slow)

– If they require data to be on the CPU, they may be causing 
extra data transfers

– Exploring functions that may even be a poor match for GPU 
acceleration is worthwhile

• Disadvantage: It’s tons of work to port over large code 
bases
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Accelerating Minor Functions:
Advantage over GEMM-only
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Accelerating Minor Functions

• Speedups:

– 17x slower on small problems

– 1.5x faster on large problems

• Effort:

– more significant

• these functions aren’t necessarily a good match for GPUs

• which makes them harder to port

– and more dangerous

• if they are not a good match, they can slow your code down
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Performance Summary for QMC 
Update

CPU: single 2.0GHz Opteron

GPU: single 500MHz/96SP G80 (8800GTS 320MB)

• 10x speedup

– Offload BLAS to GPU, transfer all data

• 13x speedup

– Offload BLAS, transfer only ―dirty‖ matrices

• 19x speedup

– Offload BLAS + additional functions, allowing data to remain 
on GPU longer
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Whole-Code, Parallel Speedups

 

 
Median 

Speedup 
Max 

Speedup 

Warmup 13.46x 17.28x 

One QMC Step 13.32x 17.10x 

One Measurement 1.00x 1.00x 

One Iteration 4.96x 5.56x 

Whole Code 5.35x 

• 16 2.2GHz Barcelona nodes

• 32 MPI tasks

• 32 8800GTX GPUs
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Accuracy of SGEMM
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Accuracy: What’s sufficient in QMC

• How to measure sufficient accuracy when the results 
depend on randomness?

– run with same random seed?

• doesn’t help – decisions eventually change

– record and replay decisions?

• good, but probably best for short runs

– run many times and check final distribution?

• scientifically meaningful
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Accuracy: Tolerance to Single Precision
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Outline

• Case Study #1:

– DCA++: Quantum Monte Carlo, Materials Science

– Jeremy Meredith (ORNL)

• Case Study #2:

– S3D: Compressible Flow, Turbulent Combustion

– Kyle Spafford (ORNL), Gregory Reutsch, Norbert Juffa (NVIDIA) 

• Case Study #3

– LAMMPS: Molecular Dynamics

– Mike Brown, Paul Crozier, Steve Plimpton, Peng Wang
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S3D

• S3D is a massively parallel direct 
numerical solver (DNS) for the full 
compressible Navier-Stokes, total 
energy, species and mass continuity 
equations coupled with detailed 
chemistry.

• US Department of Energy currently 
using it to simulate combustion of 
biofuels

• Highly scalable code (150k cores on 
Jaguar), written entirely in Fortran\MPI
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Challenges: Tailoring S3D to the GPU

• Main Tasks

– S3D has a huge code base written in Fortran, porting the 
entire application without proof-of-concept is infeasible—
must choose a kernel for acceleration 

– Expose fine-grained data parallelism

– Modify algorithms to exploit the GPUs memory hierarchy

– Validate accuracy

• Profiling Results:

– 50-60% of runtime spent on calculation of chemical rates



25 Managed by UT-Battelle
for the U.S. Department of Energy Meredith VSCSE Many-Core Aug 5, 2010

GetRates Kernel

• Based on temperature, pressure, and mass fraction, 
GetRates computes the speed at which chemical 
reactions are occurring 

• Comprises roughly 45-60% of runtime, varying with grid 
size

• Operates on a regular, three dimensional grid
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Parallelism in GetRates

for x = 1 to cube_length

for y = 1 to cube_length

for z = 1 to cube_length

for n = 1 to nspecies

grid[x][y][z][n] = 

F(grid[x][y][z][1:nspecies])

• Outer 3 loops are parallel

• F has heavy computation (transcendentals, etc.)
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Mapping to CUDA

•Regular 3D mesh 

decomposed spatially 

into blocks

•Each block is further 

divided into threads, 

which solve for an 

individual point in 

space
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Exploiting the GPU Memory Hierarchy

• Coalesce reads/writes to global memory

– Single most important factor for performance

• Interleave accesses to global memory with intense 
calculation

• Use shared memory when possible

• Constant memory: almost as fast as register access on 
cache hit
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Kernel Speedups

SP: 13-14.5x         DP: 8.1x-9.3x
Tesla C1060 vs Opteron (Barcelona)
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Exploiting the GPU Memory Hierarchy

• Some Limitations

– Intermediate values (> 500 temporary variables per 
thread)

• Where to put them?

• Even at a small block size, still spill into global memory

– PCIe bus

• Data transfers can kill performance
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Accuracy vs. Performance Tradeoff

• Peak Flops

– 933 SP vs 78 DP Tesla C1060

– (much improved in Fermi)

• Double, Single, Fast-Single Intrinsics

– __sinf(), sinf(), or sin() ?

