

IPMI-based Efficient Notification Framework for Large Scale Cluster
Computing

Chokchai Leangsuksun1, Tirumala Rao1, Anand Tikotekar
Stephen L. Scott2, Richard Libby³, Jeffrey S. Vetter2 , Yung-Chin Fang4, Hong Ong2

1Computer Science Department, Louisiana Tech University
Ruston, LA 71272, USA

2Computer Science and Mathematics Division, Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA

³Enterprise Platforms Group, Intel Corporation,
 4Dell, Inc

1{box, trb013,aat06}@latech.edu 2{scottsl,vetter,hongong}@ornl.gov
³rml@hpc.intel.com, Yung-Chin_Fang@Dell.com

1 Research supported by the Department of Energy Grant no: DE-FG02-05ER25659.
2 Research supported by the Mathematics, Information and Computational Sciences Office, Office of
Advanced Scientific Computing Research, Office of Science, U. S. Department of Energy, under
contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

Abstract

 The demand for an efficient fault tolerance system
has led to the development of complex monitoring
infrastructure, which in turn has created an
overwhelming task of data and event management.
The increasing level of details at the hardware and
software layer clearly affects the scalability and
performance of monitoring and management tools. In
this paper, we propose a problem notification
framework that directly addresses the issue of monitor
scalability. We first present the design and
implementation of our step-by-step approach to
analyzing, filtering, and classifying the plethora of
node statistics. Then, we present experimental results
to show that our approach only needs minimal system
resource and thus has low overhead. Finally, we
introduce our web-based cluster management system
that provides hardware controls at both cluster and
nodal levels.
Key words: Scalability, High-Availability, IPMI.

1. Introduction

 Cluster monitoring software is a powerful tool for
overseeing resources usage and performance

assessment of computing nodes. However, for very
large-scale systems, the massive amount of
communication and collected data has caused serious
concerns for scalability and manageability.

Most developers considered this problem as design
issues and thus reengineered their monitoring
architecture to handle communication among the
increasing number of nodes. The advent of intelligent
hardware technologies (e.g. IPMI [12]) for high-end
server and cluster infrastructure strive for alleviating
system manageability while resulting in the increasing
level of hardware detail from cluster nodes.

In this paper, we propose a framework that aims to
provide a dynamic monitoring and filtering approach
that can reduce the number of nodal information
exchanges among individual system and throughout
the entire cluster. It is based on user-defined policies
for gathering hardware details to support dynamic
monitoring and event notification. Furthermore, it
analyses the sensor information using the exhibited
characteristics and then classifies the information into
predefined categories. The classified information is
then processed in order to potentially reason
anomalous behavior. The proof-of-concept result
suggests that our approach can mitigate the scalability
issues encountered due to the plethora of information
from cluster hardware standards and sheer system size.

2. Related Work

Beowulf distributions like OSCAR [1][2],
ROCKS[3], and SCE[4] are integrated with the
capabilities to monitor and manage HPC clusters.
Existing monitoring systems, such as ganglia [5],
clumon [6], supermon[7], ClusterProbe [8], PerfMC
[9] and PARMON [10] possess similar architecture
with a central monitoring server and local daemons
collecting node information.

However, there are growing concerns caused by
overwhelming complexity of monitoring a very scale
cluster nodes with increasing amount of data available
from individual nodes. Table 1 provides a comparison
of the existing monitoring tools based on
characteristics of cluster environment.

Table 1. Comparison of cluster monitoring tools

System Capability Scalable Completeness
Ganglia Monitoring Medium Limited

Clumon Monitoring Scalable
within
clusters

400 metrics

Dproc Monitoring High Extensible

Supermon Monitoring High Limited

Big-brother [11] Monitoring/
Alerting

Low -

ClusterProbe Monitoring and
management

Yes -

Ka-admin Monitoring Yes -

The existing cluster monitoring tools face the
scalability and performance issues when increasing
number of nodes in the systems. In addition, the
current alerting mechanism may not be effective as its
naïve approach based on fixed thresholds. We
introduce a framework that provides a step-by-step
approach to gather hardware health characteristics. We
also adopt dynamic polling rates based on the current
analysis of the cluster and node statistics. The
framework uses certain intelligence of hardware
parameters apart from the threshold settings in
reporting the watchful events. Furthermore, it also
exploits the characteristics in tweaking the polling
rates for individual sensors.

3. IPMI Background

Intelligent Platform Management Interface (IPMI)
[12][13][14] is one such intelligent hardware

technology available in most of the current generation
of servers across vendors. Its adoption rate has
increasingly advanced into cluster environments. IPMI
supports both in-band and out-of-band management
and takes lead over other industry specifications.

