
	

	
 	

	

Future	
 Technologies	
 Group	

Oak	
 Ridge	
 National	
 Laboratory	

Oak	
 Ridge,	
 Tennessee	

USA	

	

http://ft.ornl.gov	

	
 	

	
 	

	
 Scalable	
 Heterogeneous	

Computing	
 (SHOC)	
 Benchmark	

Suite,	
 Version	
 0.8	

	
 	

Authors	
 J.S.	
 Vetter,	
 A.	
 Danalis,	
 G.	
 Marin,	
 C.	
 McCurdy,	
 J.	
 Meredith,	
 P.C.	
 Roth,	
 K.	

Spafford,	
 V.	
 Tipparaju	

	
 	

Abstract	
 The	
 Scalable	
 Heterogeneous	
 Computing	
 Benchmark	
 Suite	
 (SHOC)	
 is	
 a	

collection	
 of	
 benchmark	
 programs	
 to	
 test	
 the	
 performance	
 and	

stability	
 of	
 heterogeneous	
 systems,	
 which	
 use	
 computing	
 devices	
 with	

non-­‐traditional	
 architectures,	
 and	
 their	
 respective	
 software	
 stacks.	
 Its	

initial	
 focus	
 is	
 on	
 systems	
 containing	
 Graphics	
 Processing	
 Units	
 (GPUs)	

and	
 multi-­‐core	
 processors,	
 and	
 on	
 the	
 OpenCL	
 programming	
 standard.	

A	
 distributed	
 version	
 of	
 SHOC	
 can	
 be	
 used	
 on	
 scalable	
 heterogeneous	

clusters.	

	
 	

Future	
 Technologies	
 Group	
 Technical	
 Report	
 FTGTR-­‐2009-­‐11	

Total	
 Pages	
 8	

Publication	
 Date	
 12/4/2009	

	
 	

Also	
 published	
 as	
 -­‐	

	
 	

	

SHOC: The Scalable HeterOgeneous Computing Benchmark Suite

Dakar Team
Future Technologies Group

Oak Ridge National Laboratory

Version 0.8, December 2009

1 Introduction

The Scalable HeterOgeneous Computing benchmark suite (SHOC) is a collection of benchmark
programs testing the performance and stability of systems using computing devices with non-
traditional architectures for general purpose computing, and the software used to program them. Its
initial focus is on systems containing Graphics Processing Units (GPUs) and multi-core processors,
and on the OpenCL [3] programming standard. It can be used on clusters as well as individual
hosts.

OpenCL is an open standard for programming a variety of types of computing devices. The
OpenCL specification describes a language for programming kernels to run on an OpenCL-capable
device, and an Application Programming Interface (API) for transferring data to such devices and
running kernels on them. The OpenCL specification was ratified by The Khronos Group in late
2008. At the time of this writing, OpenCL implementations are just becoming publicly available.
These early OpenCL implementations support running OpenCL kernels on GPUs and commodity
multi-core processors, though not all implementations support both device types.

In addition to OpenCL-based benchmark programs, SHOC also includes a Compute Unified De-
vice Architecture (CUDA) [4] version of many of its benchmarks for comparison with the OpenCL
version. CUDA, developed by NVIDIA, is an approach for programming NVIDIA GPUs for gen-
eral purpose computing that predates OpenCL. Like OpenCL, CUDA-based programs use a host
program running on the system’s CPU to run kernels on an accelerator device (in this case, a GPU).

This document describes how to build and use SHOC. We first detail the supported platforms
for using SHOC (Section 3), followed by an overview of the SHOC source code (Section 4), how to
configure it (Section 5), build it (Section 6), and run it (Section 7).

2 Benchmark Programs

The SHOC benchmark suite currently contains benchmark programs, categoried as to whether
they measure low-level ”feeds and speeds” behavior (Level 0) or the performance of a higher-level
operation such as an FFT (Level 1).

• Level 0

– BusSpeedDownload: measures bandwidth of transferring data to a device.

1

– BusSpeedReadback: measures bandwidth of reading data back from a device.

– DeviceMemory: measures latency and bandwidth of memory accesses to various types
of device memory.

– KernelCompile: compile a simple and more complex OpenCL kernel.

– PeakFlops: dynamically auto-tuned multiply-add and multiply-add with multiplica-
tion, for studying maximum achievable floating point performance.

– PeakFlopsMADD: auto-generated kernels using fused multiply-add operations, for
studying maximum achievable floating point performance.

– PeakFlopsMADDMUL: auto-generated kernels using fused multiply-add with an ex-
tra multiplication, for measuring maximum achievable floating point performance.

