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Abstract
Large-scale simulations and computational modeling using molec-
ular dynamics (MD) continues to make significant impacts in the
field of biology. It is well known that simulations of biological
events at native time and length scales requires computing power
several orders of magnitude beyond today’s commonly available
systems. Supercomputers, such as IBM Blue Gene/L and Cray
XT3, will soon make tens to hundreds of teraFLOP/s of computing
power available by utilizing thousands of processors. The popular
algorithms and MD applications, however, were not initially de-
signed to run on thousands of processors. In this paper, we present
detailed investigations of the performance issues, which are cru-
cial for improving the scalability of the MD-related algorithms and
applications on massively parallel processing (MPP) architectures.
Due to the varying characteristics of biological input problems, we
study two prototypical biological complexes that use the MD algo-
rithm: an explicit solvent and an implicit solvent. In particular, we
study the AMBER application, which supports a variety of these
types of input problems. For the explicit solvent problem, we fo-
cused on the particle mesh Ewald (PME) method for calculating
the electrostatic energy, and for the implicit solvent model, we tar-
geted the Generalized Born (GB) calculation. We uncovered and
subsequently modified a limitation in AMBER that restricted the
scaling beyond 128 processors. We collected performance data for
experiments on up to 2048 Blue Gene/L and XT3 processors and
subsequently identified that the scaling is largely limited by the un-
derlying algorithmic characteristics and also by the implementa-
tion of the algorithms. Furthermore, we found that the input prob-
lem size of biological system is constrained by memory available
per node. In conclusion, our results indicate that MD codes can
significantly benefit from the current generation architectures with
relatively modest optimization efforts. Nevertheless, the key for en-
abling scientific breakthroughs lies in exploiting the full potential
of these new architectures.
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1. Introduction
The field of biology continues to benefit from use of computing re-
sources [12]. Particularly in the last two decades, computing has
enabled scientific advances through collection, storage, analysis
and interpretation of genome sequence data from a variety of or-
ganisms [10]. Computational algorithms involving pattern match-
ing and recognition lead to novel information and insights. Today
computing is aiding experimental techniques to investigate com-
plex systems. The power of scientific computing, however, lies in
investigating areas that are beyond the reach of experimental biol-
ogy. In the post genomic era, interest in using detailed atomistic
modeling and simulations continues to grow as they provide new
insights into the working of complex biological processes involv-
ing biomolecules. These biomolecular systems (including proteins,
DNA, and RNA) work as very efficient machines at the molecular
level.

There is wide spread interest in using parallel computers to per-
form large-scale biomolecular simulations and computational mod-
eling using molecular dynamics (MD). MD-related techniques have
emerged as vital tools for investigating structure, folding, dynamics
and function of the biomolecules [4, 2]. Cellular processes involv-
ing biomolecules span multiple scales of time and length. Emerg-
ing evidence from computational simulations continues to indi-
cate that the biomolecular structure, internal dynamics and func-
tion are interlinked. Figure 1, shows that the dynamics and func-
tion of biomolecules complexes spans multiple scales of time; the
wide range of internal protein motions occur on 10−15 to > 10−3

seconds, which are linked to a variety of protein functions (such
as enzyme catalysis) on similar time-scales. Further, the dynami-
cal motions also span over various length scales, ranging from few
angstroms to tens of angstroms (10−10 – 10−8m). Internal dynam-
ics within biomolecules, however, are difficult to investigate experi-
mentally as it spans >12 orders of magnitude in time scale. Compu-
tational simulations using MD techniques continue to provide vital
information at a wide range of time-scales, leading to new scientific
breakthroughs in the understanding of biomolecules [3]. However,
the current simulations fall short by several orders of magnitude.
The state-of-art simulations can only reach 10−8 seconds at best
for a real biological system, while the desired time-scale is 10−3

seconds or higher.
The main challenge in simulating biologically relevant scales is

that the computing resources required to simulate the native time
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Figure 1. Computing needs for multi-scale modeling and simulations in biology. The structure, dynamics and function of biomolecules
complexes spans multiple scales of time and length. The current simulations fall short by several orders of magnitude.

and length are considerably higher than what is currently available.
For example, it has been suggested the computational requirements
of simulating protein folding of a medium size protein can be as
high as one petaFLOP/s for an entire year [19]. Despite the fact that
supercomputers such as IBM Blue Gene/L [20]and Cray XT3 [22]
will soon make tens of teraFLOP/s of computing power available
to the biologists, progress in this domain is hindered by the lack
of software scalability. Many MD applications were not designed
with thousands of processors in mind.

As a first step toward improving the exploitation of the hard-
ware resources of IBM Blue Gene/L and Cray XT3, we compare
the computation complexity and analyze the scaling behavior of
the two MD methods, particle mesh Ewald (PME) and Generalized
Born (GB), on Blue Gene/L and XT3 systems. Our application-
driven performance analysis of two early evaluation systems mea-
sure computation, communication and memory requirements of the
main phases of MD calculations. There are two different techniques
routinely used: energy minimization (EM) and time integration
(commonly known as molecular dynamics). Further, the accurate
modeling of biomolecules using molecular mechanics requires re-
alistic models for the interaction of the solvent with the molecule.
A variety of methods are used depending on explicit or implicit
treatment of the solvent surrounding the biomolecules.

