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Abstract 
Reconfigurable computing offers the promise of 

performing computations in hardware to increase 
performance and efficiency while retaining much of the 
flexibility of a software solution. Recently, the capacities 
of reconfigurable computing devices, like field 
programmable gate arrays, have risen to levels that make 
it possible to execute 64b floating-point operations. SRC 
Computers has designed the SRC-6 MAPstation to blend 
the benefits of commodity processors with the benefits of 
reconfigurable computing. In this paper, we describe our 
effort to accelerate the performance of several scientific 
applications on the SRC-6. We describe our methodology, 
analysis, and results. Our early evaluation demonstrates 
that the SRC-6 provides a unique software stack that is 
applicable to many scientific solutions and our 
experiments reveal the performance benefits of the 
system.  

Keywords: Reconfigurable Computing, Scientific 
Applications, Performance Analysis 

1. Introduction 

Although initially proposed in the late 1960s, 
reconfigurable computing is a relatively new field of 
study. The ability to customize the architecture to match 
the computation and the data flow of the application has 
demonstrated significant performance benefits when 
compared to general-purpose architectures. Its key feature 
is the ability to perform computations in hardware to 
increase performance, while retaining much of the 
flexibility of a software solution. The decades-long delay 
had mostly to do with a lack of acceptable capacities in 
reconfigurable hardware to accommodate 64b floating-
point operations. Only recently have these devices, 
namely FPGAs, reached gate densities making them 
suitable for high-end scientific applications, which require 
64b floating-point operations. With an anticipated 

doubling of gate densities every 18 months, the situation 
will only become more favorable from this point forward.  

ORNL is working with SRC Computers, in an effort to 
understand how their reconfigurable computing 
technology can benefit ORNL’s scientific workloads. 
SRC Computers has designed the SRC-6 as a general-
purpose computing system with reconfigurable direct 
execution logic processors (using FPGAs), called MAP 
processors (Multi-Adaptive Processor), for high end 
computing. The SRC-6 uses standard programming 
languages and models, and the software environment 
turns user applications and algorithms into direct 
execution logic (DEL) for MAP processors. Successful 
implementations with this system exist for application 
genres such as DSP and cryptography; this evaluation is 
investigating the relevance of this architecture for more 
general scientific applications.  

2. Related Work 

A significant role of reconfigurable computing (RC) in 
the present and near future includes improving the 
performance of scientific and signal processing 
applications. Current research highlighting work with the 
SRC-6 for accelerating signal-processing applications 
includes the Hyperspectral imagery work by El-Araby, 
El-Ghazawi, et al [15]. They achieved an order of 
magnitude speedup gain for on-board preprocessing of 
hyperspectral imagery with an implementation of the 
automatic wavelet dimension reduction algorithm on the 
SRC-6. Other application efforts related to the SRC-6 
system include an implementation of the DARPA 
Boolean equation benchmarking suite [16], 
implementation studies of Triple DES [17], and algorithm 
implementations for an elliptic curve cryptosystem [18] 
and a generic wavelet filter [19]. Other research 
highlighting the system and architecture of the SRC-6 
includes a thorough discussion by El-Araby et al. on the 
optimizations used in designing for RC, specifically the 
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SRC-6E [20]. Finally, a paper by Fidanci et al. discusses 
the performance and overhead in the SRC-6 [21]. 

3. SRC-6 Overview 

3.1. Hardware Architecture 

The SRC-6 platform consists of two general-purpose 
microprocessor boards and one Multi-Adaptive Processor 
(MAP®) board. Each microprocessor board is based on 
two 2.8GHz Pentium 4 microprocessors. Figure 3.1 shows 
the hardware architecture of the SRC MAP processor, 
which consists of two user-programmable Xilinx® Vertex 
II XC2V6000™ FPGA devices [3], six 4MB banks of On-
Board Memory (OBM), and a control FPGA. This 
configuration affords the SRC-6 platform a 1:1 
microprocessor to FPGA ratio. The microprocessor and 
MAP boards are connected via SNAP® cards which plug 
into the DIMM slot on the microprocessor motherboard 
[1].   