– QueueDelay: measures overhead of OpenCL command queue.

• Level 1

– FFT: forward and reverse 1D FFT.

– MD: a molecular dynamics benchmark.

– Reduction: reduction operation on a vector of values.

– SGEMM: single-precision matrix-matrix multiply.

– Scan: scan (also known as parallel prefix) on a vector of values.

– Sort: sorts a vector of values.

– Stencil2D: a 9-point stencil operation applied to a 2D data set. In the MPI version,
data is distributed across MPI processes organized in a 2D Cartesian topology, with
periodic halo exchanges.

– Triad: STREAM Triad operations, implemented in OpenCL.

To see the options each program supports and their default values, run program –help for serial
versions and mpirun -np 1 program –help for parallel versions.

In addition to the OpenCL versions, SHOC includes CUDA versions of many of these benchmark
programs. Also, many programs are built not only as serial programs (S) but also as embarrassingly
parallel (EP) or true parallel (TP) programs. The following table indicates which versions of each
program that SHOC builds.

3 Supported Platforms

The Dakar team intends SHOC to be useful on any platform with an OpenCL implementation.
However, due to limited resources the Dakar team develops and tests SHOC primarily on UNIX-like
platforms. In particular, the Dakar team uses Linux and Mac OS X systems for development and
testing.

2

OpenCL CUDA
Program S EP TP S EP TP
BusSpeedDownload x x x x
BusSpeedReadback x x x x
DeviceMemory x x x x
KernelCompile x x
PeakFlops x x
PeakFlopsMADD x x x x
PeakFlopsMADDMUL x x x x
QueueDelay x x
FFT x x x x
MD x x x x
Reduction x x x x
SGEMM x x x
Scan x x x x
Sort x x x x
Stencil2D x x x x
Triad x x x x

Table 1: Programming APIs and parallelism models of SHOC programs

3.1 Linux

• A recent RedHat-family OS distribution (Fedora or RHEL).1

• A working OpenCL implementation. The Dakar team has used the following implementations:

– NVIDIA GPU Computing SDK version 2.3a

– NVIDIA GPU Computing SDK version 3.0 beta

– ATI Stream SDK version 2.0 beta2

• (Optional) CUDA 2.3 or later.

This list describes the platforms to which the Dakar team has access for development and
testing. SHOC may work on other Linux distributions with other OpenCL implementations than
those listed here. Modifications may be needed for differing OpenCL header and library paths,
differing system library versions, and differing compiler versions/vendors.

3.2 Mac OS X

• Mac OS X 10.6 (”Snow Leopard”) or later.

• Xcode 3.2 or later.
1Some recent Linux distributions include pre-packaged gcc 4.4 toolchains. At the time of this writing (December

2009), NVIDIA CUDA does not support gcc 4.4, and builds of SHOC that include CUDA on such platforms will fail.
This is a CUDA issue, not a problem with the SHOC benchmark software. On such platforms, an earlier version of
gcc (we recommended gcc 4.3.x) must be used to compile SHOC, and the SHOC configuration files must be modified
so that the –compiler-bindir switch is passed to nvcc to indicate the location of the gcc compiler binaries to use.

3

• (Optional) CUDA 2.3 or later, preferring 2.3.1a or later for better support of the Xcode
default gcc/g++ version.

3.3 Clusters

In addition to individual systems, SHOC can also build parallel benchmark programs for clusters.
Each cluster node must meet the requirements described earlier in this section for the OS distri-
bution used on that node. Also, the cluster must have a working implementation of the Message
Passing Interface (MPI) [1, 2] library.

3.4 Documentation

The Dakar team maintains SHOC documentation as LATEX and BibTEX files. Although the SHOC
distribution includes PDF files for all documentation, the documentation can be rebuilt on a system
with LATEX and BibTEX installed.

4 Source Tree

SHOC is distributed as a compressed tar archive. Let $SHOC ROOT represent the directory that
will hold the SHOC source tree. The SHOC archive can be uncompressed and extracted using

$ cd $SHOC_ROOT
$ tar xvzf shoc-x.y.tar.gz

4

The SHOC source tree directory structure is as follows:

$SHOC_ROOT
bin # benchmark executables are built here

ParallelEP # "embarrassingly parallel" benchmarks
CUDA
OpenCL

ParallelGlobal # true parallel benchmarks
CUDA
OpenCL

Serial # single-node benchmarks
CUDA
OpenCL

config # SHOC configuration files
doc # SHOC documentation files
lib # SHOC auxiliary libraries are built here
src # SHOC source files

common # programming-model independent helper code
cuda # CUDA-based benchmarks

level0 # low-level CUDA benchmarks
level1 # higher-level CUDA benchmarks

mpi # MPI-specific benchmarks
common # code needed by programs using MPI
contention # a contention benchmark

opencl # OpenCL benchmarks
common # code needed for all OpenCL benchmarks
level0 # low-level OpenCL benchmarks
level1 # higher-level OpenCL benchmarks

stability # a CUDA stability test (FFT)

5 Configuring

For configuration, SHOC uses a collection of files in the $SHOC ROOT/config directory. There
are several types of files in this directory.

