
MRNET: A SCALABLE INFRASTRUCTURE FOR DEVELOPMENT OF

PARALLEL TOOLS AND APPLICATIONS

Michael J. Brim, University of Wisconsin
Luiz DeRose, Cray Inc.

Barton P. Miller, University of Wisconsin
Ramya Olichandran, University of Wisconsin
Philip C. Roth, Oak Ridge National Laboratory

ABSTRACT: MRNet is a customizable, high-throughput communication software system for parallel tools
and applications. It reduces the cost of these tools’ activities by incorporating a tree-based overlay network
(TBON) of processes between the tool’s front-end and back-ends. MRNet was recently ported and released for
Cray XT systems. In this paper we describe the main features that make MRNet well-suited as a general facil-
ity for building scalable parallel tools. We present our experiences with MRNet and examples of its use.

KEYWORDS: XT, scalability, tree-based overlay networks, tools

1 Introduction
The desire to solve large-scale science problems in areas of

national and global significance, including climate modeling,
computational biology, and particle simulation, has driven the
development of increasingly large parallel computing
resources. Unfortunately, performance, debugging, and system
administration tools that work well in small-scale environ-
ments often fail to scale as systems and applications get larger.
In response to these deficiencies, we have developed a tree-
based overlay network infrastructure, MRNet [11], for building
tools that can scale to the largest of computing platforms,
including current extreme-scale Cray XT systems that contain
tens to hundreds of thousands of processors. MRNet makes
operations such as command and control, and data collection
and reduction, efficient at large scale.

Typically, tools are organized using the structure shown in
Figure 1a, where a single tool front-end interacts with a large
set of tool back-ends (often called tool daemons). This structure
is commonly referred to as a master-slave architecture. Tool
back-ends are responsible for data collection and application
control, when applicable. The tool front-end often provides the
interface to users, and is responsible for analysis of data col-
lected at the back-ends. For tools using this structure, the front-
end quickly becomes a bottleneck due to centralized computa-
tion and communication with all back-ends. MRNet provides a
scalable solution for these tools by interposing a tree-based
overlay network (TBON) of processes between the tool front-
end and back-ends, as shown in Figure 1b.

The TBON is used to distribute tool activities normally per-
formed by the front-end across the overlay processes, thus
reducing analysis time and keeping the front-end load manage-
able. MRNet takes advantage of the logarithmic performance
properties of trees to provide scalable multicast communication
and data aggregation. Tools built using MRNet send and
receive data between front-end and back-ends on logical data
flows called streams. Data flowing on streams is encapsulated as
packets, which are synchronized and aggregated using built-in

or user-defined filters. MRNet’s general-purpose abstractions
allow tools to completely control how communication and
computation is performed. Furthermore, MRNet lets tools
define the TBON topology and the placement of processes on
distributed hosts. MRNet supports any tree topology, and pro-
vides a utility for easily generating common topology struc-
tures such as balanced and k-nomial trees.

MRNet has been integrated into several existing tools, and
has been used as the basis for many new tools. Performance
monitoring and tracing tools such as Paradyn [7], Open|Speed-
Shop [9], TAU [8], and an online clustering analysis tool [5]
have all benefited from integrating MRNet for improved scal-
ability. MRNet has also served as the scalable substrate for new
tools. STAT [1,4] and Cray ATP are new tools for lightweight
debugging of parallel applications. TBON-FS is a system built
using MRNet that provides scalable group operations on dis-
tributed files to several new and existing tools [2].

This paper is intended to guide the development and use of
MRNet within tools and applications targeted for the Cray XT
systems. Section 2 briefly reviews the important MRNet
abstractions and interfaces. In Section 3, we provide examples
of several use cases, including simple master-worker parallel
applications and first- and third-party tools for debugging or
performance monitoring. In each case, we highlight the API
methods that may be useful and give example code. Section 4
provides instructions for building and running MRNet-based
tools and applications on XT platforms, and suggestions for
generating appropriate topologies.

2 MRNet Abstractions and API
MRNet has two main components: a library API that is

linked into a tool’s front-end and back-end components, and a
mrnet_commnode program that runs on nodes interposed
between the front-end and back-ends. The library API enables
interaction between the front-end and groups of back-ends.
The mrnet_commnode program is used to distribute data
processing across many hosts and implements efficient and
Cray User Group 2010 Proceedings 1 of 9

scalable group communications. We briefly review the MRNet
abstractions, and then discuss the interfaces to the API classes
corresponding to the abstractions.

2.1 MRNet Abstractions
MRNet allows a tool to use a network of internal processes as

a communication substrate between the tool’s front-end and
back-end processes. The internal processes are instances of the
mrnet_commnode program. The connection topology and
host assignment of these processes is determined by a configu-
ration file, thus MRNet’s process tree can be customized to suit
the physical topology of the underlying hardware. While
MRNet can generate a variety of standard topologies, users can
easily specify their own topologies. See Section 4.3 for further
discussion on MRNet process topologies.

MRNet uses communicators to represent groups of network
end-points. Like communicators in MPI [6], MRNet communi-
cators provide a handle that identifies a set of end-points for
point-to-point, multicast or broadcast communications. In
contrast to MPI applications that typically have a non-hierar-
chical layout of potentially identical processes, MRNet enforces

a tree-like layout of all processes rooted at the tool front-end.
Accordingly, MRNet communicators are created and managed
by the front-end, and communication is only allowed between
a tool’s front-end and its back-ends (i.e., back-ends cannot
interact with each other directly via MRNet). This limitation
reflects the design of current run-time tools but might be
relaxed in the future if there appears to be a demand for such
interaction.