 
Figure 3.1: Hardware Architecture of the SRC 
MAP Processor with indicated bandwidths for P4 
systems. (Image courtesy of SRC Computers [2]) 

3.2. Programming Model 

The programming model for the SRC-6 is similar to 
that for a conventional microprocessor-based computing 
system, with the additional task of producing logic for the 
MAP processor. Two types of application source files are 
needed to target the microprocessor and MAP boards as 
shown in Figure 3.2. Source files intended for execution 
on the Intel platform (software only code) are compiled 
using the traditional microprocessor compiler. All source 
files containing functions that call hardware macros 
(designated with an .mf extension for FORTRAN or .mc 
extension if written in C) and thus execute on the MAP 
are compiled by the MAP compiler.  

The SRC programming model has two levels of source 
files for the MAP processor. At a high level, the user 

describes the functions designated for hardware using a 
high-level language such as FORTRAN or C. Optimized 
macros for the hardware are included as a bundled library 
with the SRC system and can be called from the sources 
written for the MAP processor. This library includes 
functions such as: DMA calls, accumulators, counters, 
etc. Additionally, at a lower level, the MAP compiler 
allows users to integrate their own custom VHDL/Verilog 
functions or macros to extend the built-in set which are 
included with the SRC-6 platform. 

 

 
Figure 3.2: SRC Compilation Process (adapted 
from [1]) (Image courtesy of SRC Computers [2])

3.3. MAP Compiler Architecture and Code 
Optimization 

The SRC MAP complier translates the user’s MAP 
function, written in a high-level programming language, 
from source code to FPGA firmware, allowing designers 
with little knowledge of the hardware architecture to 
target the MAP processor. However, some specific code 
optimizations are very critical in order to achieve good 
performance for the generated firmware. To this end, it is 
also helpful to know what optimizations are performed by 
the MAP compiler.   

In a typical execution of the firmware generated by the 
MAP compiler, one code block is active at a time. In the 
current SRC compilation environment, the parallelism is 
explored from the following three aspects.  

(1) Operations within a basic block that have no data 
dependencies can execute concurrently. Therefore, 
the user should try to avoid data dependencies 
within a basic block. For example, so that the 
assignments are independent and can be executed 
in parallel, these three assignment statements can 
be re-written as shown:  

 
Original Re-written 
T2 = IC T2 = IC 

T3 = T2 + INC T3 = IC + INC 
T4 = T3 + INC T4 = IC + 2*INC 

 
(2) All parallel sections in a parallel region will start 

executions simultaneously when normal execution 

  



reaches the parallel region; the execution of a 
parallel region will be complete only when all 
parallel sections in the parallel region are complete. 
This programming feature can be used in a MAP 
function and is realized by using some compiler 
pragmas to mark a code segment as a parallel 
region and mark the designated code segments in 
the parallel region as parallel sections. 

(3) The MAP compiler will pipeline every innermost 
loop in a MAP function. Therefore, the user should 
try to avoid loop-carried dependencies in an 
innermost loop in order to achieve optimum 
performance of a pipelined loop. Moreover, 
merging a nested loop into a single loop is certainly 
desirable since a larger loop is pipelined after 
merging. 

Aside from the parallelism, the MAP compiler will go 
through a series of operation constructs to look for logic 
compaction: multiply by 0.5 or a power of 2, square, a*b 
+ c*d, multiply accumulate (MAC), accumulate (ACUM), 
and so on. For the MAP compiler to recognize these 
constructs and instantiate the appropriate macro, users 
must write the constructs appropriately using the library 
of macro calls.  For example, the expression e = a*b + c*d 
could be written as something like MMADD (a, b, c, d, & 
e), where MMADD is a macro that does the evaluation of 
the above expression.    

SRC provides many user callable macros some of 
which can be used to optimize the user code of the MAP 
function. For example, the delay queue can be used to 
reduce redundant on-board memory accesses in a loop 
computation so as to increase the throughput, if that loop 
is innermost and thus pipelined.  

3.4. Operation Modes 

The SRC system also has three modes of operation: 
debug, simulation, and hardware. The debug mode allows 
the developer to develop the code and test data movement 
without executing the lengthy process of place and route 
for the MAP processor (thus does not require MAP 
hardware to run). The code compiles fast and executes on 
the microprocessor fast enough to conduct algorithm 
testing. The simulation mode is used by functional unit 
designers when developing user macros. The hardware 
mode is the normal mode of operation where the 
compiled binaries are run on the microprocessor and 
MAP hardware. 

