Capturing Petascale Application Characteristics with the Sequoia Toolkit
J. S. Vetter *, N. Bhati&, E. M. Grobelny, P. C. Roth

2Future Technologies Group, Computer Science and Mathestaivision, Oak Ridge National
Laboratory, Oak Ridge, TN 37831 USA

PHigh-Performance Computing and Simulation Research laboy, Department of Electrical and
Computer Engineering, University of Florida, Gainesyif¢ 32611 USA

Characterization of the computation, communication, mgyrand I/O demands of current scien-
tific applications is crucial for identifying which techroglies will enable petascale scientific com-
puting. In this paper, we present the Sequoia Toolkit forati@rizing HPC applications. The
Sequoia Toolkit consists of the Sequoia trace captureriibeiad the Sequoia Event Analysis Li-
brary, or SEAL, that facilitates the development of toolsdoalyzing Sequoia event traces. Using
the Sequoia Toolkit, we have characterized the behavigppii@ation runs with up to 2048 applica-
tion processes. To illustrate the use of the Sequoia To@lkippresent a preliminary characterization
of LAMMPS, a molecular dynamics application of great instrt® the computational biology com-
munity.

1. Introduction

The Future Technologies Group [1] at Oak Ridge National katmwy performs basic research
in core technologies for future generations of high-end mating systems. An important aspect of
our work involves the characterization of existing scinapplications to understand their demands
for computation, communication, memory, and 1/0. By untierding the demands of current ap-
plications, we hope to gain insight regarding which tecbhgas will best satisfy the needs of those
applications in the future.

Building on experience with the mpiP profiling library [2]eihave developed the Sequoia Toolkit
to support characterization of applications that use theddge Passing Interface [3] for communica-
tion. The Sequoia Toolkit includes an event tracing fac#ind scripts to process and manage event
trace files. The Sequoia tracing facility captures perforoeadata for computation and communi-
cation activity in an application. Sequoia records eveot®fch MPI call made by the application,
including data such as the number of bytes transferred. ¢iopatation, Sequoia uses the Perfor-
mance Application Programming Interface [4] (PAPI) to eotlhardware counter metrics describing
the computation that occurs between successive calls tdiietions.

Using scripts provided with the Sequoia Toolkit, event ¢rdites can be analyzed to compute
ratios for characterizing application performance, suskha ratio of the number of floating point
operations to the amount of data transferred between MR t&equoia trace files can also be used
as input to architectural simulators; the Sequoia Toolkiludes a simple simulator that models
the system interconnect using the LogP [5] model. We envigging Sequoia event trace files as
input for performance modeling approaches such as Moddélgsgrtions [6]. Because the process

*This research was sponsored by the Office of Mathematic&drrivation, and Computational Sciences, Office of
Science, U.S. Department of Energy under Contract No. DBSAGOOR22725 with UT-Battelle, LLC. The Petascale
Execution Time Evaluation project is supported by the offit8cience of the U.S. Department of Energy. Accordingly,
the U.S. Government retains a non-exclusive, royalty-fimmnse to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Governmamoses.

2

of using trace files for simulation is restricted to the pssme count of the original trace file pa-
rameters, we are actively developing a communication pategion tool that can generate synthetic
communication traces directly from empirical trace filebjat were captured at smaller processor
counts.

To facilitate development of tools that use Sequoia everttfiles, we are developing the Sequoia
Event Analysis Library, or SEAL. SEAL is a C++ library thatgwides a tool-independent infras-
tructure for opening Sequoia event trace files, decoding tomtents, and dispatching control to
tool-specific functions that process events (e.g., to fieddal number of bytes transferred during
an application run).

In the next section, we describe the Sequoia event tradmmgrli and SEAL. In Section 3, we
discuss some of our current characterization work on MPliegions of interest to Oak Ridge
National Laboratory and the United States Department ofdn&Ve discuss related, existing trac-
ing facilities and analysis tools in Section 4, and sumneadar work on the Sequoia Toolkit in
Section 5.