A stream is a logical channel that connects the front-end to
the end-points of a communicator. All tool-level communica-
tion via MRNet uses streams. Streams carry data packets down-
stream, from the front-end toward the back-ends, and
upstream, from the back-ends toward the front-end. Each
stream has a unique stream id that is used to identify packets
sent on that stream. MRNet uses this stream id to support mul-
tiple, simultaneous streams of communication among the same
components within a tool instance.

Data packets carry typed data, enabling data aggregation
operations to be associated with a stream. Types are specified
using a format string similar to that used by C formatted I/O
primitives printf and scanf. For example, a packet whose
data is described by the format string “%d %f %s” contains an
integer, float, and character string. MRNet also adds specifiers
for arrays of simple data types (e.g., “%ad” for an integer array).

Data aggregation is the process of transforming multiple
input data packets into one or more output packets. Though it
is not necessary for aggregation to result in less data or even
different data, aggregations that reduce or modify data values
are most common. MRNet uses filters to aggregate data packets.
A filter may be bound to a stream when the stream is created,
thus specifying the aggregation operation to perform and the
expected type(s) of the data sent on the stream. MRNet uses
two types of filters: synchronization filters and transformation
filters. Synchronization filters organize data packets from
downstream nodes into synchronized waves of data packets.
Transformation filters operate on input data packets flowing

(a) (b)

Figure 1. The components of a typical parallel tool (a) and an MRNet-based parallel tool (b). Shaded boxes show potential machine boundaries.

User Interface

Analysis and Control

Back-End0

Process0

Back-End1

Process1

Back-Endn-1

Processn-1

...

...

User Interface

Analysis and Control

Back-End0

Process0

Back-End1

Process1

Back-Endn-1

Processn-1

...

...

......... ...

... ...

M
R

N
et In

tern
al

P
ro

cesses

...

Figure 2. Functional layers in an MRNet internal process.

Data Encoding

Data Transformation Operation

Data Decoding

Data-Specific Aggregation

Packet Synchronization

Packet Batching/Unbatching

Packet Batching/Unbatching
Cray User Group 2010 Proceedings 2 of 9

either upstream or downstream, yielding one or more output
packets. Figure 2 shows the actions taken on packets by an
MRNet internal process during an upstream data flow. Packets
must be unbatched, demultiplexed onto streams, synchronized,
perhaps aggregated, and re-batched before continuing their
upstream journey toward the front-end.

2.2 MRNet API
MRNet has five top-level classes: Network, NetworkTo-

pology, Communicator, Stream, and Packet. The
Network class primarily contains methods for instantiating
and destroying MRNet process trees. The NetworkTopol-
ogy class represents the interface for discovering details about
the topology of an instantiated network. Application back-ends
are referred to as end-points, and the Communicator class is
used to reference a group of end-points. A Communicator is
used to establish a Stream for unicast, multicast, or broadcast
communications via the MRNet infrastructure. The Packet
class encapsulates the data packets that are sent on a stream.

Below, we introduce the most commonly used interfaces for
each class. A user’s guide detailing the complete API is available
online [10]. All classes are included in the MRN namespace. For
this discussion, we do not explicitly include reference to the
namespace; for example, when we reference the class Net-
work, we are implying the class MRN::Network.

2.2.1 Class Network
The first action taken by any MRNet front-end or back-end

is initialization of the network. Network::CreateNet-
workFE and Network::CreateNetworkBE are the
methods used for this purpose.
void Network::CreateNetworkFE(topology,
 backend_exe,
 backend_argv,
 attrs,
 rank_backends);
void Network::CreateNetworkBE(argc, argv);

Network::CreateNetworkFE is used by a front-end to
instantiate the MRNet process tree. topology is the path to a
configuration file that describes the desired TBON topology.
backend_exe is the path to the executable to be used for the
application’s back-end processes. backend_argv is a null
terminated list of arguments to pass to the back-end application
upon creation. If backend_exe is NULL, no back-end pro-
cesses will be started, and the leaves of the topology specified
by topology will be instances of mrnet_commnode. attrs
is used only when internal processes of the MRNet tree are to
be co-located with the application processes. In this case,
attrs refers to a map data structure that associates the
string “apid” to a unique identifier for a set of application
processes started by the Cray aprun command.
rank_backends indicates whether the back-end process
ranks should begin at 0, similar to MPI rank numbering.
Network::CreateNetworkBE is used by a back-end

program to connect to a network instantiated by a front-end.
When the front-end uses MRNet to start the back-end pro-

cesses, information necessary for the connection is appended to
the program argument vector (i.e., argc/argv). If a separate
mechanism is used to start the back-end processes, the back-
end program must construct an argument array that contains
five pieces of information: the parent process’ hostname, port,
and rank, and the back-end’s hostname and rank.