4. Applications 

4.1. Molecular Dynamics Kernel (MD) 

In the broadest sense, molecular dynamics is 
concerned with molecular motion. The goal of molecular 

dynamics algorithms is to determine how the state of a 
molecular system evolves over time. Given a molecular 
system with a set S of n particles, the state of each particle 
i at time t can be described by its mass mi, its charge qi, its 
position xi(t), and its velocity vi(t). The force applied to a 
particle i at time t is the vector sum of the pairwise 
interactions of particle i with all other particles in the 
system. These pairwise interactions can take several 
varieties. Typically, they can be divided into two main 
groups: intra-molecular forces and inter-molecular 
forces. Intra-molecular forces occur between close-by 
particles in the same molecule, while inter-molecular 
forces occur between any pair of particles. When 
considering that several of these forces decay rapidly with 
distance, it is enough to consider only particles inside a 
sphere centered at particle i. The molecular dynamics 
kernel calculates the interactions of the particles using 
Newton’s equations. 

4.2. Matrix-Matrix Multiplication Kernel (MM) 

The matrix-matrix multiplication kernel is a significant 
component of many scientific algorithms. Many higher-
level calculations, such as transforms, rely heavily on 
multiplications of large matrices and the kernel studied 
here will be used in block matrix decomposition 
algorithms for these large matrices. The abundant 
resources currently provided by FPGAs provide new 
opportunities to improve the performance of these 
calculations for scientific applications [14].  

The first implemented algorithm employs a linear 
array architecture in which multiple floating-point 
operations are performed concurrently. Multiple MAC 
units are instantiated and the rows and columns of data 
are allowed to propagate across and down the array in a 
pipeline-like fashion. The resultant matrix is available 
once the data has propagated through the linear array. 

The second algorithm uses a delay pipeline to read the 
matrix data once and the SRC compiler is allowed to 
instantiate the floating-point MACs. 

 
4.3. Climate Modeling Kernel: PSTSWM 

Parallel Spectral Transform Shallow Water Model 
(PSTSWM) is a message-passing application and parallel 
algorithm testbed that solves the nonlinear shallow water 
equations on a rotating sphere using the spectral transform 
method [4-7]. It is a parallel implementation of STSWM, 
developed by J. J. Hack and R. Jacob at the National 
Center for Atmospheric Research (NCAR) and used to 
generate reference solutions for the shallow water test 
cases described in [4]. PSTSWM was developed to 
evaluate parallel algorithms for the spectral transform 
method as it is used in global atmospheric circulation 
models.  

  



The spectral transform method used in the shallow 
water model is comprised of a sequence of 
transformations between the physical domain and the 
spectral domain. The spectral transformation from the 
physical coordinate to the spectral coordinate involves 
performing a real fast Fourier transform (FFT) for each 
line of constant latitude, followed by integration over 
latitude using Gaussian quadrature, approximating the 
Legendre transform (LT), to obtain the spectral 
coefficients. The inverse spectral transformation involves 
inverse LTs and inverse real FFTs.  

5. Migrating applications to the SRC-6 

5.1. Matrix-Matrix Kernel Implementation 

In the first algorithm implementation, we instantiate an 
array of 16 independent MACs (maximum number for 
available FPGA resources) and propagate the data 
through the array as shown in Figure 5.1 [9]. We 
explicitly encoded 16 MACs and the SRC compiler was 
allowed to implement the 16 MACs. The MACs are 
numbered from left to right. The jth MAC receives the 
input data from the (j-1)th MAC. The final elements of 
the output matrix are transferred from right to left.  

Figure 5.2 demonstrates how the first matrix 
multiplication algorithm is implemented for the MAP 
processor. This implementation achieved a 4.8X speedup 
over an equivalent serial non-MAP version running on the 
SRC-6 host processor. The performance measurements 
include data transmission and computations times. 

In the second algorithm, a delay pipeline was 
constructed to read the matrices from on-board memory 
once and the SRC compiler was allowed to determine 
how to compute the matrix multiplication in parallel [1]. 
Figure 5.3 shows how matrix B is stored in on-board 
BRAM and the current row of matrix A is stored in 
registers. The pseudo code segment in Figure 5.4 
demonstrates how the matrix multiplication algorithm is 
implemented for the MAP processor. This 
implementation is not as efficient as the first algorithm 
and achieved only a 2X speedup. 

Each algorithm implementation is 64b floating point 
and uses only one of the two MAP FPGAs. The device 
utilization and performance results for both designs are 
shown below in Table 1. Future work will utilized the 
second FPGA to populate more MACs for improved 
performance and processing bandwidth. 