2. The Sequoia Toolkit

The Sequoia Toolkit includes an event tracing library,srior management and basic processing
of Sequoia event trace files, and SEAL, the Sequoia EventyAisaLibrary. In this section, we
describe these Sequoia Toolkit components.

2.1. The Sequoia Event Tracing Library

The Sequoia event tracing library captures the behaviorohaing application by writinggvent
recordsto event trace files. Sequoia event trace files are ASCII tiest Giontaining a chronological
sequence of event records describing computation and comation events that occurred during
the run of a target application. Although Sequoia includegss for basic trace file management
and processing, Sequoia trace files are ASCII text files da@tmmon text-processing utilities, like
sed andawk, can be used to manipulate them. Sequoia generates onélegges MPI process, but
toolkit scripts can be used to merge these files into a cortgpegent trace file. Metadata describing
the format of event trace records is kept in a separate filedavent s. st def . A portion of the
event s. st def is shown in Listing 1. This file can be modified to enable thecpssing of new
event types or to extend existing event types. That figurevshioe file’s header, several definitions
of built-in MPI types, communicators, and operations, aefinitions for a few of the functions in
the MPI API.

The Sequoia tracing library operates on the MPI profilingifaice. Using this interface, the
Sequoia library intercepts calls to each MPI function armbrds information such as the sender or
receiver of the operation and the number of bytes transfefBecause the MPI profiling interface
is defined as part of the MPI-1 and MPI-2 standards, Sequoideaised with any compliant MPI
implementation. Also, due to the interface’s design, no@®uode modifications are required to use
Sequoia to trace a MPI application. The application doesd nede re-linked against the Sequoia
library, and small source code modifications may be usedntraicthe event trace volume and to
support fine-grained characterization of the computatetwben communication events.

Sequoia event records can be broadly classified into thtegaaes:

e MPI event records—+ecords that describe entry to or exit from a MPI function;

e Computation event recordsreeords that describe computation between successiveuied f
tion calls; and

e Special event recordsrecords that describe tracing library meta events.

Listing 1: A portion of a Sequoiavent s. st def file.

@ SEQUA A

@ Conmand :

@ Ver si on 0.9

@Buil d date : Jul 19 2005, 17:10:29
@ ST env var © [null]

@Final Trace Dir Do

@ MPl Type . MPI_BYTE 2 1

@ MPl Type . MPI_CHAR 4 1

@ MPl Type . MPI _DOUBLE 14 8

@ MPI Comm . MPI_COMWM WORLD 0 1
@ MPlI Comm . MPI_COW SELF 1 1
@ MPlI Comm . MPI_COVW NULL -1 0
@Ml Op . MPI _MAX O

@Ml Op : MPI_MN1

@EDEF ts rank thread pcid Init X hostname size starttine

@EDEF ts rank thread pcid Finalize E

@EDEF ts rank thread pcid Conp E

@EDEF ts rank thread pcid Conmp X cycles insts | oads stores flops frmas ipc
@EDEF ts rank thread pcid Send E count datatype dest tag conm

@EDEF ts rank thread pcid Send X count datatype dest tag conm

Table 1
Fields common to all Sequoia trace file event records.
Name Explanation
ts Event timestamp
rank MPI rank in which event occurred
thread ID of the thread in which event occurregiservedl
pcid Program counter id€served
type Type of event
mode Whether record specifies a transiiiioio a state (E’) or out ofa state (X)

These three categories are described in more detail in thaineler of this section. Regardless of
an event record’s category, certain fields are present asttre of each record. These fields are
described in Table 1. The values of thgpe andnode fields determine the type and number of
the remaining fields in the event record. In effect, thesefields allow Sequoia-based tools to look
up the correct event record definition from #eent s. st def file. Thet hread i d andpci d
fields are reserved for future use.