Once the front-end has initialized the network, it can load
custom transformation or synchronization filters using:
int Network::load_FilterFunc(so_file, func,

is_trans_filter);

This method is conveniently similar to the conventional
dlopen facilities for opening a shared object and dynamically
loading symbols defined within. so_file is the path to a
shared object file that contains the filter function to be loaded
and func is the name of the function to be loaded. The last
parameter is_trans_filter defaults to true and can usu-
ally be omitted since the common case is to load transforma-
tion, not synchronization, filters. On success, this method
returns a unique identifier for the filter that may be used in
subsequent calls to Network::new_Stream.
Network::recv is used to invoke a stream-anonymous

receive operation, where any packet available (addressed to any
stream) will be returned via the output parameters.
int Network::recv(otag, opacket,
 ostream, blocking);

otag is set to the tag value that was passed to
Stream::send. opacket is set to point at the packet that
was received. A pointer to the stream to which the packet was
addressed will be returned in ostream. blocking specifies
whether the call should block or return if data is not immedi-
ately available; it defaults to a blocking call. A return value of 0
indicates no packets were available, and 1 indicates success.

2.2.2 Class Communicator
Communicators are used to denote the set of end-points that

are accessed within a stream. Instances of Communicator are
network specific, so their creation methods are functions of a
Network object. The three most common operations are cre-
ating a new communicator, adding end-points to a communi-
cator, or getting a handle to the broadcast communicator
representing all back-ends.
Communicator * Network::new_Communicator();

This method creates a new Communicator object. The
object initially contains no end-points. Use Communica-
tor::add_EndPoint to populate the communicator.
bool Communicator::add_EndPoint(rank);

This method adds the end-point with corresponding rank to
the set contained by the communicator. This method returns
true on success, false when the given rank is invalid.
Communicator*
Network::get_BroadcastCommunicator();

This method returns a pointer to a the network’s broadcast
communicator, which contains all the end-points available in
Cray User Group 2010 Proceedings 3 of 9

the network at the time the function is called. If the network’s
topology changes, as can occur when starting back-ends sepa-
rately, the object will be updated to reflect the additions or dele-
tions. The returned object pointer should not be deleted.

2.2.3 Class Stream
Stream objects are created within the context of a specific

network, so their creation methods are functions of an instanti-
ated Network object. The most common approach to creating
a new stream uses:
Stream* Network::new_Stream(comm,
 up_trans_id,
 up_sync_id,
 down_trans_id);

This method creates a Stream object attached to the end-
points specified by the Communicator object comm.
up_trans_id specifies the transformation filter to apply to
data flowing upstream from the application back-ends toward
the front-end. up_sync_id specifies the synchronization fil-
ter to apply to upstream packets. down_trans_id allows the
user to specify a filter to apply to downstream data flows.

The following methods provide basic information about cre-
ated streams:
unsigned Stream::get_Id();

This method returns the integer identifier for this stream. A
Stream object can be acquired from the network by passing
this identifier to Network::get_Stream.
const std::set<Rank>&
Stream::get_EndPoints();

This method returns the set of end-point ranks for this stream.
unsigned Stream::size();

This method returns an integer indicating the number of end-
points for this stream.

Streams provide methods for sending packets, and blocking
and non-blocking methods for receiving packets. The most
common method for sending data is:
int Stream::send(tag, format_string, ...);

This method creates a Packet from the operands and sends it
on the stream, returning 0 on success or -1 on failure. tag is an
integer identifier that classifies the data in the packet to be
transmitted. The tag must have a value greather than or equal
to the constant FirstApplicationTag defined by
MRNet, as values less than FirstApplicationTag are
reserved for internal use. format_string is a character
string describing the varargs data. After calling
Stream::send one or more times, users can force all pack-
ets currently buffered by the stream to passed to the operating
system for network transmission using Stream::flush.

To receive data available on a particular stream, one can use:
int Stream::recv(otag, opacket, blocking);

This method returns the next packet addressed to the calling
stream via the output parameters. otag will be set to the tag
value passed to Stream::send operation, and opacket is

set to point to the recieved packet. blocking determines
whether the receive should block or return if data is not imme-
diately available; it defaults to a blocking call. A return value of
0 indicates no packets were available, and 1 indicates success.

Users can customize the behavior of filters associated with
the current stream using:
int Stream::set_FilterParameters(ftype,
 format_str,
 ...);

This method allows users to dynamically configure the opera-
tion of a filter by passing arbitrary data in a similar fashion to
Stream::send. When the filter executes, the data is avail-
able within a packet parameter, and the filter can extract the
configuration settings. ftype should be given as
FILTER_UPSTREAM_SYNC to configure the synchronization
filter, FILTER_UPSTREAM_TRANS for the upstream trans-
formation filter, and FILTER_DOWNSTREAM_TRANS for the
downstream transformation filter.

2.2.4 Class Packet
A Packet encapsulates formatted data sent on a stream.

Packets are created by specifying a format string and a varargs
list of data elements. For example, the format string "%s %d"
describes two data elements, a null-terminated character string
and a 32-bit integer. MRNet front-end and back-end processes
do not create instances of Packet directly; instead they are
automatically produced from the formatted data passed to
Stream::send. MRNet supports format strings specifying
basic data types including signed and unsigned characters, 16-,
32-, and 64-bit signed and unsigned integers, floats and dou-
bles, and character strings. Additionally, format strings can
specify arrays of basic types (e.g., “%ac %ad” specifies two
arrays, one of characters and one of 32-bit integers).

When receiving a packet via Stream::recv or Net-
work::recv, the Packet instance is stored within a Pack-
etPtr object. PacketPtr is a class based on the Boost
library shared_ptr class, and helps with memory manage-
ment of packets. A PacketPtr can be assumed to be equiva-
lent to "Packet*", and all operations on packets require use of
PacketPtr.

