v .
.

“weas

-

e

——

NVIDIA

ff Woolley,
Developer Technology Group

Cli

<A NVIDIA.

GPGPU Revolutionizes Computing

Latency Processor + Throughput processor

CPU GPU

Low Latency or High Throughput?

CPU

100s of ALLUs

100s of ALLUs

~ GPU

® Optimized for low-latency ® Optimized for data-parallel,
access to cached data sets throughput computation

¢ Control logic for out-of-order ¢ Architecture tolerant of
and speculative execution memory latency

»

More transistors dedicated to
computation

Low Latency or High Throughput?

CPU architecture must minimize latency within each thread
® GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor — High Throughput Processor Computation Thread/Warp

T, Processing

Waiting for data

Ready to be processed

CPU core — Low Latency Processor

Tl . T2

8. [] Context switch

_ RE

Processing Flow

=

g
o
5
g

E
©

2

U]

PCle Bus

>
<}
=
[}
=
=
o
®)

1. Copy input data from CPU memory to GPU

erconnect

memory

Processing Flow

| GigaThread™

CPU

PCle Bus

CPU Memory

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

Processing Flow

GigaThread™

CPU

=

PCle Bus

CPU Memg

1. Copy input data from CPU memory to GPU

memory erconnect |
2. Load GPU program and execute, L2

L
caching data on chip for performance : :

3. Copy results from GPU memory to CPU
memaory DRAM i

>

NVIDIA.

GPU ARCHITECTURE

GPU Architecture:

wo Main Components

® Global memory

Analogous to RAM in a CPU server
Accessible by both GPU and CPU
Currently up to 6 GB

Bandwidth currently up to 150 GB/s for Quadro and
Tesla products

ECC on/off option for Quadro and Tesla products

® Streaming Multiprocessors (SMs)

Perform the actual computations
Each SM has its own:
Control units, registers, execution pipelines, caches

GPU Architecture — Fermi:
Streaming Multiprocessor (SM)

* 32 CUDA Cores per SM
® 32 fp32 ops/clock
* 16 fp64 ops/clock
® 32int32 ops/clock

® 2 warp schedulers

® Upto 1536 threads
concurrently

® 4 special-function units
® 64KB shared mem + L1 cache
® 32K 32-bit registers

SESEESSS
IIIII-I.I
T T
1y

Register File

I
CD
| Cgr-

Core

o -
©
=

D

®
O
=
Q)
O
=

i

Core Core Core

®
o
©

O O
= =
D D
((“
‘ C s
e
D D
Q)
O
=
.
() O ()
= = = =

L oad/Store Units x 16

Special Func Units x 4

GPU Architecture — Fermi:
CUDA Core

* Floating point & Integer unit
* |EEE 754-2008 floating-point

standard
* Fused multiply-add (FMA) CUDA Core
Instruction for both single and STERAICRIPOT

double precision mmctor
Y

Logic unit
® Move, compare unit mm

Branch unit _ Result Queue

)

-

Core

GPU Architecture — Fermi:
Memory System

* L1
® 16 or 48KB / SM, can be chosen by the program
Hardware-managed
* Aggregate bandwidth per GPU: 1.03 TB/s

® Shared memory

User-managed scratch-pad
Hardware will not evict until threads overwrite

® 16 or 48KB / SM (64KB total is split between Shared and L1)
* Aggregate bandwidth per GPU: 1.03 TB/s

GPU Architecture — Fermi:
Memory System

¢ ECC protection:

* DRAM
* ECC supported for GDDR5 memory

¢ All major internal memories are ECC protected
* Regqister file, L1 cache, L2 cache

Overview of Tesla C2050/C2070 GPU

Processor clock 1.15 GHz
of CUDA cores 448
Peak floating-point perf 1.03 Tflops (SP)

Memory clock 1.5 GHz
Memory bus width 384 bit
Memory size 3GB/6GB

CUDA PROGRAMMING MODEL

Anatomy of a CUDA C/C++ Application

® Serial code executes in a Host (CPU) thread

® Parallel code executes in many Device (GPU) threads
across multiple processing elements

CUDA C/C++ Application

Host = CPU ?

Serlal code
Device = GPU

Parallel code - - -
Host = CPU

Serial code

Device = GPU

Compiling CUDA C Applications

void serial_function(..) {

CUDA C Rest of C
\};oid other_function(Cint ...) { Functions Application
: e
void saxpy_serial(float ...) { -
for (int i = 0; i < n; ++1)

y[i]l = a*x[i] + y[il; Modify into l

] Parallel CUDA object CPU object
: : CUDA C code i -

void main() { iles . files
float x; Linker
saxpy_serial(..);

;

CUDA C : C with a few keywords

[

N\ [

void saxpy_serial(int n, float a, float *x, float *y))
{

for (int 1 = 0; i < n; ++i)

2 e o

, y[il = asx[i] + y[il; Standard C Code
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y); Y,
__global__ void saxpy_parallel(int n, float a, float *x, float *y) ‘\\
{

int i = blockIdx.x*blockDim.x + threadIidx.x;

if (3 <n) y[il = a*x[i] + y[il; Parallel C Code
}

// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, X, Y); A//

CUDA C : C with a few keywords

® Kernel: function called by the host that executes on the GPU
Can only access GPU memory
* No variable number of arguments
* No static variables

® Functions must be declared with a qualifier:

® global : GPU kernel function launched by CPU, must return void
® device :can be called from GPU functions
® host :can becalled from CPU functions (default)