For algorithm 1, each MAC ideally can perform one 
floating-point addition and one floating-point 
multiplication every clock cycle.  Hence the peak 
performance is expected as follows: 

 
)(2 areathroughputarea FPMACFPMACFPGA ××  

 
 
Figure 5.1: Matrix-Matrix Computation for 
Algorithm 1 
 

Load matrix A and B to BRAM; 
    For(i=0;MAC array size) 
          c1(1)=c1(1)+( a1(i) * b1(i) ) 
          c1(2)=c1(2)+( a1(i) * b2(i) ) 
          c1(3)=c1(3)+( a1(i) * b3(i) ) 
          c1(4)=c1(4)+( a1(i) * b4(i) ) 
          c2(1)=c2(1)+( a2(i) * b1(i) ) 
 … 
          c3(1)=c3(1)+( a3(i) * b1(i) ) 
 … 
          c4(4)=c4(4)+( a4(i) * b4(i) ) 

 
Figure 5.2: Algorithm 1 pseudo code segment 
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Matrix B is held in on-
chip BRAM and 

accessed in parallel.

Active row of A is held 
in on-chip register.

 
 
Figure 5.3: Matrix-Matrix Computation for 
Algorithm 2 

  



 
Load matrix B to BRAM; 
  For(j=0; rows) 
    Load jth Row of matrix A into registers 
    For(i=0;columns) 
       c(i+((j-1)*n)) = (a1*b1(i)) +  
                        (a2*b2(i)) +  
                        (a3*b3(i)) +  
                        (a4*b4(i)); 

Figure 5.4: Algorithm 2 pseudo code segment 
 

Table 1: Matrix-Matrix Implementation Results 
FPGA Utilization  MAP 

Runtime BRAM Slices MULTs 
Algorithm 1 180 us 16% 88% 72% 
Algorithm 2 440 us 6% 31% 27% 

5.2. Molecular Dynamics Kernel Implementation 

The core calculations of Molecular Dynamics Kernel 
consisted of calculating the forces acting on the each of 
the particles in the box for each time step. By moving 
these calculations into the MAP, we can achieve 
significant performance improvement. 

As stated earlier, the calculations consist of multiplies 
and accumulates, nothing really novel. The performance 
advantage is achieved in the mapping of the data to the 
MAP architecture and utilizing the full capabilities of the 
hardware to perform the maximum number of 
calculations simultaneously. 

The key to implementation was to determine how to 
best manage data movement and avoid “in-place” updates 
of data which would result in a “loop slow down” in the 
MAP. Multiple BRAM’s on the FPGA were utilized to 
store the intermediate accumulation data and allow 
multiple calculations to occur concurrently without 
memory write contention. The method allowed the 
calculations to be pipelined by the compiler, further 
maximizing the hardware utilization and performance. 
The final step was to merge the accumulation data into the 
final arrays in the OBM. 

 
Table 2: Molecular Dynamics Kernel 

Implementation Results 
FPGA Utilization  BRAM Slices MULTs 

MAP 32b FP 48 (33%) 21,084 (62%) 33 (22%) 
 
The current implementation is 32b floating point and 

utilizes only one of the two MAP FPGAs. The device 
utilization results for the 32b design are shown in Table 2. 
The 32b implementation achieved a 5X speedup over the 
serial non-MAP version running on the SRC-6 host 
processor. The dual chip version where a second identical 
computing engine is placed in the second FPGA is 
expected to achieve a 10X speedup over the serial non-
MAP version. Dual chip and 64b implementations are in 
progress. 

 
5.3. Climate Modeling Kernel Implementation 

PSTSWM relies heavily on FFTs and thus computing 
these FFTs utilizing FPGA hardware is expected to 
provide significant performance advantages based on 
positive results with FFTs on FPGAs in real-time and 
DSP applications [8-12].  

There are several potential design options for mapping 
the PSTSWM benchmark code onto the SRC-6 
architecture. The SRC-6 contains four microprocessors 
and two MAP processors, each with two FPGA chips and 
six banks of on-board memory. The spectral transform 
can be partitioned onto the four microprocessors and the 
four FPGA chips in several ways. Two partitioning 
options are listed in Table 3 where the microprocessors 
execute any remaining calculations not suitable for the 
MAP processor FPGAs. 