2.1.1. MPI Event Records

Sequoia MPI event records indicate an entry into or exit feoMPI library routine. Each MPI
event record contains data relevant to the specific MPI fand¢hat was called. For instance, the
event record for th&PI _I ni t call includes fields for the name of the host running the MBEpSS,
the total number of MPI processes in the run, and the stad @fhthe application. The record for

4

Table 2
Computation event record fields, depending on the valueedbthenvironment variable.
Value Fields
cO cycles instructions loads stores fp-ops fp-mas ipc
cl cycles instructions loads stomeserved reserveipc
c2 cycles instructioneeserved reservefp-ops fp-mas ipc

Table 3
Explanation of computation event record fields.
Name Explanation
cycles Number of CPU cycles in the computation interval
instructions Number of instructions executed
loads Number of load instructions executed
stores Number of store instructions executed
fp-ops Number of floating point operations performed
fp-mas Number of floating point multiply-add instructiorsrformed
ipc Instructions executed per cycle

the MPl _Send call includes fields for the number of items sent, the typéhefdata sent (using an
integer encoding specified in tlent s. st def file), the receiving process’ MPI rank, and the
message tag and MPI communicator used for the operation.

2.1.2. Computation Event Records

Sequoia event records for computation capture hardwaferpence counter data for the compu-
tation that occurred in a MPI process between successivencomgation events. By default, Sequoia
generates one pair of computation event records that #esitre computation between successive
calls to routines in the MPI interface. With small modificets to the application source code as
described in Section 2.1.3, hardware counter data can loedext with finer granularity. A com-
putation entry event record is generated when a process axt MPI routine. When the process
makes its next MPI routine call, Sequoia reads the hardwauaters and generates a computation
exit record that captures the values.

For portability, Sequoia uses the PAPI library for obtagnthe hardware counter data. Sequoia
also resets the hardware counters after sampling, so thatallhes in computation event records
indicate differences between samples instead of cumalatiies. Sequoia uses tBE environment
variable to specify which hardware counters it will sammedomputation event records. 3T is
notset, t 0”isthe default value. Table 2 shows the event record fieldd s the three recognized
ST values; Table 3 explains the possible event record fields.

2.1.3. Special Event Records

Sequoia can be used to trace MPI applications without moujfiheir source code, however, in
this mode, Sequoia may generate trace files of unmanagdableespecially when tracing long-
running applications that transition frequently betweemputation and communication operations.
However, given the regular structure of many scientific egapions, insight into the behavior of
scientific applications can often be obtained by observisgnall number of iterations of an ap-
plication’s main loop (e.g., a small number of simulatiangi steps in a climate simulation code).

5

To enable the user to control the trace event record volureguda tracing can be disabled and
then re-enabled as an application process executes. Seeumt tracing is disabled when the
MPI _Pcont r ol function is called with an argument of 0, and re-enabled wiéh_Pcont r ol

is called with an argument of 1. The action of disabling andmabling Sequoia tracing is recorded
with a special event trace record without parameters.

By default, Sequoia generates one pair of computation eeentds for all computation between
successive MPI calls in a process. However, the comput#t@noccurs in that interval may not
be uniform. To allow users to trace application computaibfiner granularity, Sequoia can insert
Mar k event records into the event trace. Insertifdpa k event record into the event trace terminates
the current computation interval (hence sampling the hardwerformance counters as described
in Section 2.1.2) and starts a new computation interval. ditegateVar k event records, the user
insertsMPl _Pcont r ol calls into the application source code with an argumenttgrehan 1.
This argument value is recorded as part of ke k event record and can be considered to be a
computation phase identifier by analysis tools.