IPMI is an abstraction layer above hardware
management interfaces. It defines common
commands, data structures, and message formats to
monitor server physical health characteristics, such as
temperature, voltage and so on. The goal of IPMI is to
provide a foundation of interoperability for remote
system monitoring/management across different
hardware implementation. Figure 1 shows the IPMI
management subsystem block diagram.

Figure 1 Management subsystem Block diagram

IPMI hardware consists of a microcontroller called
Baseboard Management Controller (BMC). The user,
application, or any intelligent device can send a
request/command to BMC. BMC processes such
requests without any additional load on the system
CPU. There could be several Management Controllers
(MC) that monitor different parts of the subsystem.
The sensors can generate critical events
asynchronously and report them to the BMC.

In addition, IPMI hardware consists of non-volatile
memory called System Event Log (SEL) and Sensor
Data Repository (SDR) to store critical events and
sensor information respectively. SEL and SDR records
can be fetched sequentially from the non-volatile
memory by sending IPMI requests to the BMC.

4. Architecture

This section presents the design issues, architecture,
and implementation of our framework. It consists of
three modules: Data Gathering and Analysis Engine

Management
controller

Sensor
System
event log

Data

BMC

Baseboard
M

LAN

anagement
Chassis
sensors

System Sensor
interface circuitry

(DGAE), Policy-Based Monitoring (PBM) and
Problem Notification Agents (PNA).

The DGAE is the basic monitoring daemon, which
gathers multiple samples of sensor readings, computes
certain characteristics and classifies the information
into predefined categories.

The PBM agent works with data gathering engine in
providing the dynamic monitoring capability. The
PNA as the top layer of our framework receives the
exhibited behavior of hardware sensors from the
analysis engine after determining the cause of such
activity.

The framework is capable of providing notifications
of unusual hardware behavior that could lead to
hardware failure. Figure 2 illustrates the architecture
layered over operating system, and hardware
management technologies as the foundation.

Figure 2. Our Framework Architecture

4.1. Data Gathering and Analysis Engine

DGAE provides an interface to hardware management
and capability to gather hardware sensor information.
It analyzes the information upon consultation with the
policy module (PBM). The collecting mechanism is
thereby influenced by the policy module. This
mechanism enables the DGAE to adapt according to
the existing environment. DGAE is involved in the
following operations:
• Polling hardware sensors at regulated intervals.
• Analyze the hardware state statistics to uncover

unusual characteristics and determine polling
intervals

• Log/Retrieve the OS/application state into hardware
event logs

• Validate the hardware events

Figure 3 DGAE block diagram

4.2. DGAE

Figure 3 illustrates the DGAE block diagram and
the interface to other modules. DGAE invokes the
sensor discovery to gather information about existing
sensors via OpenIPMI library. The sensor information
is categorized based on the sensor device. The device
components are represented by an n-tuple D = (C1, C2,
C3 … Cn) where each component is associated with set
of sensors represented by k-tuple Ci = (s1, s2, s3… sk).
For instance, processor component monitored by the
temperature, core voltage and booster sensor are
represented by the tuple (ptemp, pvolt, pbst, pstat) and the
respective samples are:
(31.000000, 31.000000, 1.474200, 6000.00),
(30.000000, 30.000000, 1.474200, 5880.00),
(31.000000, 31.000000, 1.474200, 6000.00),
(31.000000, 30.000000, 1.474200, 6000.00)

DGAE collects samples of sensor information and
then analyzes certain characteristics like the rate of
change, frequent transition, and threshold etc. The
analysis triggers the appropriate policy for
determining the next monitoring intervals. The metrics
that were found to be constant in the sample space are
provided longer monitoring intervals than those
exhibit major changes.

Based on the observed behavior of sensor samples,
these policies could trigger some actions defined in the
rule base. The result of such actions can reduce the
number of events reported to the problem notification
agent. The rule specification is defined as follows:

temp
T
temptemptemptemp SCCCC ⇒∧∧∧ ...321

It specifies that if multiple components or devices Ci

exhibit abnormal temperature then the DGAE should
report the problem. In this example, the system
temperature event will be notified.

fan
T
fanfanfanfan SCCCC ⇒∧∧∧ ...321

Similarly, if the analysis engine detects that the
processor fan, baseboard fan and other component
fans exhibit unusual behavior, it reports the system
cooling has a problem.

() voltvoltTvoltvv SBBBB ⇒∧∨∨ ...1125
The above rule states that the baseboard voltage levels
are either the standard or converted voltages exhibiting
similar behavior that they are reported as the system
voltage problem.

The basic algorithm used by DGAE in reporting
critical issues is presented in Figure 4. DGAE
continues to poll for hardware sensor information
under the direction of the given policies. The critical
events are reported to the DGAE asynchronously like
redundancy lost, fan failure, device removed. The
critical alert may be prone to errors and should
undergo the validation process.

