
1

Capturing Petascale Application Characteristics with the Sequoia Toolkit

J. S. Vettera ∗, N. Bhatiaa, E. M. Grobelnyb, P. C. Rotha

aFuture Technologies Group, Computer Science and Mathematics Division, Oak Ridge National
Laboratory, Oak Ridge, TN 37831 USA

bHigh-Performance Computing and Simulation Research Laboratory, Department of Electrical and
Computer Engineering, University of Florida, Gainesville, FL 32611 USA

Characterization of the computation, communication, memory, and I/O demands of current scien-
tific applications is crucial for identifying which technologies will enable petascale scientific com-
puting. In this paper, we present the Sequoia Toolkit for characterizing HPC applications. The
Sequoia Toolkit consists of the Sequoia trace capture library and the Sequoia Event Analysis Li-
brary, or SEAL, that facilitates the development of tools for analyzing Sequoia event traces. Using
the Sequoia Toolkit, we have characterized the behavior of application runs with up to 2048 applica-
tion processes. To illustrate the use of the Sequoia Toolkit, we present a preliminary characterization
of LAMMPS, a molecular dynamics application of great interest to the computational biology com-
munity.

1. Introduction

The Future Technologies Group [1] at Oak Ridge National Laboratory performs basic research
in core technologies for future generations of high-end computing systems. An important aspect of
our work involves the characterization of existing scientific applications to understand their demands
for computation, communication, memory, and I/O. By understanding the demands of current ap-
plications, we hope to gain insight regarding which technologies will best satisfy the needs of those
applications in the future.

Building on experience with the mpiP profiling library [2], we have developed the Sequoia Toolkit
to support characterization of applications that use the Message Passing Interface [3] for communica-
tion. The Sequoia Toolkit includes an event tracing facility and scripts to process and manage event
trace files. The Sequoia tracing facility captures performance data for computation and communi-
cation activity in an application. Sequoia records events for each MPI call made by the application,
including data such as the number of bytes transferred. For computation, Sequoia uses the Perfor-
mance Application Programming Interface [4] (PAPI) to collect hardware counter metrics describing
the computation that occurs between successive calls to MPIfunctions.

Using scripts provided with the Sequoia Toolkit, event trace files can be analyzed to compute
ratios for characterizing application performance, such as the ratio of the number of floating point
operations to the amount of data transferred between MPI tasks. Sequoia trace files can also be used
as input to architectural simulators; the Sequoia Toolkit includes a simple simulator that models
the system interconnect using the LogP [5] model. We envision using Sequoia event trace files as
input for performance modeling approaches such as ModelingAssertions [6]. Because the process

∗This research was sponsored by the Office of Mathematical, Information, and Computational Sciences, Office of
Science, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. The Petascale
Execution Time Evaluation project is supported by the officeof Science of the U.S. Department of Energy. Accordingly,
the U.S. Government retains a non-exclusive, royalty-freelicense to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.



2

of using trace files for simulation is restricted to the processor count of the original trace file pa-
rameters, we are actively developing a communication extrapolation tool that can generate synthetic
communication traces directly from empirical trace files, which were captured at smaller processor
counts.

To facilitate development of tools that use Sequoia event trace files, we are developing the Sequoia
Event Analysis Library, or SEAL. SEAL is a C++ library that provides a tool-independent infras-
tructure for opening Sequoia event trace files, decoding their contents, and dispatching control to
tool-specific functions that process events (e.g., to find the total number of bytes transferred during
an application run).

In the next section, we describe the Sequoia event tracing library and SEAL. In Section 3, we
discuss some of our current characterization work on MPI applications of interest to Oak Ridge
National Laboratory and the United States Department of Energy. We discuss related, existing trac-
ing facilities and analysis tools in Section 4, and summarize our work on the Sequoia Toolkit in
Section 5.

2. The Sequoia Toolkit

The Sequoia Toolkit includes an event tracing library, scripts for management and basic processing
of Sequoia event trace files, and SEAL, the Sequoia Event Analysis Library. In this section, we
describe these Sequoia Toolkit components.

2.1. The Sequoia Event Tracing Library
The Sequoia event tracing library captures the behavior of arunning application by writingevent

recordsto event trace files. Sequoia event trace files are ASCII text files containing a chronological
sequence of event records describing computation and communication events that occurred during
the run of a target application. Although Sequoia includes scripts for basic trace file management
and processing, Sequoia trace files are ASCII text files so that common text-processing utilities, like
sed andawk, can be used to manipulate them. Sequoia generates one tracefile per MPI process, but
toolkit scripts can be used to merge these files into a composite event trace file. Metadata describing
the format of event trace records is kept in a separate file calledevents.stdef. A portion of the
events.stdef is shown in Listing 1. This file can be modified to enable the processing of new
event types or to extend existing event types. That figure shows the file’s header, several definitions
of built-in MPI types, communicators, and operations, and definitions for a few of the functions in
the MPI API.