The layout of the paper is as follows: Section 2 provides a brief
background to the MD calculations and introduces the software
frameworks and test cases. Section 3 presents a brief overview
of the two parallel systems: IBM Blue Gene/L and Cray XT3.
Section 4 details the performance analysis of the test cases using the
MD software framework AMBER, on the MPP systems. Scaling
experiments and results are presented in section 5. The related
research efforts in the field of high performance MD calculations
are outlined in section 6. Finally, section 7 concludes the research
findings and future research directions.

2. MD Simulations
In this section, we give a brief background of MD simulations and
describe terms used in this paper. More details about MD tech-
niques are available from other reviews and text [14, 15]. The un-
derlying algorithms in popular MD packages or software frame-
works including AMBER [16], CHARMM [6], GROMACS [11],
LAMMPS [18]and NAMD [13] are similar. MD describes a system
at atomistic level through the use of a mathematical function.

E = Ebonds + Eangle + Edihedral + Enon−bonded (1)

Enon−bonded = Eelectrostatic + EvanderWaals (2)

This function, referred to as potential function, computes the
molecular potential energy as a sum of energy terms that describe
the deviation of bond lengths, bond angles and torsion angles away
from equilibrium values, plus terms for non-bonded pairs of atoms
describing van der Waals and electrostatic interactions. The set of
parameters consisting of equilibrium bond lengths, bond angles,
partial charge values, force constants and van der Waals parameters
are collectively known as force-field. Different MD packages use
slightly different mathematical expressions, and therefore, different
constants for equation 1. The common force-fields in use today,
have been developed by using high level quantum calculations
and fitting to experimental data. The technique, known as energy
minimization, is used to minimize the potential function. Lower
energy states are more stable and are commonly investigated due
to their role in biological processes. A MD simulation, on the
other hand, computes the behavior of system as a function of
time. It involves solving Newton’s equation of motion, F = ma.
Integration of Newton’s laws of motion, using different integration
algorithms, leads to atomic trajectories in space and time. The force
on atoms are defined as the the negative gradient of the potential
energy function. The EM technique is useful for obtaining a static
picture for comparison between states or similar systems, while



MD provides information about the dynamic processes with the
inclusion of temperature effects.

For common biological systems, the non-bonded interactions
are computationally the most expensive operation. On parallel com-
puters, non-bonded interactions also require significant off-node
communication. The non-bonded term is computed as a sum of
electrostatic and van der Waals interactions. It is desirable to model
biomolecules in presence of solvent (water) as their function in-
volves the solvated state. The explicit treatment of solvent adds
significant computational expense due to the increase in number
of atoms. Several techniques have been designed to decrease the
computational expense. A common technique is the use of cutoff
distance. The contributions from non-bonded interactions at long
distances are relatively small; therefore, the full interaction is only
computed for nearest neighbors. In Figure 2, the sphere represent
the area for which a list of neighbors is maintained; this list is peri-
odically updated as the particles move away from each other. Tech-
niques, such as particle mesh Ewald (PME), method are used for
calculation of long-range interactions [8]. The PME is a fast im-
plementation of Ewald summation technique for calculating long
range electrostatic interactions. PME method utilizes Fast Fourier
Transform (FFT) and is commonly used when the simulation con-
sists of explicit solvent particles. There is also significant interest
in developing more rapid implicit solvation models because explicit
treatment of water is computationally very demanding. The implicit
solvation models treat the solvent as a continuous medium having
the average properties of the real solvent, and surrounding the so-
lute beginning at the van der Waals surface. A variety of continuum
models have been described over the years including the General-
ized Born (GB) model [21]. The GB approximation has been used
with considerable success to efficiently evaluate hydration energies
for small molecules. The computational complexity of an MD cal-
culation depends on the underlying algorithm such as PME or GB.
Moreover, the integration part is potentially expensive since it re-
quires collective communication operations.

cutoff

Figure 2. A cutoff radius is used to avoid direct evaluation of non-
bond interactions beyond a specified distance. Non-bond neighbors
list is used in MD simulations to reduce computational expense.

MD related methods are now routinely used to investigate the
structure, dynamics and thermodynamics of biological molecules
and their complexes. The types of biological activity that have been
investigated using MD simulations include protein folding, enzyme
catalysis, protein stability, conformational changes associated with
bimolecular function, and molecular recognition of proteins, DNA,
biological membrane complexes. As mentioned above, biological
molecules exhibit a wide range of time and length scales over
which specific processes occur. The computational complexity of a
MD simulation depends on time and length scales. For realistic or

higher-accuracy simulations not only the time and length scales re-
quirements but also on the system sizes requirements are high. Typ-
ical system (including solvent) sizes of interest range from 20,000
atoms to more than 1 million atoms. For cases where implicit sol-
vation model is used, the systems consists of a few thousands atoms
to large complex systems over 100,000 atoms. The time period of
simulation can range from pico-seconds to the a few micro-seconds
or longer (see Figure 1).

