
CUDA and MPI

Dale Southard

Senior Solution Architect

Pinning Host Memory

What You’ve Learned So Far….

Use new or malloc() to allocate host memory

Use cudaMalloc() to allocate device memory

Transfer using cudaMemcpy()

This works but won’t achieve full PCIe speed.

Pinning Host Memory

Page-locked (pinned) memory can’t be swapped out

Because it is guaranteed to be resident in RAM, the GPU can do

more efficient DMA transfers (saturating the PCIe bus)

Pinned memory can be allocated with either

 cudaMallocHost(**ptr, size)

 cudaHostAlloc(**ptr, size, flags)

Zero-Copy Memory before CUDA 4.0

Since we can efficiently DMA from pinned memory, the GPU can

access it in situ

float *h_ptr, *d_ptr;

cudaHostAlloc(&h_ptr, size, cudaHostAllocMapped);

cudaHostGetDevicePointer(d_ptr, h_ptr, 0);

cudaSetDeviceFlags(cudaDeviceMapHost);

GPUDirect

The DMA/RDMA Problem

CUDA driver allocates its own pinned memory region for DMA

transfers to/from GPU

IB driver allocates its own pinned memory region for RDMA

transfers to/from IB card

GPU can only access system memory

IB can only access system memory

MPI stack has no knowledge of GPU

So, for efficient copies we need two pinned buffers. 

MPI and CUDA Before GPUDirect

CPU

GPU

Chipset

GPU
Memory

Main
Mem

1

2

What is GPUDirect?

GPUDirect is an umbrella term for improving interoperability with

third-party devices (Especially cluster fabric hardware)

Long-term goal is to reduce dependence on CPU for managing

transfers

Contains both programming model and system software

enhancements

Linux only (for now)

GPUDirect v1

Jointly developed with Mellanox

Enables IB driver and CUDA driver to share the same pinned

memory

Eliminates CPU memcpy()s

Kernel patch for additional kernel mode callback

Guarantees proper cleanup of shared physical memory at

process shutdown

Currently shipping

GPUDirect v1

CPU

GPU

Chipset

GPU
Memory

InfiniBand

1

CUDA 4.0 Enhancements

No-copy Pinning of System Memory

Reduce system memory usage and CPU memcpy() overhead

Easier to add CUDA acceleration to existing applications

Just register malloc’d system memory for async operations

and then call cudaMemcpy() as usual

All CUDA-capable GPUs on Linux or Windows

Requires Linux kernel 2.6.15+ (RHEL 5)

Before No-copy Pinning With No-copy Pinning

Extra allocation and extra copy required Just register and go!

cudaMallocHost(b)

memcpy(b, a)

memcpy(a, b)

cudaFreeHost(b)

cudaHostRegister(a)

cudaHostUnregister(a)

cudaMemcpy() to GPU, launch kernels, cudaMemcpy() from GPU

malloc(a)

Unified Virtual Addressing

One address space for all CPU and GPU memory

Determine physical memory location from pointer value

Enables libraries to simplify their interfaces (e.g. cudaMemcpy)

Supported on Tesla 20-series and other Fermi GPUs

64-bit applications on Linux and Windows TCC

Before UVA With UVA

Separate options for each permutation One function handles all cases

cudaMemcpyHostToHost

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

cudaMemcpyDefault
(data location becomes an implementation detail)

Unified Virtual Addressing
Easier to Program with Single Address Space

No UVA: Multiple Memory Spaces

UVA : Single Address Space

System

Memory

CPU GPU0

GPU0

Memory

GPU1

GPU1

Memory

System

Memory

CPU GPU0

GPU0

Memory

GPU1

GPU1

Memory

PCI-e PCI-e

0x0000

0xFFFF

0x0000

0xFFFF

0x0000

0xFFFF

0x0000

0xFFFF

GPUDirect v2

Uses UVA

GPU Aware MPI

MPI calls handle both GPU and CPU pointers

Improves programmer productivity

Data movement done in SW

Same performance as v1

Requires

CUDA 4.0 and unified address space support

64-bit host app and GF100+ only

GPUDirect v2

CPU

GPU

Chipset

GPU
Memory

InfiniBand

1

(User sees direct transfer)

MPI and CUDA hide data movement

Multiple GPUs Before NVIDIA GPUDirect™ v2.0

Required Copy into Main Memory

GPU1

GPU1

Memory

GPU2

GPU2

Memory

PCI-e

CPU

Chip
set

System

Memory

Two copies required:
1. cudaMemcpy(GPU2, sysmem)

2. cudaMemcpy(sysmem, GPU1)

Multiple GPUs with NVIDIA GPUDirect™ v2.0:
Peer-to-Peer Communication

Direct Transfers between GPUs

GPU1

GPU1

Memory

GPU2

GPU2

Memory

PCI-e

CPU

Chip
set

System

Memory

Only one copy required:
1. cudaMemcpy(GPU2, GPU1)

GPUDirect v2.0: Peer-to-Peer Communication

Direct communication between GPUs

Faster - no system memory copy overhead

More convenient multi-GPU programming

Direct Transfers

Copy from GPU0 memory to GPU1 memory

Works transparently with UVA

Direct Access

GPU0 reads or writes GPU1 memory (load/store)

Supported only on Tesla 20-series (Fermi)

64-bit applications on Linux and Windows TCC

GPUDirect Future Directions

P2P protocol could be extended to other devices

Network cards

Storage devices (flash?)

Other?

Extended PCI topologies

More GPU autonomy

Better NUMA topology discovery/exposure

www.openfabrics.org 21

Topology and Locality

Topology

CPU

Chipset

GPU

CPU

Memory Memory

4.34 GB/s 6.5 GB/s

Chipset

CPU

Chipset

GPU

CPU

Memory Memory

Chipset

And More Topology

CPU

Chipset

GPU

CPU

Memory Memory

CPU

Chipset

GPU

CPU

Memory Memory

7.4 GB/s 11.0 GB/s

There’s No Easy Answer Here….

Memory hierarchies are getting deeper, uniformity is decreasing

Portable Hardware Locality (hwloc)

NUMA placement (SLURM spank, some MPIs)