The Sequoia tracing library operates on the MPI profiling interface. Using this interface, the
Sequoia library intercepts calls to each MPI function and records information such as the sender or
receiver of the operation and the number of bytes transferred. Because the MPI profiling interface
is defined as part of the MPI-1 and MPI-2 standards, Sequoia can be used with any compliant MPI
implementation. Also, due to the interface’s design, no source code modifications are required to use
Sequoia to trace a MPI application. The application does need to be re-linked against the Sequoia
library, and small source code modifications may be used to control the event trace volume and to
support fine-grained characterization of the computation between communication events.

Sequoia event records can be broadly classified into three categories:

• MPI event records—records that describe entry to or exit from a MPI function;
• Computation event records—records that describe computation between successive MPI func-

tion calls; and
• Special event records—records that describe tracing library meta events.



3

Listing 1: A portion of a Sequoiaevents.stdef file.
@ SEQUOIA
@ Command :
@ Version : 0.9
@ Build date : Jul 19 2005, 17:10:29
@ ST env var : [null]
@ Final Trace Dir : .
@ MPI Type : MPI_BYTE 2 1
@ MPI Type : MPI_CHAR 4 1
@ MPI Type : MPI_DOUBLE 14 8
...
@ MPI Comm : MPI_COMM_WORLD 0 1
@ MPI Comm : MPI_COMM_SELF 1 1
@ MPI Comm : MPI_COMM_NULL -1 0
@ MPI Op : MPI_MAX 0
@ MPI Op : MPI_MIN 1
...
@ EDEF ts rank thread pcid Init X hostname size starttime
@ EDEF ts rank thread pcid Finalize E
@ EDEF ts rank thread pcid Comp E
@ EDEF ts rank thread pcid Comp X cycles insts loads stores flops fmas ipc
@ EDEF ts rank thread pcid Send E count datatype dest tag comm
@ EDEF ts rank thread pcid Send X count datatype dest tag comm
...

Table 1
Fields common to all Sequoia trace file event records.
Name Explanation
ts Event timestamp
rank MPI rank in which event occurred
thread ID of the thread in which event occurred (reserved)
pcid Program counter id (reserved)
type Type of event
mode Whether record specifies a transitioninto a state (’E’) or out ofa state (’X’)

These three categories are described in more detail in the remainder of this section. Regardless of
an event record’s category, certain fields are present at thestart of each record. These fields are
described in Table 1. The values of thetype andmode fields determine the type and number of
the remaining fields in the event record. In effect, these twofields allow Sequoia-based tools to look
up the correct event record definition from theevents.stdef file. Thethread id andpcid
fields are reserved for future use.

2.1.1. MPI Event Records
Sequoia MPI event records indicate an entry into or exit froma MPI library routine. Each MPI

event record contains data relevant to the specific MPI function that was called. For instance, the
event record for theMPI Init call includes fields for the name of the host running the MPI process,
the total number of MPI processes in the run, and the start time of the application. The record for



4

Table 2
Computation event record fields, depending on the value of theST environment variable.
Value Fields
c 0 cycles instructions loads stores fp-ops fp-mas ipc
c 1 cycles instructions loads storesreserved reservedipc
c 2 cycles instructionsreserved reservedfp-ops fp-mas ipc

Table 3
Explanation of computation event record fields.
Name Explanation
cycles Number of CPU cycles in the computation interval
instructions Number of instructions executed
loads Number of load instructions executed
stores Number of store instructions executed
fp-ops Number of floating point operations performed
fp-mas Number of floating point multiply-add instructions performed
ipc Instructions executed per cycle

theMPI Send call includes fields for the number of items sent, the type of the data sent (using an
integer encoding specified in theevents.stdef file), the receiving process’ MPI rank, and the
message tag and MPI communicator used for the operation.

2.1.2. Computation Event Records
Sequoia event records for computation capture hardware performance counter data for the compu-

tation that occurred in a MPI process between successive communication events. By default, Sequoia
generates one pair of computation event records that describe the computation between successive
calls to routines in the MPI interface. With small modifications to the application source code as
described in Section 2.1.3, hardware counter data can be recorded with finer granularity. A com-
putation entry event record is generated when a process exits any MPI routine. When the process
makes its next MPI routine call, Sequoia reads the hardware counters and generates a computation
exit record that captures the values.

For portability, Sequoia uses the PAPI library for obtaining the hardware counter data. Sequoia
also resets the hardware counters after sampling, so that the values in computation event records
indicate differences between samples instead of cumulative values. Sequoia uses theST environment
variable to specify which hardware counters it will sample for computation event records. IfST is
not set, ”c 0” is the default value. Table 2 shows the event record fields used for the three recognized
ST values; Table 3 explains the possible event record fields.

