
OCELOT: AN OPEN SOURCE DEBUGGING 
AND COMPILATION FRAMEWORK FOR CUDA 

Andrew Kerr*, Gregory Diamos, Sudhakar Yalamanchili 

1 

http://keeneland.gatech.edu 

http://keeneland.gatech.edu/


Outline 

• Project Goals and Overview 

• Productivity Tools 

• JIT Compilation to NVIDIA Devices and x86 Hosts 

• Ocelot CUDA Run-Time 

• Advanced Capabilities 

2 



Project Goals 

• Encourage proliferation of GPU computing 
– Lower the barriers to entry for researchers and developers 

– Establish links to industry standards, e.g., OpenCL 

• Understand performance behavior of massively  
parallel, data intensive applications across multiple 
processor architecture types 

• Develop the next  generation of translation, 
optimization, and execution technologies for large 
scale, asymmetric and heterogeneous architectures. 

3 



Ocelot Vision 

Just-in-time code 
generation and 

optimization for data 
intensive applications 

esd.lbl.gov 

(@NEU) 

Data Parallel IR 

Language 
Front-End 

• Environment for  i) compiler research, ii) architecture 
research, and iii) productivity tools 

4 



Ecosystem of Productivity Tools 

Just-in-Time (JIT) 
compilation of kernels 
to NVIDIA devices or 
x86 hosts 

Workload characterization 

 Correlation of results 
across subsystems 

Profiling/Performance Tuning 

• Alignment, control flow, 
inter-thread data flow 

• Dynamic Instrumentation  

 

 

Debugging  

• Correctness and 
Performance checks 

 

5 



Outline 

• Overview and Project Goals 

• Correctness and Debugging Tools 

• JIT Compilation to NVIDIA Devices and x86 Hosts 

• Ocelot CUDA Run-Time 

• Advanced Capabilities 

6 



Correctness Checks and Debugging  

 Parallel thread Execution (PTX) 

 Explicit memory hierarchy 

 Cooperative thread arrays (CTAs) and 
ordering constraints 

 Array of multiprocessors each 
executing a CTA (coarse grain) 

 SIMD multiprocessors (fine grain) 

 Single instruction multiple 
thread (SIMT) execution  

 Memory bandwidth optimizations 

7 

NVIDIA’s PTX Execution Model 



The Ocelot PTX Emulator 

• Performs functional simulation 
of the PTX execution model 
– Access to complete machine state 

• Enables detailed performance 
evaluation/debugging 
– Program correctness checking 

• Alignment checks 

• Out of bounds 

• Uninitialized data 

– Workload characterization and 
modeling 

– Trace generation to drive 
architecture simulators 

PTX 2.3 (Fermi) support 

Abstract machine model 
 

Quantitative Insights & Productivity 8 



Trace Generator Interface 

Emulator broadcasts events to trace generators during execution 

• Events describe instruction execution, memory addresses, etc. 

• Used for error checking, instrumentation, and simulation 

9 



Trace Generator Interface 
//! Base class for generating traces 

class TraceGenerator { 

public: 

 TraceGenerator(); 

 virtual ~TraceGenerator(); 

 

 // called when a traced kernel is launched to 

    //  retrieve some  parameters from the kernel 

 virtual void initialize( 

        const executive::ExecutableKernel& kernel); 

 

 // Called whenever an event takes place. 

 virtual void event(const TraceEvent & event); 

  

 // called when an event is committed 

 virtual void postEvent(const TraceEvent & event); 

  

 // Called when a kernel is finished. There will  

    //   be no more events for this kernel. 

 virtual void finish(); 

}; 

10 



TraceEvent Object 

• Captures execution of a dynamic instruction, 
including  

– PC and internal representation of PTX instruction 

– Set of active threads executing instruction 

– Kernel grid and CTA dimensions 

– Memory addresses and size of transfer 

– Branch target(s) 

 

 

11 



Using Trace Generators 

• Implement TraceGenerator interface 

– override methods: 

• Initialize( ), event( ), postEvent( ), finish( ) 

• Add to Ocelot runtime 

– explicitly: ocelot::addTraceGenerator( ) 

– or, add to trace::TraceConfiguration  

• Online analysis or serialize event traces 

• Link applications with libocelotTrace 

 

 

12 



PTX Emulator – CUDA Debugging- Illegal 
Memory Accesses 
// file: memoryCheck.cu 

__global__ void badMemoryReference(int *A) { 

  A[threadIdx.x] = 0;  // line 3 - faulting store 

} 

int main() { 

  int *invalidPtr = 0x0234;     // arbitrary pointer does not refer  

                                //   to an existing memory allocation 

 

  int *validPtr = 0;  cudaMalloc((void **)&validPtr, sizeof(int)*64); 

 

  badMemoryReference<<< dim3(1,1), dim3(64, 1) >>>( invalidPtr ); 

  return 0; 

} 

==Ocelot== Ocelot PTX Emulator failed to run kernel  

"_Z18badMemoryReferencePi" with exception:  

==Ocelot== [PC 5] [thread 0] [cta 0] st.global.s32 [%r4 + 0], %r0 

    - Global memory access 0x234 is not within any allocated or mapped range. 