2.1 Software frameworks

A number of commercial and open source software frameworks
(also known as packages) for MD calculations are currently in
use by a large community of biologists. These include AMBER,
CHARMM, GROMACS, LAMMPS, NAMD, and others. These
packages use slightly different forms of potential functions. Some
of them have their own force-fields while others are able to use
force fields of other packages. AMBER provides implementations
of a range of MD algorithms including PME and GB methods
that perform double-precision floating-point calculations. For use
in large scale simulations, NAMD and LAMMPS have been re-
ported to scale to up to a few thousand nodes. NAMD used a com-
munication layer called CHARM++, which has been ported to the
Blue Gene/L and XT3 systems. AMBER and LAMMPS, on the
other hand, use the standard MPI communication library, which is
available at the early evaluation stages on these two systems. The
current version of LAMMPS, however, does not provide the energy
minimization technique, which is routinely used in biological sim-
ulations. Further, it lacks many functionalities for simulations and
analysis, which are provided with AMBER and CHARMM.

AMBER (version 8) consists of about 50 programs that can per-
form a diverse set of calculations for system preparation, EM, MD
and analysis of results. AMBER’s main module for EM and MD is
known as sander, which stands for simulated annealing with NMR-
derived energy restraints. We have used sander to investigate the
performance characteristics of EM and MD techniques using the
PME and GB method. We will discuss the details in the perfor-
mance analysis section 4.

2.2 Test cases

The prototypical systems used for our detailed investigations were
design to represent the variety of biomolecular complexes routinely
investigated by computational biologists. The biomolecular sys-
tems are briefly described below.

• HhaI: This system is a model for protein-DNA complex (en-
zyme m5C-methyltransferase M. HhaI with its target DNA se-
quence), in explicit solvent and counter-ions. This model con-
sists of 61,641 atoms with explicit treatment of solvent. The
long-range forces are calculated using PME method.

• RuBisCO with generalized Born (RUB): This system is
a model on the enzyme Ribulose Bisphosphate Carboxy-
lase/Oxygenase (RuBisCO) based on the crystal structure
1RCX. RuBisCO is an enzyme from the Calvin cycle and the
product of its activity, phospoglycerate, is used in the carbon-
fixing cycle. The model consists of 73,920 atoms, and GB
method for implicit solvent.

In addition, other systems used for investigations of problem
size scaling behavior contained: 143,784 atoms, 194,262 atoms,
290,220 atoms with explicit solvent conditions (PME method); an
additional system with 18,056 atoms was used for calculations with
implicit solvent model (GB method).



3. Supercomputing systems
Large-scale MD simulations of biological systems and processes
are hugely expensive. The requirements for simulating a medium-
sized biological system at multiple scales can be as high as 1
petaFLOP/s for an entire year. Hence, we considered scaling of our
experiments on two teraFLOPS-scale systems, IBM Blue Gene/L
and Cray XT3. These distributed memory, MPP systems have un-
conventional design characteristics and are expected to offer un-
precedented levels of computing power. Here we present the archi-
tectural features of the two systems.

3.1 Blue Gene/L

Blue Gene/L is the current fastest supercomputing system [20]. We
ran the experiments on a 1024-node Blue Gene/L system at Ar-
gonne National Laboratory. A single Blue Gene/L processing node
consists of an Application Specific Integrated Circuit (ASIC). The
ASIC contains the code execution logic, on-chip memory and com-
munication logic. There are two PowerPC 440 cores per process-
ing node: a computation and a communication processor core. The
total processing power is 2.8 gigaFLOP/s per processor or 5.6 gi-
gaFLOP/s per processing node. The computation processor han-
dles the computation workload while the communication proces-
sor offloads communication tasks. There are three levels of on-chip
caches with 32 KB, 2 KB and 4 MB capacities respectively. The
L2 cache bandwidth is 5.5 gigaBytes/s and L3 bandwidth is to-
tal 22 gigaBytes/s. The total memory available to an application
is 512 megaBytes and the off-chip memory bandwidth is 5.5 gi-
gaBytes/s. Two communication networks are available for mes-
sage passing operations: a three-dimensional torus network and a
2.8 gigaBytes/s tree network. The torus network supports point-to-
point communication operations, while the tree network primarily
supports collective communication operations. The bi-directional
bandwidth is 1.4 gigabits/s in six torus directions.

Two execution modes are used by our MD applications namely
the co-processor mode and virtual node mode. The co-processor
mode is the default execution mode, in which one MPI task is
assigned to a processing node. In the virtual-node mode, both
PowerPC processors can run MPI tasks separately or offer twice
the compute power. However, the memory capacity is halved in
this mode and memory bandwidth is shared between two PowerPC
processors. MD calculations typically have low memory usage
requirements and our experiments effectively utilize the additional
compute power as shown in section 5.