 
Table 3: Partitioning Options 

 Option 1 Option 2 
MAP1 FPGA1 Forward FFT Forward FFT 
MAP1 FPGA2 Forward LT Forward FFT 
MAP2 FPGA1 Inverse LT Inverse FFT 
MAP2 FPGA2 Inverse FFT Inverse FFT 

 
In Option 1, the spectral transform is mapped onto the 

MAP processor 1, with the forward FFT on one chip and 
the forward LT on the other chip, and the inverse spectral 
transform is mapped onto the MAP processor 2, with the 
inverse FFT on one chip and the inverse LT on the other 
chip. The remaining computations are executed by the 
microprocessors. For simplicity in determining 
performance, the tasks running on the microprocessors are 
assumed in serial mode, i.e., no parallel algorithms are 
used to achieve performance gain from multiprocessors.  

In Option 2, two forward FFTs are implemented on 
one MAP processor, one with each FPGA chip, and two 
inverse FFTs are implemented on the other MAP 
processor, one on each FPGA chip. The computation task 
is easily portioned between the two FFTs on the two chips 
and since they are independent, each FFT can be 
performed simultaneously on different sets of vectors.  
Our research focuses on Option 2. 

Mapping FFTs onto FPGAs has been extensively 
studied [8-12] and many commercial FFT IP cores are 
available [13]. In this research, the FFT FPGA 
implementation involves creating the MAP functions and 
since the PSTSWM code is written in FORTRAN, the 
MAP functions will also be written in FORTRAN. 

In the PSTSWM code, there are both parallel and serial 
algorithms for the FFT. In this research, the serial 
algorithm is considered and, in order to maintain 
consistency with the PSTSWM code, the same in-place 
FFT algorithm is used to implement the FFT on FPGA.  
Additionally, owning to symmetry, we only consider the 

  



mapping of the complex forward FFT onto FPGA (the 
CFFTF subroutine). 

The CFFTF subroutine calculates in-place forward 
Fourier transforms of an array of complex vectors. Each 
vector is of length N, where N is a power of twos, threes, 
and fives. In this research, N is restricted as a power of 2 
to simplify implementation and minimize area consumed 
in the FPGA. Since all problem inputs to the PSTSWM 
code satisfy this restriction it is not a limitation of the 
application code and is considered acceptable. 

The inputs to CFFTF are a one-dimensional array 
TRIG, a two- dimensional array Y, and the sizes N, 
CJUM, and MVECS of the arrays, where N≤CJUM. The 
array Y is also used as the output.  

The main computation in CFFTF can be formulated as 
a nested loop computation as shown in Figure 5.5. 
 

For each column of Y (each vector) 
 For each factor (4, or 2 and in this order) of N 
 For each block (NBLOCK: number of blocks) 
 For every 4 (or 2) elements with stride 

INCREM in a block 
   Base-4 or Base-2 Butterfly Computation 

Figure 5.5: CFFTF pseudo code for main 
computation segment 
 

There are several notable features in this computation:  
(1) The FFT computations for all vectors can be 

performed in parallel.  
(2) If the two inner loops are for a factor 4 of N, then four 

elements are updated in the loop body, and the product 
of NBLOCK and INCREM is equal to N/4.  

(3) If the two inner loops are for a factor 2 of N, then two 
elements are updated in the loop body, and NBLOCK 
is equal to N/2 and INCREM is equal to 1.  

(4) The number of factor 2 of N is either 1 or 0. 
Because of the obvious parallelism in the CFFTF 

computation, it is desirable to design a hardware unit that 
computes the CFFTF over a vector, and then to try to put 
as many copies of the hardware unit on a FPGA chip as 
possible. Such hardware unit design requires exploring 
the tradeoff between speed and area and balancing the 
utilization of various resources such as the on-board 
memory banks, the FPGA slices, the FPGA built-in 
multipliers, the FPGA block RAMs, and so on [22].   

There are two levels of memory on the MAP processor 
that are used for array allocation. At the board level, six 
banks of on-board memory, each with 4 MB, can be 
accessed by both FPGA chips on the board. At the chip-
level, 144 Block RAMs on the FPGA chip, each with at 
least 2 KB, are available to each individual chip. By 
default, the SRC compiler allocates arrays on the block 
RAM.  

In CFFTF there are only two arrays. The one-
dimensional array TRIG is for input and is reused over 

every vector CFFTF, and therefore is allocated to Block 
RAM. The two-dimensional array Y is for both input and 
output, is relatively large, and therefore is allocated to on-
board memory (OBM). 