• Default configuration

• OS-specific configuration

• Programming model-specific configuration

• System-specific configuration

• Simpified configuration

These types of files are described in the rest of this section.

5

5.1 Default Configuration

The first type of SHOC configuration file includes default settings that are independent of the OS,
programming model, and specific system on which SHOC is being built and run. The config.mk
file controls the order of including configuration files. The base.mk file defines the default compiler
and adds SHOC directories to the include and linker paths. The targets.mk file defines the make
rules used for building SHOC.

5.2 OS-Specific Configuration

If it exists, the SHOC build process will read configuration settings from a file called $OS.mk where
$OS is the output of running uname -s. This is the file to use for any settings that are known not
to vary from system to system among those using that OS distribution.

5.3 Programming Interface Configuration

The next type of SHOC configuration file includes configuration for a particular programming
model.

• opencl.mk contains OpenCL settings. If they exist, this file will also read opencl-$OS.mk
and opencl-$OS-$OCL VENDOR.mk.

• cuda.mk contains CUDA-specific settings. If it exists, this file will also read cuda-$OS.mk.

• mpi.mk contains MPI-specific settings.

5.4 System Specific Configuration

If it exists, the SHOC build process will read a file named $hostname.mk where $hostname is the
output of running the hostname command. This is the place to indicate where OpenCL and/or
CUDA is installed on a particular system, the vendor of the OpenCL implementation installed on
that system (because the include and library paths vary from implementation to implementation),
and any other configuration overrides. The SHOC distribution includes several examples of system-
specific configuration files.

5.5 Simplified Configuration

If you are interested in simply getting SHOC up and running quickly, you can edit the default.mk
file. It can be used in place of a host-specific configuration file, and contains example values which
after slight modification should be sufficient for getting a full build of SHOC.

6 Building

After editing the configuration files, build the entire SHOC suite by:

$ cd $SHOC_ROOT
$ make

6

Some branches of the SHOC directory tree may give expected build failures. For instance,
on systems without a CUDA installation, the SHOC makefiles will attempt to build the CUDA
benchmark programs but will fail. By default, these failures are not fatal errors for the SHOC build
process.

7 Running

SHOC includes scripts for running either the CUDA or OpenCL versions of the benchmarks. To
run the scripts on a single node, execute the following:

$ cd $SHOC_ROOT/tools
$ perl ocl_driver.pl

To run on more than one node, supply the script with the number of nodes and the number of
available devices per node. For example, if running on a 4 nodes that each have 2 devices, execute
the following:

$ cd $SHOC_ROOT/tools
$ perl ocl_driver.pl -n 4 -d 2

These scripts output benchmark results to a file in comma separated value (CSV) format.
After building SHOC, benchmark programs will be left in the directory tree rooted at

$SHOC ROOT/bin. Run single-process benchmark programs with commands like:

$ cd $SHOC_ROOT/bin
$./Serial/OpenCL/Scan -s 3

and MPI benchmark programs with commands like:

$ cd $SHOC_ROOT/bin
$ mpirun -np 128 $PWD/ParallelEP/Scan -s 3

8 Support

Support for SHOC is provided on a best-effort basis by the Dakar team members and eventually
by its user community via several mailing lists.

• shoc-announce@email.ornl.gov: mailing list for announcements regarding new versions or
important updates.

• shoc-help@email.ornl.gov: email address for requesting help in building or using SHOC,
or for providing feedback about the benchmark suite.

• shoc-dev@email.ornl.gov: mailing list for internal development discussions by the SHOC
development team.

7

Revision History

• 0.1 September 2009

• 0.2 December 2009

References

[1] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming
with the Message Passing Interface, 2nd edition. MIT Press, Cambridge, MA, 1999.

[2] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features of the
Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

[3] The Khronos Group. The opencl specification, version 1.0, document revision 43. specification,
The Khronos Group, 2009.

[4] NVIDIA. Nvidia cuda reference manual, version 2.3. manual, 2009.

8