3.2 XT3

Cray XT3 system builds upon a single processor node, or process-
ing element (PE) [22]. We have used an early evaluation system
containing over 5000 processing nodes XT3 system at the Oak
Ridge National Laboratory (ORNL) for the experiments. The XT3
uses a commodity microprocessor, the AMD Opteron, at its core,
and connects these processors with customized interconnect based
on an ASIC called SeaStar. Each PE has one Opteron processor
with its own dedicated memory and communication resource. The
XT3 has two types of PEs: compute PEs and service PEs. The com-
pute PEs are optimized for application performance by running a
lightweight operating system kernel called Catamount. In contrast,
the service PEs run SuSE Linux and are configured for I/O, login,
network, or system functions. The XT3 uses a blade approach for
achieving high processor density per system cabinet.

The ORNL XT3 uses Opteron model 150 processors, which
includes an Opteron core, integrated memory controller, three 16b
800 Mhz HyperTransport (HT) links, a L1 cache, and a L2 cache.
The Opteron core has a 2.4 Ghz clock, three integer units, and one
floating-point unit which is capable of two floating-point operations
per cycle. Hence, the peak floating point rate of this processor is

4.8 gigaFLOP/s. The memory structure of the Opteron contains a
64KB 2-way associative L1 data cache, a 64KB 2-way associative
L1 instruction cache, and a 1MB 16-way associative, unified L2
cache. The Opteron has 64b integer registers, 48b virtual addresses,
40b physical addresses, sixteen 64b integer registers, and sixteen
128b SSE/SSE2 registers. The memory controller data width is
128b. Each PE has 2 gigaBytes of memory. The peak memory
bandwidth per processor is 6.4 gigaBytes/s.

Each Opteron processor is directly connected to the XT3 inter-
connect via a Cray SeaStar chip. This SeaStar chip is a routing and
communications chip and it acts as the gateway to the XT3’s high-
bandwidth, low-latency interconnect. The PE is connected to the
SeaStar chip with a 6.4 gigaBytes/s HT path. The router in SeaStar
provides six high-speed network links to connect to six neighbors in
the 3D torus/mesh topology. Each of the six links has a peak band-
width of 7.6 gigaBytes/s. With this design, the Cray XT3 bypasses
communication bottlenecks, such as the PCI bus. The interconnect
carries all message passing traffic as well as I/O traffic to the global
parallel file system.

4. Performance analysis
An application-driven approach was adopted for algorithm charac-
terization and performance analysis of the biomolecular MD sim-
ulations that are implemented in AMBER. First, the main steps
of calculations were identified and mapped to the phases of the
software simulation. Second, we investigated the communication
pattern and scaling within the communication phases for different
methods and as a function of system size. This was useful not only
in linking the scaling behavior to the underlying algorithms but also
allowed us to precisely locate the performance bottlenecks in the
code on the target architectures. Finally, we investigated the mem-
ory scaling behavior for the two algorithms. Vendor specific tools
on the Blue Gene/L and XT3, and mpiP are used to collect perfor-
mance data presented in this paper. Call graphs are generated using
the gprof and the Cray PAT toolkit. The hardware performance
data is collected via the PAPI hardware performance counter inter-
face [7]. Memory requirements are collected using the IBM tools
on Blue Gene/L. The MPI performance data is collected with mpiP,
an MPI profiling tool [1]. mpiP data and the hardware counter val-
ues are measured on an IBM p690 cluster system, which is based
on Power4 processors.

Figure 3 shows the control flow within a single step of an MD
calculation along with the associated message passing MPI func-
tions. The function calls map to the values in the equation 1, pre-
sented in section 2. The PME and GB methods are shown in dot-
ted lines since only one is called in a given simulation. Further-
more, these are the most expensive calculations in a simulation time
step; energies including the van der Waal interactions are calculated
within this method.

4.1 Communication requirements

The FFT routines are called when explicit solvent simulations are
being performed in PME methods. For the RuBisCO with GB
simulations, a different methodology is used, which does not in-
volve computing FFTs. The communication pattern is therefore
significantly different. MPI collective communication operations
are called in the GB calculations while the FFT calculations require
a large number of point-to-point MPI messaging.

Table 1 lists the message sizes, count and pattern of MPI com-
munication operations within a single simulation time step of an
MD calculation per processor. Note than one simulation time step
is equivalent to 1 femto-second (10−15 second) and 109 simulation
steps will be needed to simulate a milli-second scale simulation.
Although workload is evenly distributed, there can be slight vari-
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Figure 3. Control flow of the MD calculations in sander, which is a main program in AMBER

ation in message sizes on different processors. The table lists the
maximum sizes for experiments with 8 MPI tasks.

MPI call HhaI (PME) RuBisCO (GB)

1 MPI Allreduce (∼106)
2 MPI Allreduce (∼106)
3 MPI Allreduce 280 280
4 MPI Allreduce 24 24
5 MPI Allreduce 936
6 MPI Allreduce 24
7 MPI Isend log2n x (∼105)
8 MPI Isend log2n x (∼105)
9 MPI Sendrecv log2n x (∼105) log2n x (∼106)

10 MPI Sendrecv log2n x (∼105) log2n x (∼106)

Table 1. The message passing MPI communication behavior and
maximum message sizes for HhaI and RuBisCO with GB simula-
tions. n represents the number of MPI tasks. The MPI profile is
gathered on an IBM p690 cluster system using the mpiP profiling
tool.