As shown in Table 4, the first two designs use four 
OBM banks: two for inputs and two for outputs. Note that 
Y is a complex number array. So, two arrays are used for 
Y, one for the real part and one for the imaginary part. 
Because OBM is 64-bits wide and both real part and 
imaginary part of Y are 32-bits wide, the real part and 
imaginary part of Y are packed together in Design 3 using 
two OBM banks, one for input and one for output.  

 
Table 4: Array Memory Allocations 

Array Memory Allocation Design TRIG Y VA VB 

1 Block 
RAM 

4 OBM Banks: 2 for input 
and 2 for output None None 

2 Block 
RAM 

4 OBM Banks: 2 for input 
and 2 for output None None 

3 Block 
RAM 

2 OBM Banks: 1 for input 
and 1 for output None None 

4 Block 
RAM 

1 OBM Bank: for both 
input and output 

Block 
RAM 

Block 
RAM 

 
Table 5: FPGA Resource Utilization 

 Slices  
(33,792 max) 

Block RAMs  
(144 max) 

18x18 MULTs 
(144 max) 

Design 1 18,748 (55%) 4 (2%) 181 (125%) 
Design 2 12,132 (35%) 2 (1%) 60 (41%) 
Design 3 10,069 (29%) 2 (1%) 60 (41%) 
Design 4 9,367 (27%) 6 (4%) 56 (38%) 
 
Design 4 uses only one OBM bank for both input and 

output. In this case, two extra arrays VA and VB are 
needed and allocated to Block RAM. In this design, a 
vector (a column of Y) is loaded to VA first where VA is 
the input and VB is the output in the loop computation for 
each factor. VB is copied to VA before the next loop 
iteration. Finally, VB is written back to the OBM bank. 
Table 5 shows the FPGA resource utilization for the four 
designs previously discussed. 

The next step is optimizing the MAP function. First, 
the two inner loops for a factor 4 of N can be combined as 
a single loop. Second, since the number of factor 2 of N is 
either 1 or 0, the loop computation for the factor 2 is 
eliminated. Also the two inner loops for a factor 2 of N 
become a single loop computation. Third, a multiplication 
operation ((L-1)*cjump) is removed. Fourth, re-write the 
code block: 

 
From To 

TOFF2 = IC TOFF2 = IC 
TOFF3 = TOFF2 + INCREM TOFF3 = IC + INCREM 
TOFF4 = TOFF3 + INCREM TOFF4 = IC + 2*INCREM 

 
Re-writing avoids the data dependency and thus 

reduces the latency. This design is called Design 5. 

  



All the previously discussed designs are implemented 
using integer operations. Now we focus on defining the 
two arrays of data in the MAP function as floating-point 
numbers. First, Design 5 is changed to Design 6 from 32-
bit integer to 32-bit floating-point. The FPGA resource 
reports for Design 6 show that this design is too big to fit 
on the FPGA chip. Switching from integer to floating-
point numbers caused a significant increase in the number 
of occupied slices and the design will no longer fit into 
the FPGA.  

Next, Design 5 is changed to Design 7 where we use 
64-bit floating-point numbers. An additional optimization 
is made to the design: only the base-2 butterfly 
computation is considered in CFFT computation without 
loss of generality. A factor 4 of N can be considered as 
two factors 2 of N. Therefore, the base-4 butterfly 
computation in CFFT is removed. As a result, the design 
is smaller and able to fit into the FPGA as shown in Table 
6. 

 
Table 6: Optimized FPGA Resource Utilization 

 Slices (33,792 
max) 

Block RAMs  
(144 max) 

18x18 MULTs  
(144 max) 

Design 5 8,846 (26%) 6 (4%) 52 (36%) 
Design 6 36,232 (107%) 6 (4%) 68 (47%) 
Design 7 14,042 (41%) 12 (8%) 28 (19%) 
 
As discussed, our implementation uses Option 2 in 

Table 3 and while all four FPGAs can implement this 
kernel in parallel, results thus far have only included one 
FPGA device. Additionally, it is conceivable that more 
FFT butterfly computations can be performed per FPGA 
device since there are unused FPGA resources (see Table 
6). Finally, the current implementation is not integrated 
with the full PSTSWM application. A smaller version of 
the PSTSWM application which only contains the CFFTF 
FFT subroutine over an array of vectors is used to 
simplify analysis and performance measurements of the 
FPGA code and interface. Future work will include full 
versions of the PSTSWM application as well as maximum 
utilization of the MAP devices (all four FPGAs). 