The following three methods extract basic information con-
tained within packets:
int Packet::get_Tag();
unsigned short Packet::get_StreamId();
const char* Packet::get_FormatString();

These methods return the integer tag, stream identifier, and
format string of the packet.

After receiving a packet, the data contained within can be
extracted using:
void Packet::unpack(format_string, ...);

This method extracts the data according to
format_string, which must match that of the packet. The
varargs following format_string should be pointers to
the appropriate types of each data item. For string and array
data types, new memory buffers to hold the data will be allo-
Cray User Group 2010 Proceedings 4 of 9

cated using malloc, and it is the user’s responsibility to free
these strings and arrays.

Within filter code, the following method should be used to
tell MRNet to deallocate strings and arrays after sending the
packet, since the user cannot free the data elements before the
filter function returns.
void Packet::set_DestroyData(flag);

If flag is true, string and array data members will be deallo-
cated using free when the packet destructor is executed. Note
this assumes they were allocated using malloc.

2.2.5 Class NetworkTopology
A NetworkTopology is specific to an instantiated net-

work. API users should not need to create NetworkTopol-
ogy instances. Rather, the following method can be used to
retrieve the topology from a Network object:
NetworkTopology*
Network::get_NetworkTopology();

Using the returned object pointer, various information about
the topology can be retrieved.
unsigned NetworkTopology::get_NumNodes();

This method returns the total number of nodes in the tree
topology, including front-end, internal, and back-end pro-
cesses.
NetworkTopology::Node*
NetworkTopology::find_Node(rank);

A sub-class, NetworkTopology::Node is used to repre-
sent nodes in the topology. This method returns a pointer to
the tree node with rank equal to rank, or NULL if no such
node is found.
NetworkTopology::Node*
NetworkTopology::get_Root();

This method returns a pointer to the root node of the tree, or
NULL if the topology is empty.
void NetworkTopology::get_Leaves(leaves);

This method fills leaves, which is a set of NetworkTo-
pology::Node pointers, with the leaf nodes in the topology.
In the case where back-end processes are not started when the
network is instantiated, a front-end process can use this func-
tion to retrieve information about the leaf internal processes to
which the back-ends should attach.

The following methods retrieve specific information for a
particular NetworkTopology::Node.
string NetworkTopology::Node::get_HostName();
Port NetworkTopology::Node::get_Port();
Rank NetworkTopology::Node::get_Rank();
Rank NetworkTopology::Node::get_Parent();
const std::set<NetworkTopology::Node*>&
NetworkTopology::Node::get_Children();

The first three methods provide the node’s hostname, port, and
rank. The last two methods are useful for programmed naviga-
tion of the topology.

3 Example Tool Scenarios

MRNet is a general-purpose communication and computa-
tion infrastructure for scalable tools and applications. In this
section, we provide examples for three MRNet use cases on XT
systems. First, we demonstrate the common code organization
for all MRNet-based software using a simple master-worker
style application. Next, we discuss and provide example code
for third-party tools that run alongside a parallel application
and first-party tools that are embedded within a parallel appli-
cation.

3.1 A Simple Example: Master-Worker Application
Figure 3 shows example code for a typical MRNet front-end,

and Figure 4 shows the corresponding back-end code. All
MRNet-based programs start by initializing the network.
Front-end programs use Network::CreateNetworkFE
to start the TBON internal processes, and optionally the back-
end processes, using the TBON topology supplied as the first
operand. In this example, we assume MRNet is used to start the
back-ends, so the path to the executable and its program argu-
ments are also given as operands. MRNet uses the ALPS
aprun command internally to launch the back-ends. Each
back-end process calls Network::CreateNetworkBE and
passes its program arguments, which MRNet has modified to
include information that allows the back-end to connect to the
instantiated network.

After network initialization, the front-end can load custom
filters, define communicators representing sets of back-ends,
and create new data streams with user-specified filtering behav-
ior. Once created, the front-end sends data to the back-ends on
these streams, and waits for aggregated responses.

Back-ends often enter into a progress loop that calls Net-
work::recv to block waiting for data to arrive on any
stream. When a packet arrives, the back-end uses the packet’s
tag to determine the action to take. When the actions produce
results, the back-end sends these results back to the front-end
using the stream on which work arrived.

In this example, the front-end and back-end use three mes-
sage tags: DO_WORK, UPDATE_CONFIG, and EXIT.
DO_WORK is used to send new data for processing on the
back-ends. UPDATE_CONFIG is a control message that
changes how data is processed on the back-ends. The EXIT tag
tells back-ends that work has completed.

Once the front-end has informed the back-ends that all work
has been completed, it deletes its Network object, which
causes the MRNet TBON to be shut down. By default, network
teardown terminates all internal and back-end processes. A
front-end can tell MRNet to leave back-ends running using
Network::set_TerminateBackendsOnShutdown.

3.2 Third-party Tools
There are generally two classes of third-party tools: online

tools that are active during the execution of the application, and
offline tools that perform work only when the application has
finished or is idle. The class of the tool often guides the organi-
zation of the MRNet topology to be used, as online tools may
Cray User Group 2010 Proceedings 5 of 9

want to execute MRNet internal processes on separate nodes
from those running the application processes as a means to
reduce or eliminate interference, while offline tools may choose
to run all MRNet processes only on the nodes hosting the
application as a means to reducing the number of allocated
nodes.