==Ocelot==  

==Ocelot== Nearby Device Allocations 

==Ocelot== [0x12fa2e0] - [0x12fa3e0] (256 bytes) 

==Ocelot==  

==Ocelot== Near memoryCheck.cu:3:0 

13 



PTX Emulator – CUDA Debugging – Race 
Detection 
// file: raceCondition.cu 

__global__ void raceCondition(int *A) { 

  __shared__ int SharedMem[64]; 

 

 SharedMem[threadIdx.x] = A[threadIdx.x]; 

 

  // no synchronization barrier! 

 

  A[threadIdx.x] = SharedMem[64 - threadIdx.x];        // line 9 - faulting load 

} 

. . .  

raceCondition<<< dim3(1,1), dim3(64, 1) >>>( validPtr ); 

. . . 

 

 

==Ocelot== Ocelot PTX Emulator failed to run kernel "_Z13raceConditionPi" with 

exception:  

==Ocelot== [PC 15] [thread 0] [cta 0] ld.shared.s32 %r14, [%r13 + 252]  

  - Shared memory race condition, address 0xfc was previously written by thread 63 

without a memory barrier in between. 

 

==Ocelot== Near raceCondition.cu:9:0 

 

14 



PTX Emulator – Interactive Debugger 

• Interactive command-line debugger implemented using 
TraceGenerator interface 

 
$ ./TestCudaSequence 

A_gpu = 0x16dcbe0 

(ocelot-dbg) Attaching debugger to kernel 

'sequence' 

(ocelot-dbg) 

(ocelot-dbg) watch global address 0x16dcbe4 s32[3] 

set #1: watch global address 0x16dcbe4 s32[3]  

  - 12 bytes 

(ocelot-dbg) 

(ocelot-dbg) continue 

st.global.s32 [%r11 + 0], %r7 

watchpoint #1 -  CTA (0, 0) 

  thread (1, 0, 0) - store to 0x16dcbe4 4 bytes 

  old value = -1 

  new value = 2 

  thread (2, 0, 0) - store to 0x16dcbe8 4 bytes 

  old value = -1 

  new value = 4 

  thread (3, 0, 0) - store to 0x16dcbec 4 bytes 

  old value = -1 

  new value = 6 

break on watchpoint 

(ocelot-dbg) 

 

• Enables  

• Inspection of application 
state  

• Single-stepping of 
instructions 

• Breakpoints and 
watchpoints 

 

• Faults in MemoryChecker 
and RaceDetector invoke 
ocelot-dbg automatically 

 

15 



PTX Emulator – Performance Tuning 

.... 

for (int offset = 1; offset < n;  

    offset *= 2) 

{  // line 61 

  

 pout = 1 - pout; 

 pin  = 1 - pout; 

 __syncthreads(); 

 temp[pout*n+thid] = 

temp[pin*n+thid]; 

 

 if (thid >= offset) { 

     temp[pout*n+thid] +=  

  temp[pin*n+thid - offset]; 

  } 

} 

.... 

 

• Identify critical regions 

• Memory demand 

• Floating-point intensity 

• Shared memory bank 
conflicts 

hot 

cold 

16 



Example: Thread Load Imbalance 

//! Computes number of dynamic instructions for each thread 

class ThreadLoadImbalance: public trace::TraceGenerator { 

public: 

  std::vector< size_t > dynamicInstructions; 

 

  // For each dynamic instruction, increment counters of each  

  // thread that executes it 

  virtual void event(const TraceEvent & event) { 

    if (!dynamicInstructions.size())    

      dynamicInstructions.resize(event.active.size(), 0); 

 

    for (int i = 0; i < event.active.size(); i++) { 

      if (event.active[i]) 

        dynamicInstructions[i]++; 

    } 

  } 

}; 

•Mandelbrot (CUDA 

SDK) 

 

D
y
n

a
m

ic
 I
n

s
tr

u
c
ti
o
n

 

C
o

u
n
t 

17 



Example: Activity Factor 
• Fraction of threads active for each 

dynamic instruction  

• Utilization of CTA-wide SIMD 
processor 

• Sensitive to reconvergence 
mechanism 

 

 

18 



Example: Inter-thread Data Flow 
• Which kernels exchange computed 

results through shared memory? 