2.2. The Sequoia Event AnalysisLibrary

Tools that consume Sequoia event trace files as input cammawg purposes, but they each share
some similar operations: they read Sequoia trace file recdetode the records, and dispatch con-
trol to other parts of the code that will process the recoB#stause this functionality is not specific
to any one tool, it can be factored into a library that is stidrg many tools. We are developing
the Sequoia Event Analysis Library, or SEAL, that provide®a-independent infrastructure for
reading Sequoia event trace files. SEAL provides a C++ APliaapdements a tool framework for
opening Sequoia event trace files, reading event recordslér &rom the trace file, and dispatching
control to tool-specific functions that operate on the qurezent record. A SEAL-based tool need
only provide the tool-specific event record processing tions.

3. Application Characterization

The Sequoia Toolkit is under active development, but we ladneady used it to trace and char-
acterize several scientific applications of interest to Gadkge National Laboratory and the U.S.
Department of Energy, including:

e AMBER—a suite of programs that allow users to perform molecularagdyics operations,
particularly on bio-molecules.

GYRG—a simulation of microturbulance in tokamak fusion reastor

HYCOM—an ocean general circulation model.

LAMMPS—a classical molecular dynamics simulation code.

POP—a 4D ocean modeling code.

SPPM—a 3D gas dynamics simulation code.

SWEEP3B-a neutron transport code.

UMT2K—a 3D photon transport code.

For example, we have used the Sequoia Toolkit to charaeténz computation and communi-
cation demands of the LAMMPS molecular dynamics code. Tiyp&e trace files were gathered
during a run on the IBM p690+ at Forschungszentrum Julicke@mmany. Sequoia tracing was
enabled for two simulation time steps. Using simple postpssing scripts to accumulate perfor-
mance data from the Sequoia event trace file, we generatepfieation characterization shown

LAMMPS

loads (71884129)

—o— Max(rel)

—=— Min (rel)

“ nas(18907443) —a—Ag(rel)
sendBytes(2419312)

barriers(0)

Figure 1. Characterization of LAMMPS for 16 tasks using datected using the Sequoia Toolkit
Values are normalized using the maximum value observediptask during the run. Axis labels
include the maximum value.

in Figures 1-3. For each performance metric in Figure 1, weé thle minimum, maximum, and
average value for each computation or communication iateepresented in the event trace file
(i.e., for each pair of MPI event records or computation évecords in the event trace file for each
application process). To improve readability of the chalityalues were normalized to the inter-
val [0,1]. We characterize LAMMPS using several common gnance ratios in Figures 2 and 3.
In Figure 2, we compare LAMMPS running with 16, 128, and 51@cpsses for one user-defined
phase of the program’s run. The axes show the number of pwipbint communication opera-
tions (p2p), bytes transferred per floating point operattwpoint-to-point communication (p2bpf),
number of collective communication operations (coll),dsytransferred per floating point operation
for collective operations (collbpf), loads and stores peatfhg point operation (Ispf), and instruc-
tions per cycle (ipc). For readability, the values are ndized using performance data across all
user-defined phases. Figure 3 shows the same data but rmechasiing only values from the phase
being analyzed. The characterization shows that LAMMP$gdaignificantly different demands
on a computing system at the three process counts we coadider

4. Related Work

Event tracing is a well-established approach for collecparformance data that describes an ap-
plication’s behavior, and trace analysis tools are ofteretiged in conjunction with a trace capture
library. Examples of current performance analysis too& #dopt this approach include Vampir
and Vampirtrace [7], the KOJAK [8] automated performancalgsis tool with its EPILOG tracing
facility, and the Tuning and Analysis Utilities [9] (TAU) &t has its own tracing facility but also
can operate on Vampir event trace files (or can convert theanféomat it can recognize). We are

LAMMPS

p2p (1554558)

ipc (1.913) e - ap2bpf (10.5817)

—&— 16 Processes
—=— 128 Processes
—&— 512 Processes

Ispf (25.7287) < ol (1820)

collbpf (0.19)

Figure 2. Characterization of LAMMPS phase 5
Metric values are normalized using values from all phases.