Both classes of third-party tools need to execute at least their
back-end processes on the same nodes as the application, to
enable monitoring or control of the application. On Cray XT
systems, the ability to co-locate tool back-ends with application
processes is provided by the ALPS tool helper library. MRNet
depends on this library to start back-end processes on the

application nodes [12]. During network instantiation, the tool
front-end must pass the aprun identifier (apid) for the appli-
cation in the attribute map operand to Network::Create-
NetworkFE. Figure 5 shows the additional code necessary for
providing the apid.

3.3 First-party Tools
First-party tools are typically implemented as libraries that

are linked into applications. These libraries contain tool back-
end functionality for extracting runtime performance or trac-
ing data from the application, and shipping the data to external

main(argc, argv)
{
 Network *net;
 Stream *ctl, *work;
 Communicator *comm;

// initialize network
 const char* topol = argv[1];
 const char* be_exe = argv[2];
 char* be_args[] = argv+3;
 net = Network::CreateNetworkFE(topol,
 be_exe,
 be_args,
 NULL);

// load work processing filter
 const char* lib = “mylib.so”;
 const char* func = “process_work”;
 int flt = net->load_FilterFunc(lib,func);

// create streams
 comm = net->get_BroadcastCommunicator();
 ctl = net->new_Stream(comm, TFILTER_SUM,
 SFILTER_WAITFORALL);
 work = net->new_Stream(comm, flt,

SFILTER_WAITFORALL);

// set initial work parameters
 int param = get_initial_config();
 ctl->send(UPDATE_CONFIG, “%d”, param);

// work processing
 char* input;
 unsigned input_len;
 get_work_input(input, input_len);
 while(input != NULL) {
 work->send(DO_WORK, “%ac”,
 input, input_len);
 work->recv(&tag, pkt);
 save_work_output(pkt);
 get_work_input(input, input_len);
 }

 ctl->send(EXIT, NULL);
 delete ctl;
 delete work;
 delete net;
}

Figure 3. Simple Master-Worker Front-end Code

main(argc, argv)
{
 Network *net;
 Stream *strm;
 int config = 0;

// initialize network
 net = Network::CreateNetworkBE(argc,argv);

// work loop
 bool done = false;
 while(! done) {
 int tag;
 PacketPtr pkt;
 int rc = net->recv(&tag, pkt, &strm);
 switch(tag) {
 case DO_WORK:
 be_do_work(config, pkt, strm);
 break;
 case UPDATE_CONFIG:
 pkt->unpack(“%d”, &config);
 break;
 case EXIT:
 done = true;
 break;
 }
 }
 delete net;
}

Figure 4. Simple Master-Worker Back-end Code

main(argc, argv)
{
 Network *net;

// initialize network
 const char* topol = argv[1];
 const char* apid = argv[2]
 const char* tool_be_exe = argv[3];
 char* tool_be_args[] = argv+4;
 map<string,string> attrs;
 attrs.insert(make_pair(“apid”,apid));
 net = Network::CreateNetworkFE(topol,

tool_be_exe,
tool_be_args,

 &attrs);
 ...
}

Figure 5. Third-party Tool Front-end Code
Cray User Group 2010 Proceedings 6 of 9

processes for analysis. MRNet can be used within these libraries
to send data for analysis within the TBON, and to receive con-
trol messages from the tool front-end that adapt the tools data
collection behavior.

If the application is already programmed using C++ and sup-
ports threading, the standard MRNet API library can be used
within the tool library to send data. Practically, however, few
parallel applications are written using C++ and not all high-
performance computing systems support general-purpose
threading. In response to these facts, we have developed a light-
weight, C-based and threadless version of the MRNet library
for use with these applications and systems 3. The C library API
uses a simple strategy to provide C function interfaces for C++
class methods by translating interfaces from
Class::method(...) to Class_method(Class*,
...). The lightweight library is intended for use only within

MRNet back-ends, and offers a subset of the functionality nor-
mally provided by the C++ library to back-ends. Notably, only
blocking network receives are supported and no filtering is per-
formed within the back-end process. Figure 6 shows how the
simple back-end code of Figure 4 could be implemented within
a tool back-end library. The code is split into initialization and
progress functions that the tool would be responsible for call-
ing, and the API calls are translated to use the lightweight
MRNet library.

4 Running MRNet Tools on Cray XT
We now provide specific instructions for building and run-

ning MRNet-based software on the Cray XT. Due to potential
differences in system configuration, these instructions should
be considered as a template rather than strict convention.

4.1 Building MRNet Applications and Tools
MRNet currently requires use of the GNU programming

environment on Cray XT systems, due to problems encoun-
tered with C++ STL support when using the PGI environment.
To use the GNU environment, a user should swap the environ-
ment from the default PGI:
module swap PrgEnv-pgi PrgEnv-gnu

Using the GNU environment, MRNet can be configured and
built using the following commands (assuming a Bash or Korn
shell):
cd mrnet_source_directory
export CC=gcc
export CXX=g++
./configure --prefix=/tmp/work/user
 --with-libfldir=/usr/lib64
 --with-startup=cray_xt
 [--with-alpstoolhelp-inc=dir]
 [--with-alpstoolhelp-lib=dir]
 [--enable-shared]
make && make install

The configure command above uses the --prefix switch to
tell MRNet to install its executables, header files, and libraries
into bin, include, and lib subdirectories of /tmp/
work/user, which we assume is located on a Lustre file sys-
tem. Installation to Lustre is necessary because a user’s home
directory is not accessible when jobs are run on XT compute
nodes. The optional configure switches for the location of
ALPS tool helper header files and libraries are necessary when
building MRNet to be used by a tool that needs to co-locate
with application processes. The optional switch --enable-
shared can be specified to instruct MRNet to build shared
object versions of the MRNet and XPlat libraries in addition to
the regular library archives.