2.1.3. Special Event Records
Sequoia can be used to trace MPI applications without modifying their source code, however, in

this mode, Sequoia may generate trace files of unmanageable size, especially when tracing long-
running applications that transition frequently between computation and communication operations.
However, given the regular structure of many scientific applications, insight into the behavior of
scientific applications can often be obtained by observing asmall number of iterations of an ap-
plication’s main loop (e.g., a small number of simulation time steps in a climate simulation code).



5

To enable the user to control the trace event record volume, Sequoia tracing can be disabled and
then re-enabled as an application process executes. Sequoia event tracing is disabled when the
MPI Pcontrol function is called with an argument of 0, and re-enabled whenMPI Pcontrol
is called with an argument of 1. The action of disabling and re-enabling Sequoia tracing is recorded
with a special event trace record without parameters.

By default, Sequoia generates one pair of computation eventrecords for all computation between
successive MPI calls in a process. However, the computationthat occurs in that interval may not
be uniform. To allow users to trace application computationat finer granularity, Sequoia can insert
Mark event records into the event trace. Inserting aMark event record into the event trace terminates
the current computation interval (hence sampling the hardware performance counters as described
in Section 2.1.2) and starts a new computation interval. To generateMark event records, the user
insertsMPI Pcontrol calls into the application source code with an argument greater than 1.
This argument value is recorded as part of theMark event record and can be considered to be a
computation phase identifier by analysis tools.

2.2. The Sequoia Event Analysis Library
Tools that consume Sequoia event trace files as input can havemany purposes, but they each share

some similar operations: they read Sequoia trace file records, decode the records, and dispatch con-
trol to other parts of the code that will process the records.Because this functionality is not specific
to any one tool, it can be factored into a library that is shared by many tools. We are developing
the Sequoia Event Analysis Library, or SEAL, that provides atool-independent infrastructure for
reading Sequoia event trace files. SEAL provides a C++ API andimplements a tool framework for
opening Sequoia event trace files, reading event records in order from the trace file, and dispatching
control to tool-specific functions that operate on the current event record. A SEAL-based tool need
only provide the tool-specific event record processing functions.

3. Application Characterization

The Sequoia Toolkit is under active development, but we havealready used it to trace and char-
acterize several scientific applications of interest to OakRidge National Laboratory and the U.S.
Department of Energy, including:

• AMBER—a suite of programs that allow users to perform molecular dynamics operations,
particularly on bio-molecules.

• GYRO—a simulation of microturbulance in tokamak fusion reactors.
• HYCOM—an ocean general circulation model.
• LAMMPS—a classical molecular dynamics simulation code.
• POP—a 4D ocean modeling code.
• SPPM—a 3D gas dynamics simulation code.
• SWEEP3D—a neutron transport code.
• UMT2K—a 3D photon transport code.

For example, we have used the Sequoia Toolkit to characterize the computation and communi-
cation demands of the LAMMPS molecular dynamics code. The Sequoia trace files were gathered
during a run on the IBM p690+ at Forschungszentrum Jülich inGermany. Sequoia tracing was
enabled for two simulation time steps. Using simple post-processing scripts to accumulate perfor-
mance data from the Sequoia event trace file, we generated theapplication characterization shown



6 L A M M P S

00 . 20 . 40 . 60 . 8 1l o a d s ( 7 1 8 8 4 1 2 9 ) s t o r e s ( 1 4 3 3 9 7 9 9 )f l o p s ( 7 0 0 5 3 5 1 6 )f m a s ( 1 8 9 0 7 4 4 3 )s e n d B y t e s ( 2 4 1 9 3 1 2 )r e c v B y t e sc o l l B y t e s ( 2 7 2 )b a r r i e r s ( 0 )i n s t s ( 1 6 0 9 2 2 0 0 7 7 )c o l l e c t i v e C o u n t ( 1 4 )c o m m S i z e ( 1 5 )
M a x ( r e l )M i n ( r e l )A v g ( r e l )

Figure 1. Characterization of LAMMPS for 16 tasks using datacollected using the Sequoia Toolkit
Values are normalized using the maximum value observed for any task during the run. Axis labels
include the maximum value.

in Figures 1–3. For each performance metric in Figure 1, we plot the minimum, maximum, and
average value for each computation or communication interval represented in the event trace file
(i.e., for each pair of MPI event records or computation event records in the event trace file for each
application process). To improve readability of the chart,all values were normalized to the inter-
val [0,1]. We characterize LAMMPS using several common performance ratios in Figures 2 and 3.
In Figure 2, we compare LAMMPS running with 16, 128, and 512 processes for one user-defined
phase of the program’s run. The axes show the number of point-to-point communication opera-
tions (p2p), bytes transferred per floating point operationfor point-to-point communication (p2bpf),
number of collective communication operations (coll), bytes transferred per floating point operation
for collective operations (collbpf), loads and stores per floating point operation (lspf), and instruc-
tions per cycle (ipc). For readability, the values are normalized using performance data across all
user-defined phases. Figure 3 shows the same data but normalized using only values from the phase
being analyzed. The characterization shows that LAMMPS places significantly different demands
on a computing system at the three process counts we considered.