Input Sample set of component readings
Output undesirable behavior of the component
AnalyzeFilter(S, rulebase)
01 for all Ci Є S
02 for all sensors Є Ci
03 aggregate(sensor)

/* aggregate the collection of sensor
samples provided by the gathering
module to compute the rate of
increase in the reading, frequent
transition around the nominal value
and check against the threshold
levels*/

04 compute(rateofchange, freqtransition,
checkthreshlevel)

05 end for
06 check(rulebase)
07 classify(sensor)
08 if(undesirable)

/* If the computations reveal the
undesirable behavior of the component
sensor, it is checked against the rule
base to determine the problem*/

09 report(problem)
10 end if

Figure 4. Algorithm for analyze and filter process

The critical events are categorized into the following
severity levels; nominal, non-critical, critical, non-
operational and failure.

Table 2 Classification of the events reported by DGAE
Events Event class
Fully Redundant
Nominal sensor readings

Nominal

Fan Redundancy Degrade
Memory Parity

Out of nominal range

Power Redundancy Lost
Fan Redundancy Lost
ECC correctable

non critical range

Processor Intrusion
AC lost
Critical thresholds

critical range

FRB hang
Processor disabled

Non operational
range

Processor failure
Thermal trip
Memory Scrub failure
Memory failure
ECC uncorrectable

Failure range

Policy based monitor (PBM)

Policy-based monitor (PBM) defines set of policies
aiming to reduce overhead while collecting and
processing data from the hardware subsystem. PBM
also regulates the sensor threshold in the passive
monitoring by setting policies. The policy throttles the
threshold value to get the prior notification of the
increasing sensor value. However, the approach of
periodically setting the threshold may not be very
efficient.

We resolve the inefficiency with a novel mechanism
by making use of the platform event filtering with
which will set the thresholds in an intelligent manner.
We also make use of system event log for the
historical events and correlate them in such a manner
that if some of these events materialize then an alert
will be fired through the event filter tables. This alert
will serve as an indication that one should change
thresholds for some sensors to receive any prior
notification. For example, considering dependency
between different temperature sensors, it is possible
that Processor1 and ambience temperature have
exceeded the thresholds (which may have been set
already) and then the events are fired. We will get an
alert through the platform event filtering mechanism
signifying that these two events have materialized. We
may infer the fact that the processor2’s temperature
has not exceeded its threshold, which may be a cause
of concern. We can then change the threshold to see
whether the event is fired or not (through the IPMI
alert mechanism). Finally, we may also want to
change the thresholds of the two processor
temperature sensors if we know that certain related or
correlated events (such as ambience temperature
increase). It is also possible that the threshold values
may change through wear and tear or through the
lifetime of the hardware component. Therefore, it is
important to set the thresholds so that events would be
logged. The thresholds could also be set using a
relative frequency approach. This approach observes
the relative frequency of a particular event in the
system event log using different thresholds.

Figure 5 shows our experimental and benchmark
results of the resource load encountered in active and
passive monitoring.

Monitoring approach Resource overhead
Active poll based
monitoring

0.0065%CPU/s &
0.1625%MEM/s

Passive monitoring 0%CPU/s & 0.0%MEM/s
Figure 5 Comparison of two monitoring approaches

Figure 6 shows a policy example to define monitoring
intervals for the next sample of sensor readings.

Watch senreadings

Service dgae
Monitor constmetrics
Interval 3s
Monitor lowratemetrics
Interval 2s
Monitor highratemetrics
Interval 1s
Alert policy_module

Figure 6 policy definition

Figure 7 provides an insight into the %CPU overhead
by the adaptive data gathering and analysis engine
through the policy based support. The percentile of
sensor activity represents the ratio of sensors
exhibiting undesirable characteristics.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

50
0

15
00

25
00

35
00

45
00

10
00

0
30

00
0

50
00

0

Polling interval

%
CP

U

DGAE without
PBM
DGAE/PBM 10%
sensor activity
DGAE/PBM 25%
sensor activity
DGAE/PBM 50%
sensor activity

Figure 7. Analysis of policy based effects on data

gathering engine

4.3. Problem Notification agent

The undesirable characteristics exhibited by the sensor
are classified into the severity class and reported by
the problem notification agent. The PNA receives the
sequence of events from which the DGAE failure
analysis model is based on the Bayesian belief
network [15] to learn the system/component behavior
and determine the cause of such activity.

PNA proof-of-concept was implemented with the
Norsys [15] library providing the Bayesian belief
network learning capability. Figure 8 exemplifies a

fault propagation model for a given hardware system.
The classified events reported by DGAE are mapped
to the node variables mentioned in the model.