Once MRNet has been built and installed, software that uses
MRNet can be built by supplying the appropriate compile flags
that point to the installed header and library locations. Note
that programs using MRNet must also be built within the GNU
programming environment to avoid link-time problems with
unresolved references. The compiler settings used to build cus-
tom MRNet filters can be found by referring to the Makefiles

// global configuration parameter
int config;

Network_t* toollib_init_mrnet(void)
{
 config = 0;

// construct argc/argv from topology
 // info available from external channel
 int argc;
 char **argv;
 get_network_connection(&argc, &argv);

// initialize network
 Network_t *net;
 net = Network_CreateNetworkBE(argc,argv);
 return net;
}

bool toollib_progress_mrnet(Network_t* net)
{
 int tag;
 Stream_t *strm;
 Packet_t *pkt;
 int rc = Network_recv(net, &tag,
 pkt, &strm);
 switch(tag) {
 case DO_WORK:
 be_do_work(config, pkt, strm);
 break;
 case UPDATE_CONFIG:
 Packet_unpack(pkt, “%d”, &config);
 break;
 case EXIT:
 done = true;
 break;
 }
 if(done) {
 free(net);
 return false;
 }
 return true;
}

Figure 6. Lightweight First-party Back-end Code
Cray User Group 2010 Proceedings 7 of 9

MRNet generates for its examples (e.g., the IntegerAddition
example uses a custom filter).

4.2 Running MRNet Applications and Tools
Because MRNet is dependent upon shared object libraries

from the GNU environment, and these libraries are not
installed on the compute nodes, the dependencies must be cop-
ied to the Lustre file system, preferably into the same directory
used for the MRNet libraries. The exact dependencies may dif-
fer across systems, so we suggest using ‘ldd executable’
and ‘ldd library’ to determine the dependencies for exe-
cutables and libraries. Generally, we find it is always necessary
to copy the following dependencies: libstdc++.so,
libgcc_s.so, and libm.so.

To ensure installed executables and libraries are found within
the system search paths, we suggest adding the following lines
to the user’s login scripts, assuming the installation directories
are in /tmp/work/user. For bash/ksh users, add the follow-
ing two environment settings to ~/.bashrc:
export PATH=”/tmp/work/user/bin:${PATH}”
export LD_LIBRARY_PATH=”/tmp/work/user/

lib:${LD_LIBRARY_PATH}”

while for csh/tcsh users, the following settings should be added
to ~/.cshrc:
setenv PATH ”/tmp/work/user/bin:${PATH}”
setenv LD_LIBRARY_PATH ”/tmp/work/user/

lib:${LD_LIBRARY_PATH}”

Once all the software has been installed and the user’s envi-
ronment has been setup, the next step is to create job scripts for
running the application or tool. Figure 7 shows an example PBS
job script that can be used to run the MRNet microbench
test, which measures the performance of the network for
round-trip latency and aggregation throughput. This example
script assumes the execution platform is an XT5 with 12 cores
per compute node. The topology used in the example is
1x24x576, which means the front-end has 24 internal pro-
cesses as its children, and each internal process has 24 back-end
processes as children, for a total of 576 back-ends. The topol-
ogy file is generated from a host list that is populated with the
node identifiers (or “nids”) of the front-end and all allocated
compute nodes.

4.3 MRNet Topology Generation
MRNet provides a utility, mrnet_topgen, for generating

TBON topology files from an input file that contains a list of
hosts. Each host line in the input file is of the form
“host[:num-processors]”, which tells MRNet to place
at most num-processors processes on host. In the exam-
ple job script of Figure 7, all internal processes are placed
together on two hosts as a result of specifying “:12” as the pro-
cessor count for all compute nodes. Such overloading of inter-
nal processes onto the same host is not always desirable, since
the mrnet_commnode process is multi-threaded and has two
threads for every peer in the topology. For topologies with large
fan-outs (e.g., 24 or 32), it can be beneficial to provide multiple

processor cores to each mrnet_commnode process. Our
experience has shown that running two or four internal pro-
cesses on a 12-core XT5 compute node provides reasonable
performance for a balanced network with a large fan-out. For
workloads where the internal process is expected to be con-
stantly communicating and/or performing heavy computation
due to filtering, users may wish to place a single internal pro-
cess on a compute node by specifying “:1” for the hosts to be
used for internal processes, and adjusting the size of the job
allocation to account for the increased processor count used by
each internal process.

5 Summary
MRNet provides scalable multicast and data aggregation

facilities to tools and applications. Our goal is to encourage
more tool and application developers to consider adopting
MRNet as a solution for improving the scalability of their soft-
ware. We have reviewed the general-purpose abstractions and
API provided by MRNet, and given several examples of tools
already using MRNet. We have shown example code for using
MRNet on Cray XT platforms, and provided specific instruc-
tions for building and running MRNet-based software.