In RuBisCO with GB, the message sizes remain constant; only
the message count for the coordinate distribution function increases
with the number of MPI tasks. For HhaI, the message sizes and
counts for collective operations remain constant. The message
counts for point-to-point messages increase while the message
sizes decrease by increasing the number of MPI tasks. Moreover,
the message sizes for the coordinate distribution function, non-
bond methods and force field integration depend on the number of
atoms in the system. In other words, these message sizes increase
with an increase in the system size or total number of atoms in a
system.

A first order analysis of the communication behavior shows that
the point-to-point communication in the two test cases could be
bandwidth bound. Hence, the high bandwidth networks of Blue
Gene/L and Cray XT3 should be able to exhibit good scaling be-
havior. An analysis of the collective communication operations in
HhaI and RuBisCO with GB suggest that the small collective oper-
ations could also be latency bound, especially with large number of
MPI tasks. In HhaI, there are four MPI Allreduce calls per iteration

and two with 24 Byte messages. The point-to-point MPI latencies
of the XT3 network at the early evaluation stages were higher than
the Blue Gene/L MPI latencies. Thus, the latency bound HhaI sim-
ulation are likely to be effected on large number of XT3 processors.
In addition, the MPI Sendrecv for coordinate distribution subrou-
tine also require a large number of point-to-point message passing
operation2. Both Blue Gene/L and XT3 have a 3D torus network
topology, therefore, the cost of the coordinate distribution opera-
tions are expected to be similar.

A potential performance and scaling bottleneck for RuBisCO
with GB could be the collective operation with 5.9 x 105 Bytes.
Typically, the collective communication networks are not opti-
mized for large message sizes. The Blue Gene/L system has a sep-
arate tree network for collective communication operations in ad-
dition to the 3D torus network. We ran Pallas MPI benchmarks ver-
sion 2.2 (now offered by Intel as the Intel MPI Benchmarks) to
estimate the MPI Allreduce performance of the Blue Gene/L and
XT3 networks. We observed that for message sizes greater than 103

Bytes, there is a significant increase in the runtime on both sys-
tems. With a large number of MPI tasks, there is a linear increase
in time to compute the reduction operation across all processing
nodes. Hence, we anticipate that the GB method is unlikely to scale
to large number of processors if the computation to communication
ratio is small.

4.2 Computation requirements

In order to investigate the computation requirements of the PME
and GB methods, we quantified the number of floating-point opera-
tions, load-store operations and memory per processor node. Figure
4 shows the maximum number of floating-point operations per pro-
cessor. On a logarithmic scale, it is evident that the GB method is
more compute-intensive compared to the PME method. The behav-
ior of the load-store operation count, figure 5 is similar. Thus, we
predict that the GB algorithms are likely to scale to large number
of processors because of the high local computation requirements.

We also compared the local memory requirement per processor
for the two methods. Figure 6 shows that the PME memory require-
ments scale to about 32 processors. Upon inspecting the code, we
identified that a couple of large arrays, particularly the non-bonded
neighbors list, is not distributed among the processors. Instead, it
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is replicated to all the processors. The memory requirements of the
GB method, on the other hand, increase slightly from uni-processor
runs to multiple processor runs, primarily because of the creation
of array lists for global reduction operations.

5. Experiments and results
We performed investigations on IBM Blue Gene/L and Cray XT3
system on up to 2048 processors using the two prototypical test
cases. AMBER 8 has a hard-coded limit of a maximum of 128 pro-
cessors. This limit had been enforced by not only as a constant
declaration but also as fixed size arrays, one for each processor or
MPI task. We therefore modified sections of code to scale the appli-
cation to 4096 processors. In addition, the simulation experiments
rely on input files that contain list of atoms and force-field param-
eters and their coordinates. Minor modifications were also needed
for I/O capability of AMBER to allow it to read large files. Further-
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more, machine-specific modifications include the massv library on
Blue Gene/L along with dual floating-point optimization 440d. On
XT3, the fastsse option has been used.

5.1 Test case with explicit solvent with PME method: HhaI

The results of scaling of HhaI experiments on Blue Gene/L are
listed in Table 2. The speed up and the parallel efficiency are
calculated as:

SpeedUp =
timeserial

timeparallel
(3)

Efficiency =
SpeedUpNumberOfTasks

NumberOfTasks
(4)

The HhaI system simulations show no scaling beyond 128 pro-
cessing nodes. Table 3 breakdowns the percentage of time spent
in the calculation phases. As we predicted in the last section, the
cost of collective operations are dominating the calculations as we
include very large number of MPI tasks. The FFT communication
time is also increasing in the non-bond calculation time as shown
in table 3. At the same time, the cost of the code blocks perform-
ing computation only exhibit a near linear behavior. This led us to
conclude that the workload is evenly distributed among the process-
ing nodes. AMBER outputs the run times for individual processing
nodes, which even for 2048 processor run, show no more than 5%
variation.