~_host _and _ device qualifiers can be combined

CUDA Kernels

* Parallel portion of application: execute as a kernel
* Entire GPU executes kernel, many threads

* CUDA threads:
Lightweight
* Fast switching
1000s execute simultaneously

CPU Host Executes functions
GPU Device Executes kernels

CUDA Kernels: Parallel Threads

* A kernel is a function executed
on the GPU as an array of BEECEED

threads in parallel

float x = input[threadldx.x];
All threads execute the same float y = func(x);

code, can take different paths output[threadldx.x] = y;

L)

® Each thread has an ID

® Select input/output data
Control decisions

CUDA Kernels: Subdivide into Blocks

CUDA Kernels: Subdivide into Blocks

CUDA Kernels: Subdivide into Blocks

7
r

\.
_

® Threads are grouped into blocks
¢ Blocks are grouped into a grid

CUDA Kernels: Subdivide into Blocks

7

4) 4 D 4

\. J \. J \.

.

® Threads are grouped into blocks
¢ Blocks are grouped into a grid
® A kernel is executed as a grid of blocks of threads

CUDA Kernels: Subdivide into Blocks

® Threads are grouped into blocks
* Blocks are grouped into a grid
® A kernel is executed as a grid of blocks of threads

Kernel Execution

CUDA thread CUDA core » Each thread is executed by a
§ - I core

» Each block is executed by

CUDA Streaming one SM and does not migrate
CUDA thread block Multiprocessor Several concurrent blocks can

-— reside on one SM depending
- I I I I on the blocks’ memory
requirements and the SM’s
memory resources

CUDA-enabled GPU

* Each kernel is executed on
I one device
I I I I » Multiple kernels can execute

on a device at one time

CUDA kernel grid

Thread blocks allow cooperation

® Threads may need to cooperate:

¢ Cooperatively load/store blocks of
memory all will use

® Share results with each other or
cooperate to produce a single result

® Synchronize with each other

Instruction Cache

R J 184

Col Col

(9]
O
O
(0]

)
(@
O

D
)
@
O

@D

!

Q) Q) Q)
9O o O

(0}

Q)

o

(1)
Q) Q) Q)
9o o O

(¢}

0
o
(¢}

D
Q)
o
(9]
D
O
O
(9]

|

D
Q)
O
D

())
O O
@

O

O ®)
@

() ®
o 9o
@

O

Q

(0]

(1]
0
O
(9]

|

O

— | |

L oad/Store Units x 16
pecial Func Units x 4

Co
nterconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Thread blocks allow scalability

* Blocks can execute in any order, concurrently or sequentially

® This independence between blocks gives scalability:
® A kernel scales across any number of SMs

Kernel Grid
Launch

Device with 2 SMs Block 0 Device with 4 SMs

SMO SM 1 Elueiel SMO SM 1 SM 2 SM 3

Block O Block 1 Elackis Block O Block 1 Block 2 Block 3

Block 2 Block 3 Blockss Block 4 Block 5 Block 6 Block 7

Block 4 Block 5 Block4

Block 6 Block 7 Slaich s
Block 6

Block 7

<

NVIDIA.

CUDA MEMORY SYSTEM

Memory hierarchy

® Thread:
® Registers

Memory hierarchy

® Thread:
® Registers
¢ Local memory

Local Local Local Local Local Local Local

Memory hierarchy

® Thread:
® Registers
® Local memory

* Block of threads:
¢ Shared memory

Memory hierarchy : Shared memory

__shared___int a[SIZE];

»

»

Allocated per thread block, same
lifetime as the block

Accessible by any thread in the
block

Latency: a few cycles

High aggregate bandwidth:
® 14*32*4B*1.15GHz/2=1.03TB/s
Several uses:

Sharing data among threads in a
block

® User-managed cache (reducing
gmem accesses)

Memory hierarchy

® Thread:
® Registers
® Local memory

¢ Block of threads:
¢ Shared memory

All blocks:
¢ Global memory

S300080 269020 996

Global

Memory hierarchy : Global memory

»

»

Accessible by all threads of any
kernel

Data lifetime: from allocation to

deallocation by host code
® cudaMalloc (void ** pointer, size_t nbytes)

* cudaMemset (void * pointer, int value, size_t

count)
¢ cudaFree (void* pointer)

Latency: 400-800 cycles
Bandwidth: 156 GB/s

* Note: requirement on access pattern to !

reach peak performance

S300080 269020 996

Global

<

NVIDIA.

CUDA DEVELOPMENT RESOURCES

CUDA Programming Resources

® CUDA Toolkit

® Compiler, libraries, and documentation
® Free download for Windows, Linux, and MacOS

® GPU Computing SDK
® Code samples
* Whitepapers
® [nstructional materials on NVIDIA Developer site
CUDA introduction & optimization webinar: slides and audio
* Parallel programming course at University of Illinois UC
¢ Tutorials
® Forums

GPU Tools

* Profiler
* Available for all supported OSs
* Command-line or GUI
Sampling signals on GPU for:
‘ Memory access parameters
¢ Execution (serialization, divergence)
® Debugger
® Linux: cuda-gdb
* Windows: Parallel Nsight
Runs on the GPU

<A NVIDIA.

(R R
SERRFE R R RN
B AN AN ANy v
R R

AAARAA A N
T
R

. Rl
R R N e
R RN TN e
P dd A Ty
s

TelalS

Quest