#!/bin/ksh
#PBS -N microbench
#PBS -j oe
#PBS -l size=600
#PBS -l walltime=0:10:00

echo ------- Environment -------
env
echo ---------------------------

echo ------- Job Info ----------
qstat -f $PBS_JOBID
echo ---------------------------

n_procs=600
cores_per_node=12
n_compute_nodes=$(expr $n_procs / $cores_per_node)
fanout=24
depth=2

hostfile=hosts.txt
topofile=mrnet.top

jobdir=${HOME}/log/microbench/$PBS_JOBID
logdir=${jobdir}/mrnlog
mkdir -p $jobdir || exit 1
mkdir $logdir || exit 1
cd $jobdir || exit 1
export LUSTREBIN=/tmp/work/user/bin
export MRNET_OUTPUT_LEVEL=1
export MRNET_DEBUG_LOG_DIRECTORY="${logdir}"
export XPLAT_RESOLVE_HOSTS=0

build a list of nodes allocated to us
(be sure to include the FE node)
cat /proc/cray_xt/nid | awk '{printf("nid%05u\n",$1)}' \
 > $hostfile
aprun -n $n_compute_nodes -N 1 /bin/hostname | sort \
 | tail -n +2 | awk '{printf("%s:12\n", $1)}' \
 >> $hostfile

build a topology
${LUSTREBIN}/mrnet_topgen -b ${fanout}^${depth} \
 $hostfile $topofile > topgen.log 2>&1

run the test
${LUSTREBIN}/microbench_FE 1000 1000 $topofile \
 ${LUSTREBIN}/microbench_BE > 1x24x576.log 2>&1

Figure 7. Sample PBS Job Script: microbench Application
Cray User Group 2010 Proceedings 8 of 9

Acknowledgments
This work is supported in part by Department of Energy

grants 93ER25176, 08ER25842, 09ER25940, 08ER25945,
08ER25176, and Lawrence Livermore National Lab grant
B579934.

This material is based upon work supported by the Defense
Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0001. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency.

This research used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the Department
of Energy under Contract DE-AC05-00OR22725.

This research is sponsored in part by the Office of Advanced
Scientific Computing Research; U.S. Department of Energy.
The work was performed in part at the Oak Ridge National
Laboratory, which is managed by UT-Battelle, LLC under Con-
tract No. De-AC05-00OR22725.

The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

About the Authors
Michael J. Brim is a Ph.D. student in the Paradyn research

group at the University of Wisconsin, Madison. His research
interests include scalable tool and middleware development,
high-end computing and communication architectures, and
distributed and parallel file systems. He can be contacted at
Department of Computer Sciences, 1210 W. Dayton St., Madi-
son, WI 53706, USA. Email: mjbrim@cs.wisc.edu.

Dr. Luiz DeRose is a Sr. Principal Engineer and the Program-
ming Environments Director at Cray Inc. He has more than
twenty years of experience in HPC software design and devel-
opment. He has published more than 40 peer-review articles in
scientific publications, primarily on programming environ-
ment topics. He can be reached at ldr@cray.com.

Barton Miller is Professor of Computer Sciences at the Uni-
versity of Wisconsin, Madison. He directs the Paradyn Parallel
Performance Tools project, which is investigating performance
and instrumentation technologies for parallel and distributed
applications and systems. His research interests include tools
for high-performance computing systems, binary code analysis
and instrumentation, computer security, and scalable distrib-
uted systems. He can be reached at Department of Computer
Sciences, 1210 W. Dayton St., Madison, WI 53706, USA. Email:
bart@cs.wisc.edu.

Ramya Olichandran is a graduate student in the Paradyn
research group at the University of Wisconsin, Madison. Her
research spans tool scalability and performance analysis. She
can be reached at Department of Computer Sciences, 1210 W.
Dayton St., Madison, WI 53706, USA. Email:
ramya@cs.wisc.edu.

Philip C. Roth is a computer scientist in the Computer Sci-
ence and Mathematics Division at Oak Ridge National Labora-
tory, where he is a founding member of the Future
Technologies Group. His research interests include perfor-
mance analysis, prediction, and tools with special emphases on
scalability, automation, and non-traditional architectures. He
earned his Ph.D. from the University of Wisconsin-Madison in
2005. Roth can be reached at Oak Ridge National Laboratory,
PO Box 2008 MS 6173, Oak Ridge, TN 37830-6173, USA,
Email: rothpc@ornl.gov.

References
[1] Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory

Lee, Barton P. Miller, and Martin Schulz, "Stack Trace Analysis
for Large Scale Applications", International Parallel & Distrib-
uted Processing Symposium (IPDPS 2007), Long Beach, Califor-
nia, March 2007.

[2] Michael J. Brim and Barton P. Miller, "Group File Operations for
Scalable Tools and Middleware", 16th International Conference
on High Performance Computing (HiPC), Kochi, India, Decem-
ber 2009.

[3] Emily R. Jacobson, Michael J. Brim, and Barton P. Miller, “A
Lightweight Library for Building Scalable Tools”, State of the Art
in Scientific and Parallel Computing (PARA 2010), Reykjavik,
Iceland, June 2010.

[4] Gregory L. Lee, Dong H. Ahn, Dorian C. Arnold, Bronis R. de
Supinski, Matthew Legendre, Barton P. Miller, Martin Schulz,
and Ben Liblit, "Lessons Learned at 208K: Towards Debugging
Millions of Cores", Supercomputing 2008 (SC’08), Austin, TX,
November 2008.

[5] German Llort, Juan Gonzalez, Harald Servat, Judit Gimenez,
and Jesus Lebarta, “On-line detection of large-scale parallel
applications’s structure”, International Parallel & Distributed Pro-
cessing Symposium (IPDPS 2010), Atlanta, Georgia, April 2010.