The XT3 performance results are listed in Table 4 and the break-
down of the execution time is shown in Table 5. The XT3 systems
shows a higher speed up compared to the Blue Gene/L system pri-
marily due to high speed Opteron processor. However, the commu-
nication costs on XT3, particularly the FFT communication cost
limited the scaling of the code beyond 128 processors. The cost of
collective operation is significant in both cases and is one of the
main limiting factor. Note that the results on the XT3 have been
collected on the early evaluation stages of the system. It is expected
that the FFT communication cost will be significantly reduced after
the communication fabric upgrade.

Figure 7 shows the simulation performance in pico-seconds per
simulation day (psec/day) for the HhaI experiment. The desired
metric is > 103 for simulating native timescale simulations. We
also compared the run time with an unmodified version of amber
on an IBM Power4 cluster with 2.6 gigaFLOP/s performance per



Processors 1 2 4 8 16 32 64 128 256 512 1024
Speed up 1.00 1.86 3.31 5.36 8.27 11.05 12.73 14.02 13.98 13.15 10.54
Efficiency 1.00 0.93 0.83 0.67 0.52 0.35 0.20 0.11 0.05 0.03 0.01

Table 2. HhaI performance on Blue Gene/L

Processors 1 2 4 8 16 32 64 128 256 512 1024
Non-bond (NB) force 97.56 96.85 95.98 94.02 90.76 85.89 75.58 65.49 56.02 49.23 31.03
Bond,Angle,Dihedral 0.98 0.96 0.91 0.83 0.75 0.62 0.42 0.27 0.28 0.00 0.00
Collect & add forces 0.00 0.45 1.19 2.65 5.22 8.99 17.05 23.64 29.13 29.34 32.21
Distribute coordinate 0.00 0.19 0.33 0.68 1.03 1.86 3.79 6.52 9.52 15.56 32.55
FFT (% NB time) 4.75 5.31 5.63 5.80 5.96 6.50 11.14 9.13 14.50 18.13 27.17

Table 3. Percentage of execution time (HhaI on Blue Gene/L)

Processors 1 1.95 4 8 16 32 64 128 256 512 1024
Speed up 1.00 2.00 3.49 6.28 9.8 13.42 19.33 22.09 21.37 16.57 12.54
Efficiency 1.00 0.97 0.87 0.78 0.61 0.42 0.30 0.17 0.08 0.03 0.01

Table 4. HhaI performance on XT3

Processors 1 2 4 8 16 32 64 128 256 512 1024
Non-bond (NB) force 96.83 96.70 96.02 95.27 92.52 88.63 83.19 78.12 73.91 73.98 68.42
Bond,Angle,Dihedral 0.45 0.38 0.41 0.38 0.34 0.25 0.19 0.11 0.07 0.03 0.01
Collect & add forces 0.00 0.25 0.56 1.13 3.12 5.71 9.96 13.95 16.25 14.84 16.93
Distribute coordinate 0.00 0.12 0.22 0.50 1.48 2.49 4.42 6.07 7.96 9.29 12.95
FFT (% NB time) 3.60 5.42 9.91 15.87 24.24 39.37 40.08 48.96 61.23 75.84 82.79

Table 5. Percentage of execution time (HhaI on XT3)

Processors 1 2 4 8 16 32 64 128 256 512 1024 2048
Speed up 1.00 2.00 3.97 7.89 15.53 30.13 56.78 101.72 158.23 243.26 271.04 279.31
Efficiency 1.00 1.00 0.99 0.99 0.97 0.94 0.89 0.79 0.62 0.48 0.26 0.14

Table 6. RuBisCO with GB performance on Blue Gene/L

Processors 1 2 4 8 16 32 64 128 256 512 1024 2048
Non-bond (GB method) 99.75 99.66 99.59 99.52 99.39 99.16 98.56 97.28 94.22 87.67 68.32 37.06
Bond,Angle,Dihedral 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.19 0.21 0.19 0.14 0.14
Collect & add forces 0.00 0.01 0.02 0.05 0.12 0.25 0.68 1.44 3.28 6.64 17.54 30.11
Distribute coordinate 0.00 0.00 0.01 0.01 0.03 0.06 0.12 0.35 1.04 3.32 10.04 29.43

Table 7. Percentage of execution time (RuBisCO with GB on Blue Gene/L)

Processors 1 2 4 8 16 32 64 128 256 512 1024 2048
Speed up 1.00 2.00 3.98 7.95 15.81 31.29 63.91 124.50 386.26 554.69 493.60 312.23
Efficiency 1.00 1.00 1.00 0.99 0.99 0.98 0.99 0.97 0.89 0.75 0.54 0.24