• Track id of producer thread 

• Ensure threads are well 

synchronized 

• Optionally ignore uses of shared 

memory to transfer working sets 

19 



Relationship to CUDA Tools 
• NVIDIA Profiler 

– Lack of user defined extensibility 

– No support for procedural profiling tools 

• NVIDIA CUDA Debugger (CUDA-DBG) 

– Enables online debugging of CUDA applications 

– Features not supported: 64 bit processes, out-of-bounds 
accesses, multi-GPU, CUDA textures [ref: CUDA GDB Manual: 
Appendix B] 

• NVIDIA CUDA Emulator (deprecated) 

– Functional emulation of CUDA kernels via compilation as C++ 

– Misses PTX-level program behaviors & no trace generation 

• CUDA-memcheck 

20 



Current Trace Generators 
21 

Trace Generator Function 

Branch 
Measures control flow uniformity and branch 

divergence 
Instruction  Static and dynamic instruction count 
Integrated Debugger GDB-like interface 
Kernel Dimension Kernel grid and block dimensions 

Machine Attributes Observe and record machine characteristics 

Memory Working set size, memory intensity, memory efficiency 

Memory Checker 
i) Bounds checks, ii) alignment checks, and iii) 

uninitialized loads (except from texture or global 
memory) 

Memory Race Detector Race conditions on shared memory 
Parallelism MIMD and SIMD parallelism limits 
Performance Bound Compute and memory throughput 
Shared Computation Extent of data flow among threads 

Warp Synchronous Hot-paths/regions for warp synchronous execution  



Outline 

• Project Goals and Overview 

• Productivity Tools 

• JIT Compilation to NVIDIA Devices and x86 Hosts 

• Ocelot CUDA Run-Time 

• Advanced Capabilities 

22 



Dynamic Compilation of Kernels 

• Kernels are extracted, optimized, and compiled 
to the selected target device 

23 



JIT Compilation for Multicore  
24 

• Serialize cooperative thread arrays while respecting barriers 

• Barriers are context switches – register state must be spilled 

• Reduction in thread granularity yields efficient execution 



Outline 

• Project Goals and Overview 

• Productivity Tools 

• JIT Compilation to NVIDIA Devices and x86 Hosts 

• Ocelot CUDA Run-Time 

• Advanced Capabilities 

25 



Ocelot CUDA Runtime Overview 
26 



Ocelot CUDA Runtime 

• A complete reimplementation of the CUDA Runtime API 

• Clean device abstraction 
– All back-ends implement same interface 

• Compatible with existing applications 
– Link against libocelot.so instead of libcudart 

• Ocelot API Extensions 
– Add/remove trace generators 

– Compile/launch kernels directly in PTX 

– Device memory sharing among host threads 

– Device switching 



Dynamic Compilation of Kernels 

• Kernels are extracted, optimized, and compiled 
to the selected target device 

28 



Remote Device Layer 

• Remote procedure call layer for Ocelot device calls 

• Execute local applications that run kernels remotely 

• Multi-GPU applications can become multi-node 

29 



Contributors, Collaborators and Sponsors 

• Ocelot Team 

• Gregory Diamos, Rodrigo Dominguez (NEU), Naila 
Farooqui, Andrew Kerr, Si Li, Tri Pho, Haicheng Wu, 
Sudhakar Yalamanchili 

• Sponsors and Collaborators 

 

30 



Relevant Publications and URL 

1.N. Farooqui, A. Kerr, G. Diamos, S. Yalamanchili, and K. Schwan, “A Framework for 
Dynamically Instrumenting GPU Compute Applications within GPU Ocelot,” Proceedings of 
Fourth Workshop on General-Purpose Computation on Graphics Processing Units, March 
2011. 

2.A. Kerr, G. Diamos, and S. Yalamanchili, “GPU Application Development, Debugging, and 
Performance Tuning with GPU Ocelot,” GPU Computing GEMS, vol. 2, 2011.  

3.G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A Dynamic Optimizing Compiler 
for Bulk Synchronous Applications in Heterogeneous Systems,” IEEE/ACM International 
Conference on Parallel Architectures and Compilation Techniques, September 2010.  

4.A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling CPU-GPU Workloads and Systems,” 
Proceedings of Third Workshop on General-Purpose Computation on Graphics Processing 
Units, March 2010.  

5.A. Kerr, G. Diamos, and S. Yalamanchili, “A Characterization and Analysis of PTX Kernels,” 
Proceedings of the IEEE International Symposium in Workload Characterization, October 
2009. 

6.G. Diamos and S. Yalamanchili, "Harmony: A Flexible Runtime for Heterogeneous Many 
Core Architectures," ACM/IEEE International Symposium on High Performance Distributed 
Computing, Session on Hot Topics, June, 2008 

 

31 

http://code.google.com/p/gpuocelot/ 



32 

Contact us: 

arkerr@gatech.edu, gregory.diamos@gatech.edu, 
sudha@ece.gatech.edu 

Mailing list: 

gpuocelot@googlegroups.com 

Download Ocelot: http://code.google.com/p/gpuocelot/ 

 

Thank You 
Questions? 

mailto:arkerr@gatech.edu
mailto:gregory.diamos@gatech.edu
mailto:sudha@ece.gatech.edu
mailto:gpuocelot@googlegroups.com
http://code.google.com/p/gpuocelot/


Ocelot: Dynamic Execution Infrastructure  

33 

Dynamic Translation (LLVM) PTX Emulator 

Performance Analysis 

and Modeling  

Productivity Tools Multiplatform Support  
Multi-GPU Support 

PTX Kernel 



Switchable Compute 

• Switch devices at runtime 

– Load balancing 

– Instrumentation 

– Fault-and-emulate 

– Remote execution 