• Timestep Size

– Large timestep – faster but more susceptible to error

– Automatically adjusted based on estimated error
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Estimated Error at Each Timestep
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As error becomes erratic…
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More Questions About Accuracy
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Performance

• Amdahl’s Limit – Theoretical speedup with an unlimited 
number of processors

• Normalized Cost – wallclock time to simulate a single 
point in space per nanosecond

• Scientists can now simulate larger domains, at greater 
resolution 
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Outline

• Case Study #1:

– DCA++: Quantum Monte Carlo, Materials Science

– Jeremy Meredith (ORNL)

• Case Study #2:

– S3D: Compressible Flow, Turbulent Combustion

– Kyle Spafford (ORNL), Gregory Reutsch, Norbert Juffa (NVIDIA) 

• Case Study #3

– LAMMPS: Molecular Dynamics

– Mike Brown, Paul Crozier, Steve Plimpton(ORNL/Sandia, Peng
Wang (NV)



37 Managed by UT-Battelle
for the U.S. Department of Energy Meredith VSCSE Many-Core Aug 5, 2010

LAMMPS

• Large-Scale Atomic/Molecular Massively Parallel Simulator

– Classic MD Code, written in C++

– 175k+ lines of code

– Spatial Decomposition

– Distributed with MPI – has run on Jaguar, many DOE platforms
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LAMMPS – “Styles”

• LAMMPS is extensible via styles

– These are basically plugins.

– Add new potentials

– Add new ranges, geometries, etc.

• LAMMPS now has ―lammps-gpu‖

– Extends LAMMPs with CUDA-accelerated kernels

• LJ potential

• Neighbor List construction
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Aspherical Particles

• Most existing methods handle only spherical particles

• Need a way to handle more realistic scenarios

• Scientists know how to 
handles these particles, but 
it’s about 30x more 
intensive

• Instead of LJ, use a more
elaborate potential, Gay-
Berne
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Gay-Berne Potential on GPUs

• Great candidate

– High FP intensity

– As ―regular‖ memory access as LJ

– Multi-precision friendly (single, double, mixed)
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Basic Algorithm
• Copy atom positions and quaternions to device

• Did re-neighbor occur ? 

– copy neighbor list to device

• Call neighbor_pack kernel

– 1 Atom per GPU Core

– Perform cutoff check for all neighbors and store for coalesced access

– This limits thread divergence for the relatively expensive force computation

• Call force computation kernel

– Use full neighbor lists (double the amount of computations versus the CPU)

– No collisions with this approach

• Compute force, torque, energies, and virial terms

• Copy forces, torques, energies, and virial terms to host
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Performance - Node
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Mixed Precision
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Coding Issues

• Difficult to keep everything in registers

– In a real app, atoms have associated have more constants and 
other associated data than in benchmark codes

• Manual loop unrolling important for performance

• Huge number of implementations to draw from

– Derived from the wide array of data structures used in MD
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“Recipe” For Accelerating Applications

1. Profile your existing code to find where time is being 
spent

2. Choose kernels that represent a high fraction of runtime 
and map well to GPU hardware

3. Extract test harness and test problem

4. Implement and optimize kernels

5. Integrate with application, and minimize/overlap PCIe
transfers

6. Check Accuracy

7. Repeat 2-6 as necessary
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Thanks!

kys@ornl.gov
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For More Information

• Keeneland: National Institute for Experimental Computing
– http://keeneland.gatech.edu/

• ―The Scalable HeterOgeneous Computing (SHOC) Benchmark Suite‖
– A. Danalis, G. Marin, C. McCurdy, J.S. Meredith, P.C. Roth, K. Spafford, V. Tipparaju, J.S. Vetter

– Third Workshop on General-Purpose Computation on Graphics Processing Units (GPGPU-3), 2010

– http://ft.ornl.gov/doku/shoc/start

• ―Accelerating S3D: A GPGPU Case Study‖
– K. Spafford, J. Meredith, J.S. Vetter, J. Chen, R. Grout, R. Sankaran

– Seventh International Workshop on Algorithms, Models, and Tools for Parallel Computing on 
Heterogeneous Platforms (HeteroPar), 2009

• ―Accuracy and Performance of Graphics Processors: A Quantum Monte Carlo 
Application Case Study‖
– J.S. Meredith, G. Alvarez, T.A. Maier, T.C. Schulthess, J.S. Vetter

– Parallel Computing, Issue 35, Volume 3, March 2009

http://keeneland.gatech.edu/
http://ft.ornl.gov/doku/shoc/start