Table 8. RuBisCO with GB performance on XT3

Processors 1 2 4 8 16 32 64 128 256 512 1024 2048
Non-bond (GB method) 99.82 99.79 99.76 99.72 99.56 99.28 98.01 97.02 95.06 88.35 72.16 34.65
Bond,Angle,Dihedral 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.09 0.04
Collect & add forces 0.00 0.01 0.02 0.03 0.12 0.27 0.58 0.99 2.91 6.65 14.96 42.35
Distribute coordinate 0.00 0.00 0.01 0.02 0.05 0.12 0.23 0.53 1.34 3.76 15.57 21.06

Table 9. Percentage of execution time (RuBisCO with GB on XT3)
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Figure 7. Parallel efficiency of HhaI simulations. An unmodified
version of AMBER8 was used on the IBM Power4 (SMP cluster.
The modified version of AMBER8 was used for experiments on
XT3 and Blue Gene/L. Performance is measured in psec/day or
number of pico-seconds that can be simulated in a single day.

processor. Although the XT3 has a clear advantage for having a
4.8 gigaFLOP/s processor, the scaling characteristics of the HhaI
algorithm limit the parallel performance of the simulation. Never-
theless, over 103 psec/day for a simulation with over 61K atoms
with explicit solvent is a significant contribution for the computa-
tional biology simulations.

5.2 Test case with GB implicit solvation method: RUB

As compared to HhaI, which can be simulated on contemporary
clusters, RuBisCO is a relatively larger system with higher compu-
tation requirements. Moreover, RUB uses a different algorithm for
calculating solvation effects, that does not require a large number
of point-to-point communication operations. Instead, a small num-
ber of collective operations are required for each time step. The
message sizes for this collective operation are listed in Table 1.

The performance and scaling results of RuBisCO with GB on
Blue Gene/L are presented in Table 6. It scales to 2048 processors.
Taking into account the contribution of different phases of the cal-
culation that are listed in Table 7 and measured cost of simulation
phases listed in Table 7 and 9, it is evident that the total runtime is
dominated by the phases of calculation that perform communica-
tion operations. The MPI Sendrecv cost is higher for RUB simu-
lations as compared to the HhaI simulation because of relatively
large number of atoms. As a result, not only the cost of log2n
MPI Sendrecv operations for the global distribution function but
also the MPI Allreduce operations in the GB function is higher. On
2048 processors run, over 60% of time is spent in collecting, adding
and distributing force arrays.

Similar behavior is shown for the RUB experiments on XT3
in Table 8 and Table 9. Like HhaI runs, the XT3 experiments show
higher speed ups due to the 4.8 GHz Opteron processors and the rel-
atively high bandwidth network. Nevertheless, the collective com-
munication operations are dominant on large processor runs. A
metric for achieved simulation time scale (psec/day) on different
parallel platforms is shown in Figure 8. The performance advantage
of parallelism beyond 128 processing nodes has been demonstrated
in the RUB experiments. The Blue Gene/L system has a lower per-
formance per processor as compared to a Power4 processor in the
IBM p690 cluster. However, on 2048 nodes, the Blue Gene/L pro-
vides over a 150 psec/day, whereas the peak at 128 p690 processors
is around 50 psec/day. We managed to simulate a 73K atoms sys-
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Figure 8. Parallel efficiency of RUB with GB simulations on IBM
Power4 (SMP cluster) with an unmodified version of AMBER8
and on XT3 and Blue Gene/L with modifications. A large value
of psec/day (pico-second per day) is required for biomolecular MD
simulations.

tem for close to 500 psec/day on the XT3 system. We expect the
scaling will improve as the point-to-point MPI latency on XT3 de-
creases. Together, with a dual-core Opteron node, we envisage that
the XT3 could bring us close to our target of around half a million
atoms with 1,000 pico-second per day.

5.3 Problem size scaling

As mentioned earlier, many biological systems demand models
with a large number of atoms for capturing different aspects of the
system. In the previous sections, we have discussed the scaling be-
havior, communication patterns and computation requirements of
the two methods for a fixed number of atoms. We have also ex-
plored the scaling behavior of the two algorithms as a function of
number of atoms. The scaling of the PME simulation, as shown in
Figure 9, is largely limited by the underlying algorithm and imple-
mentation; these simulations do not scale beyond 128 processors.
Figure 10 shows the paralleling efficiency of two GB simulations,
which scales to 1,024 processors.
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Figure 9. Scaling behavior of PME algorithm-based simulations
as a function of number of atoms (simulations experiments are
conducted on the Blue Gene/L system).
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Figure 10. Scaling behavior of GB algorithm-based simulations
as a function of number of atoms. The runtime measurements are
taken on the Blue Gene/L system.

The results confirm our prediction that, by simply increasing the
problem size, we cannot overcome the scaling limitations; these are
inherent properties of the algorithm and implementation. For in-
stance, the PME algorithm’s scaling characteristics do not change
by increasing the number of atoms or workload requirements per
processor as shown in Figure 9. Similar scaling behavior is ob-
served on the XT3 system. Alternatively, the GB algorithm has a
distinctive algorithmic and communication characteristics; hence,
scaling with a relatively small system, 18,056 atoms, also scale to
up to 1,024 processors (Figure 10).