[6] Message Passing Interface Forum. MPI: A Message Passing
Interface Standard. International Journal of Supercomputing
Applications 8, 3/4, Fall/Winter 1994.

[7] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth,
R.B. Irvin, K.L. Karavanic, K. Kunchithapadam, and T. Newhall,
“The Paradyn Parallel Performance Measurement Tool”, IEEE
Computer 28, 11, November 1995, pp. 37-46.

[8] Aroon Nataraj, Allen D. Malony, Alan Morris, Dorian C.
Arnold, and Barton P. Miller, “A Framework for Scalable, Parallel
Performance Monitoring using TAU and MRNet”, International
Workshop on Scalable Tools for High-End Computing (STHEC
2008), Kos, Greece, June 2008.

[9] “Open|SpeedShop”, http://www.openspeedshop.org/.
[10] Paradyn Project, “MRNet API Programmer’s Guide, Release

3.0”, http:///www.paradyn.org/mrnet/release-3.0/APIGuide.pdf.
[11] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller, “MRNet:

A Software-Based Multicast/Reduction Network for Scalable
Tools”, Supercomputing 2003 (SC’03), Phoenix, AZ, November
2003.

[12] Philip C. Roth and Jeffrey S. Vetter, “Scalable Tool Infrastructure
for the Cray XT Using Tree-Based Overlay Networks”, Cray User
Group (CUG 2009), Atlanta, Georgia, May 2009.
Cray User Group 2010 Proceedings 9 of 9

	MRNet: A Scalable Infrastructure for Development of Parallel Tools and Applications
	Michael J. Brim, University of Wisconsin
	Luiz DeRose, Cray Inc.
	Barton P. Miller, University of Wisconsin
	Ramya Olichandran, University of Wisconsin

	Philip C. Roth, Oak Ridge National Laboratory
	ABSTRACT: MRNet is a customizable, high-throughput communication software system for parallel tools and applications. It reduces...
	KEYWORDS: XT, scalability, tree-based overlay networks, tools
	1 Introduction
	Figure 1. The components of a typical parallel tool (a) and an MRNet-based parallel tool (b). Shaded boxes show potential machine boundaries.
	Figure 2. Functional layers in an MRNet internal process.

	2 MRNet Abstractions and API
	2.1 MRNet Abstractions
	2.2 MRNet API
	2.2.1 Class Network
	2.2.2 Class Communicator
	2.2.3 Class Stream
	2.2.4 Class Packet
	2.2.5 Class NetworkTopology

	3 Example Tool Scenarios
	3.1 A Simple Example: Master-Worker Application
	Figure 3. Simple Master-Worker Front-end Code
	Figure 4. Simple Master-Worker Back-end Code

	3.2 Third-party Tools
	Figure 5. Third-party Tool Front-end Code
	Figure 6. Lightweight First-party Back-end Code

	3.3 First-party Tools

	4 Running MRNet Tools on Cray XT
	4.1 Building MRNet Applications and Tools
	4.2 Running MRNet Applications and Tools
	Figure 7. Sample PBS Job Script: microbench Application

	4.3 MRNet Topology Generation

	5 Summary
	Acknowledgments
	About the Authors
	References
	[1] Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory Lee, Barton P. Miller, and Martin Schulz, "Stack Trace Analysi...
	[2] Michael J. Brim and Barton P. Miller, "Group File Operations for Scalable Tools and Middleware", 16th International Conference on High Performance Computing (HiPC), Kochi, India, December 2009.
	[3] Emily R. Jacobson, Michael J. Brim, and Barton P. Miller, “A Lightweight Library for Building Scalable Tools”, State of the Art in Scientific and Parallel Computing (PARA 2010), Reykjavik, Iceland, June 2010.
	[4] Gregory L. Lee, Dong H. Ahn, Dorian C. Arnold, Bronis R. de Supinski, Matthew Legendre, Barton P. Miller, Martin Schulz, and...
	[5] German Llort, Juan Gonzalez, Harald Servat, Judit Gimenez, and Jesus Lebarta, “On-line detection of large-scale parallel applications’s structure”, International Parallel & Distributed Processing Symposium (IPDPS 2010), Atlanta, Georgia, April 2010.
	[6] Message Passing Interface Forum. MPI: A Message Passing Interface Standard. International Journal of Supercomputing Applications 8, 3/4, Fall/Winter 1994.
	[7] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic, K. Kunchithapadam, and T. Newhall, “The Paradyn Parallel Performance Measurement Tool”, IEEE Computer 28, 11, November 1995, pp. 37-46.
	[8] Aroon Nataraj, Allen D. Malony, Alan Morris, Dorian C. Arnold, and Barton P. Miller, “A Framework for Scalable, Parallel Per...
	[9] “Open|SpeedShop”, http://www.openspeedshop.org/.
	[10] Paradyn Project, “MRNet API Programmer’s Guide, Release 3.0”, http:///www.paradyn.org/mrnet/release-3.0/APIGuide.pdf.
	[11] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller, “MRNet: A Software-Based Multicast/Reduction Network for Scalable Tools”, Supercomputing 2003 (SC’03), Phoenix, AZ, November 2003.
	[12] Philip C. Roth and Jeffrey S. Vetter, “Scalable Tool Infrastructure for the Cray XT Using Tree-Based Overlay Networks”, Cray User Group (CUG 2009), Atlanta, Georgia, May 2009.