4. Related Work

Event tracing is a well-established approach for collecting performance data that describes an ap-
plication’s behavior, and trace analysis tools are often developed in conjunction with a trace capture
library. Examples of current performance analysis tools that adopt this approach include Vampir
and Vampirtrace [7], the KOJAK [8] automated performance analysis tool with its EPILOG tracing
facility, and the Tuning and Analysis Utilities [9] (TAU) that has its own tracing facility but also
can operate on Vampir event trace files (or can convert them toa format it can recognize). We are



7

Figure 2. Characterization of LAMMPS phase 5
Metric values are normalized using values from all phases.

Figure 3. Characterization of LAMMPS phase 5, normalized within that phase.
This figure shows the same data as Figure 2, but the values are normalized using the phase 5 values
only.



8

actively working on the integration of the Sequoia Toolkit with some of these tools. For example,
we are currently working on a converter between the Sequoia event trace file format and EPILOG,
to allow analysis of Sequoia event traces by the KOJAK tool set.

5. Summary

As a starting point for understanding the demands of future applications on future computing
architectures, the Future Technologies Group at Oak Ridge National Laboratory seeks to understand
the behavior of current scientific applications. To supportthis effort, we are developing the Sequoia
Toolkit. Sequoia includes an event tracing library that records data about both MPI communication
events and the computation that occurs between those communication events. Sequoia also includes
scripts for management and basic analysis of Sequoia event trace files. Recently, we have started
work on the Sequoia Event Analysis Library, a C++ library that facilitates the development of tools
for analyzing Sequoia event traces. We have traced and analyzed scientific applications from a
variety of domains, including computational biology, materials science, nuclear fusion, and climate
modeling.

We continue to refine and extend the Sequoia Toolkit to make application characterization easier
for the end user, to support new analyses, and to improve integration with existing analysis tools.
For instance, we are modifying Sequoia to sample hardware counter data for communication entry
events in addition to communication exit events, to supportanalysis of the internal computational
requirements of MPI routines. Also, we are actively workingon a utility that converts Sequoia event
trace files to formats that enable analysis and visualization using the popular TAU and Vampir tools.

References

[1] ORNL Future Technologies Group. http://www.csm.ornl.gov/ft/, October 2005.
[2] J. S. Vetter and M. O. McCracken. Statistical scalability analysis of communication operations in dis-

tributed applications. InPPoPP ’01: Proceedings of the eighth ACM SIGPLAN symposium on Principles
and practices of parallel programming, pages 123–132, New York, NY, USA, 2001. ACM Press.

[3] W. Gropp, R. Thakur, and E. Lusk.Using MPI-2: Advanced Features of the Message Passing Interface.
MIT Press, Cambridge, MA, USA, 1999.

[4] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-platform infrastructure
for application performance tuning using hardware counters. In Supercomputing ’00: Proceedings of
the 2000 ACM/IEEE conference on Supercomputing, Washington, DC, USA, November 2000. IEEE
Computer Society.

[5] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, E. E. Santos, K. E. Schauser, R. Subramonian,
and T. von Eicken. LogP: A practical model of parallel computation. Communications of the ACM,
39(11):78–85, 1996.

[6] S. R. Alam and J. S. Vetter. Multiresolution performancemodeling with modeling assertions, in submis-
sion 2005.

[7] W.E. Nagel, A. Arnold, M. Weber, H.C. Hoppe, and K. Solchenbach. VAMPIR: Visualization and
analysis of MPI resources.Supercomputer, 12(1):69–80, 1996.

[8] B. Mohr and F. Wolf. KOJAK - a tool set for automatic performance analysis of parallel programs. In
Euro-Par, volume 2790 ofLecture Notes in Computer Science, pages 1301–1304, Heidelberg, 2003.
Springer-Verlag.

[9] S. Shende, A. D. Malony, J. Cuny, P. Beckman, S. Karmesin,and K. Lindlan. Portable profiling and
tracing for parallel, scientific applications. InSPDT ’98: Proceedings of the SIGMETRICS symposium
on Parallel and distributed tools, pages 134–145, New York, NY, USA, 1998. ACM Press.