5.4 Memory requirements

The available per processor memory on Blue Gene/L and Cray XT3
is smaller than what is available with commodity cluster comput-
ers. In the virtual node mode on Blue Gene/L, the available mem-
ory is less than 256 MB per processor. Therefore, we investigated
the requirement of memory with increasing problem sizes. Fig-
ure 11 shows the memory usage as a function of processor count
for several systems investigated in this study. For explicit solvent
cases, our results indicate that after about 64 processors the re-
quired memory per processors does not change significantly. This
is expected to be a limiting factor in simulating larger biological
systems with greater than 500,000 atoms. We have extrapolated
the curve to compute memory requirements for larger systems (see
Figure 12). On Blue Gene/L, it is expected that the biggest sys-
tem which can be simulated is about 400,000 atoms. In the vir-
tual node more this is expected to be near 220,000 atoms. On the
XT3, the user processors are allowed only about one megaBytes
of memory, which will restrict the size of system to be no more
than about 600,000–700,000 atoms. With further investigations, we
have found that the replication of non-bonded neighbors list to ev-
ery processors leads to higher memory requirements. Strategies for
enabling simulations for larger systems may include reduction in
memory requirement per processor by distributing the non-bonded
list among processors.

6. Related research
Scaling MD framework on supercomputers is of considerable inter-
est, as is reflected by number of groups who are working on related
research projects. At IBM, a new framework for molecular dynam-
ics on the IBM Blue Gene/L is being developed; it is known as
Blue Matter [9]. Initial results have indicated that the Blue Matter
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Figure 11. Per processor memory requirements and scaling as
a function of number of atoms. IBM mpitrace f library, which
is available on the Blue Gene/L system, was used to collect the
memory requirement per processing node.
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Figure 12. Increase in the memory requirements as a function of
number of atoms for 128 processors run. A cubic curve was used
for extrapolation.

can take significant advantage of the hardware to scale small sys-
tems up to 512-1024 processors. Blue Matter, however, is closely
linked to the system performance of the IBM Blue Gene series of
systems. Almasi et. al. [5] provided a detailed mapping of a molec-
ular dynamics application on Blue Gene multi-threaded cellular ar-
chitecture using analytical models and simulation techniques. The
Blue Gene/L system and the Cray XT3 machines do not support
multi-threading. Therefore, currently, the applicability of Almasi
et. al.’s performance optimization techniques for the molecular dy-
namics algorithm using multi-threading appears to be limited on
distributed-memory systems like Blue Gene/L and XT3.

NAMD is a software framework that is reported to scale to
many thousands of processors [13]. It has been developed by
a research group at the University of Illinois using optimized
communication patterns to improve scaling of MD simulations.
NAMD’s underlying communication library, CHARM++, is ported
to XT3 and Blue Gene/L using the MPI communication interface.
A study [23] based on the Blue Gene/L simulators, BigSim and
BignetSim, suggested that the PME algorithm implementation in
NAMD and CHARM++ will benefit from the extra tree network,



which has been optimized for collective communication opera-
tions. CHARM++ is reported to achieve higher performance and
scaling when it is implemented using the low-level communica-
tion API [17]. Hence, further investigations are needed to identify
performance characteristics and scaling of the NAMD software on
the Blue Gene/L and XT3 systems. Another software framework,
LAMMPS from Sandia National Laboratory is reported to scale
very well in large number of processors [18]. As mentioned earlier,
a number of MD algorithms including GB that are implemented in
AMBER are not currently supported by the LAMMPS framework.
Hence, we were not able to compare the experiments conducted
using AMBER with the equivalent LAMMPS implementation. Al-
though both NAMD and LAMMPS are capable of using popular
force-fields, there is wide interest in community to continue using
AMBER, due to the diverse set of functionalities it provides.

7. Conclusions
In order to achieve higher and sustainable parallel efficiencies for
large scale biomolecular simulations using molecular dynamics,
we are exploring algorithmic and implementation alternatives by
targeting factors that limit the scalability of MD calculations. In
this paper, we presented detailed profiling information of two com-
monly used MD methods (PME and GB) and investigated their
scaling behavior on contemporary MPP systems. After removing
the limits in the software framework, we were able to scale the GB
method to up to 2048 processors. Through the application-driven
analysis, we have identified the scaling bottlenecks in these two
MD methods. We observed that on Blue Gene/L and XT3 systems,
the available memory per processor limits the size of biological sys-
tems that can be simulated and suggest that the changes in parallel
implementation, particularly in the array distribution scheme, can
overcome this limitation. Using prototypical test systems, we show
that it is possible to simulate over 1,000 psec/day for a protein-
DNA complex with over 60,000 atoms. This is a remarkable im-
provement over the state-of-art simulations as previously reported.
Further improvements will bring simulations closer to native bio-
logical time-scales. Through efficient exploitation of the hardware
resources, we envisage that the teraFLOP/s scale computing power
of Blue Gene/L and Cray XT3 will enable simulations of larger
systems on longer time-scales leading to scientific breakthroughs.
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