The performance is first measured without using 
FPGAs where the application computes the FFT over 256 
vectors. The execution times for different vector lengths 
on the SRC host computer are recorded in Table 7. 

The performances of Design 5 (32b integer version) 
and Design 7 (64b floating-point version) of FFT over 
256 vectors are also measured for different vector lengths 
as shown in Table 8.  

 
Table 7: PSTSWM on Host Computer (ms) 

Vector Length 256 512 1024 2048 
32b Integer 2.380 5.676 11.41 25.76 

64b Floating Point 3.906 7.812 15.62 31.25 
 

 

Table 8: PSTSWM with MAP (ms) 
Vector Length 256 512 1024 2048 

Data Transfer 1.348 2.662 5.294 10.57 
Computation 8.858 18.16 39.21 82.59 32b Integer 

Total  10.21 20.82 44.50 93.16 
Data Transfer 2.688 5.320 10.58 21.12 
Computation 14.17 28.86 60.59 129.0 

64b 
Floating 

Point Total  16.86 34.18 71.17 150.1 
 
It can be seen that the execution time with the FPGA is 

longer than the host processor alone, even without 
considering the FPGA configuration (60ms) and data 
transfer overhead.  

For example, the 64b floating-point FFT 
implementation uses only one base-2 butterfly 
computation in one FPGA chip. The FFT for a vector of 
length 1024 needs to compute 10×512 base-2 butterfly 
computations. Each butterfly computation takes at least 2 
clock cycles since two elements in a vector need to be 
updated and they are stored in one BRAM. Therefore, 
over the entire vector, the FFT takes at least 
10×512×2=10240 clock cycles. For 256 vectors, the 
FPGA computation takes at least 10240×256 = 2621440 
clock cycles, which is 2621440×10 = 26214400 ns ≈ 26 
ms with the FPGA running at 100 MHz. (Note: this clock 
frequency is fixed on the SRC-6 computer.) Therefore, 
the best FPGA FFT design with only one base-2 butterfly 
computation implemented will be slower than the host 
program, whose execution time is 15.62 ms.  

However, two copies of base-2 butterfly computation 
may be implemented per FPGA chip (see Table 6), and 
two FPGA chips can be used for the FFT computation. 
Therefore, the FFT implementation can hold four copies 
of base-2 butterfly computation, and the ideal 
computation time with full FPGA utilization will be 6.5 
(=26/4) ms. Thus, this design will be faster than the host 
program, whose execution time is 15.62 ms.  

6. Conclusions and Future Work 

We have presented an early evaluation of the SRC-6 
reconfigurable computer on several scientific 
applications. While our early evaluations utilize only one 
of the FPGA devices of the SRC-6, they still demonstrate 
the system’s potential for solving our applications with 
improved performance, and with the additional benefit of 
power and space efficiency. The unique software stack 
provided with the SRC-6 provides users with the 
functionality to transform compliant C and FORTRAN 
functions directly into VHDL. On two of our application 
kernels (MD and MM), we were able to achieve a 5X 
performance improvement with only one FPGA in the 
MAP processor. Results are expected to improve to 
approximately 10X with the addition of the second FPGA 
for these kernels, provided data bandwidth does not 
become a bottleneck. The potential for additional 

  



performance improvements exists in further algorithm 
optimizations specific to the SRC MAP architecture. For 
the other application kernel (PSTSWM), no speedup was 
achieved for the current implementation; however, 
analysis was given showing potential for speedup with 
full resource utilization (both MAP processors and full 
utilization of the FPGA resources). Furthermore, 
optimized versions of the FFT cores may provide some 
benefit. Future work will focus on utilizing both FPGA 
devices to their maximum potential. 

Despite these advantages, the process of porting our 
applications to the SRC-6 could be improved by, for 
example, providing automated tools for identifying code 
regions to migrate to the FPGA. Complex functions still 
require manual intervention to complete the compilation 
process. SRC is in the initial stages of development of 
heuristics for the compiler to implement these tasks 
automatically which will go a long way toward improving 
the efficiency of implementing designs for these 
architectures. Further, the user has to manage much of the 
MAP memory manually, i.e. determining the best array 
configurations to maximize memory bandwidth and/or to 
remove memory bank conflicts.  Given the positive 
results from our experiments, the expected improvements 
in FPGA technology, and the probable improvements 
from additional optimization, we anticipate continued 
success from the SRC-6. 
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