LAMMPS

p2p (777279)
14

ipc (1.913) ¢ p2bpf (10.5817)

—— 16 Processes
—#— 128 Processes
—&— 512 Processes

Ispf (3.7287)% " Mcoll (1820)

collbpf (0.0342)

Figure 3. Characterization of LAMMPS phase 5, normalizethiwithat phase.
This figure shows the same data as Figure 2, but the valuesoaneatized using the phase 5 values
only.

8

actively working on the integration of the Sequoia Toolkitwsome of these tools. For example,
we are currently working on a converter between the Sequeaatérace file format and EPILOG,
to allow analysis of Sequoia event traces by the KOJAK tobl se

5. Summary

As a starting point for understanding the demands of futyp@ieations on future computing
architectures, the Future Technologies Group at Oak Ridg®hhil Laboratory seeks to understand
the behavior of current scientific applications. To suppug effort, we are developing the Sequoia
Toolkit. Sequoia includes an event tracing library thatrds data about both MPI communication
events and the computation that occurs between those coiraion events. Sequoia also includes
scripts for management and basic analysis of Sequoia enamet files. Recently, we have started
work on the Sequoia Event Analysis Library, a C++ libraryttfaailitates the development of tools
for analyzing Sequoia event traces. We have traced and zathlscientific applications from a
variety of domains, including computational biology, nr&iks science, nuclear fusion, and climate
modeling.

We continue to refine and extend the Sequoia Toolkit to makécgtion characterization easier
for the end user, to support new analyses, and to improvgratien with existing analysis tools.
For instance, we are modifying Sequoia to sample hardwareteodata for communication entry
events in addition to communication exit events, to suppodlysis of the internal computational
requirements of MPI routines. Also, we are actively workamga utility that converts Sequoia event
trace files to formats that enable analysis and visualizatsing the popular TAU and Vampir tools.

References

[1] ORNL Future Technologies Group. http://www.csm.agol/ft/, October 2005.

[2] J.S. Vetter and M. O. McCracken. Statistical scalapitinalysis of communication operations in dis-
tributed applications. IPPoPP '01: Proceedings of the eighth ACM SIGPLAN symposiuRrimciples
and practices of parallel programmingages 123-132, New York, NY, USA, 2001. ACM Press.

[3] W. Gropp, R. Thakur, and E. LuskJsing MPI-2: Advanced Features of the Message Passingfauer
MIT Press, Cambridge, MA, USA, 1999.

[4] S. Browne, J. Dongarra, N. Garner, K. London, and P. Muéciecalable cross-platform infrastructure
for application performance tuning using hardware cosntén Supercomputing '00: Proceedings of
the 2000 ACM/IEEE conference on Supercomputigshington, DC, USA, November 2000. IEEE
Computer Society.

[5] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, E. En®s, K. E. Schauser, R. Subramonian,
and T. von Eicken. LogP: A practical model of parallel congbain. Communications of the ACM
39(11):78-85, 1996.

[6] S.R.AlamandJ. S. Vetter. Multiresolution performameedeling with modeling assertions, in submis-
sion 2005.

[71 W.E. Nagel, A. Arnold, M. Weber, H.C. Hoppe, and K. Solobach. VAMPIR: Visualization and
analysis of MPI resourceSSupercomputerl2(1):69-80, 1996.

[8] B. Mohr and F. Wolf. KOJAK - a tool set for automatic penfisance analysis of parallel programs. In
Euro-Par, volume 2790 ofLecture Notes in Computer Sciengeges 1301-1304, Heidelberg, 2003.
Springer-Verlag.

[9] S. Shende, A. D. Malony, J. Cuny, P. Beckman, S. Karmesil K. Lindlan. Portable profiling and
tracing for parallel, scientific applications. 8PDT '98: Proceedings of the SIGMETRICS symposium
on Parallel and distributed too)Jgpages 134-145, New York, NY, USA, 1998. ACM Press.