Figure 8. General model to represent the propagation of

component failure

5. Experiments and analysis

Figure 9 shows the benchmark comparison of
existing IPMI libraries that fetch hardware sensor
information. The comparison is based on the sensor
retrieval time period, resource overhead and
authentication capabilities. Since the retrieval time is a
significant criterion in determining the best
techniques, we adopt the OpenIPMI library in or
DGAE to fetch sensor information. Figure 10
illustrates that DGAE based monitoring obviously
provides better retrieval overhead when compared
with the existing approach.

Sensor Repository retrieval time using available
interfaces

0
20
40
60
80

100
120

panicsel-
1.4.5

ipmiutil-
1.5.8

ipmitool-
1.5.9

OpenIPMI-
1.2.20

IPMI libraries

R
et

rie
va

l t
im

e
(in

 s
ec

)

System interface LAN interface
Figure 9 Comparison of the existing IPMI libraries

System/C
is not ope
hangs

omponent
rational or

A

B

C

D

E
F

Comparison of OpenIPMI and DGAE/PBM

0
2
4
6
8

10

OpenIPMI-1.2.20 DGAE/PBM under 40%
sensor activity

Po
lli

ng
 ti

m
e

(in
 se

c)

System interface LAN interface

Figure 10 Comparison of DGAE/PBM and OpenIPMI
sensor polling duration

The samples similar to those provided in Table 3 are
processed through the analysis engine to categorize the
“temperature sensor of the baseboard, hot swap and
processor component” under “out of non critical
range” and the fan speed under “out of nominal
range”. DGAE will determine the possible cause of the
increasing temperature of hardware components and
the unusual rise in fan speed. The experimental results
from the PNA model specified in Figure 11 are
provided in Table 4. The results from PNA model
were collected by stimulating external activity like
“Low inflow of air” and observing the hardware
sensor activity.

Table 3 Sample collected by Data gathering module
from the experimental node

Baseboard
temp

Hot swap
temperature

Processor
temperature

Fan speed

37.00
37.00
38.00
38.00
37.00
37.00
38.00

…
37.00
37.00
38.00

25.00
26.00
26.00
26.00
26.00
26.00

..
26.00
26.00
27.00
27.00

44.00
44.00
44.00
44.00
44.00
44.00

...
45.00
45.00
45.00
45.00

8211.00
8415.00
8415.00
8211.00
8415.00

...
8415.00
8415.00
8415.00
8670.00
8415.00

Figure 11 PNA model depicting the fault propagation

Table 4. PNA output based on the observed behavior

Voltage out of
normal range

Temperature out
of nominal
range

Fan redundancy
degrade

Temperature out of
non critical range

Observed behavior Probability of “Low

inflow of air”
temperature out-of-nominal 0.893057
temperature out-of-nominal and
voltage ok

0.935664

temperature out-of-nominal,
voltage ok and fan speed out-of-
nominal

0.991379

temperature out-of-nominal,
voltage ok, fan speed out-of-
nominal and temp out-of-non-
critical

0.991379

6. Future work

Consider the fact that a series of events or problems
may be recognized by the DGAE and forwarded to the
PNA for further analysis. This strategy may overlook a
possibility that multiple events logged into the SEL
and the alert generated by the PNA may have a
correlation. To alleviate the possible issue, we are
looking into a correlation mining approach that would
realize such events. The notification events from PNA
could also be logged into SEL as higher-level
abstraction. This way the complexity of the correlation
engine is kept in check. We plan to explore Platform
event filtering (PEF) to notify any higher-ordered
events. The PEF is a mechanism where events are
filtered by the means of event filtering configured into
the platform event filter table. The alerts may be
trapped using mechanisms such as SNMP. The
composite events can be matched using certain filters.

This way notification will be provided for higher
possible events using event correlation and PEF.

7. Conclusion

In this paper, we presented the design,
implementation, and evaluation of problem
notification framework for IPMI-based hardware
platform. The intelligent threshold setting, analysis
and monitoring features are strengths of the proposed
framework. The notification mechanism has proved
advantageous over existing solutions with adaptive
and high configurable monitoring filtering capabilities.
The experimental results suggest that our approach
promises reduction in resource overhead when
compared to traditional monitoring approaches. The
dynamic monitoring approach with filtering
mechanism provides effective notification, especially
for the large scale cluster system.

8. References

[1]. J Hsieh, T Leng, Y C Fang, OSCAR: A Turnkey Solution
for Cluster Computing, Dell Power Solutions, Issue 1, pp.
138-140, 2001.

[2].oscar.sourceforge.net/
[3].P.M. Papadopoulos, M.J.Katz, G. Bruno, « NPACI

Rocks: Tools and Techniques for Easily Deploying
Manageable Linux Clusters,” 3rd IEEE International
Conference on Cluster Computing (CLUSTER'01)
October 08 - 11, 2001

[4].P. Uthayopas, T. Sriprayoonskul, and S. Phatanapherom,
“SCE: A Fully Integrated Software Tool for Beowulf
Cluster System,” The Linux HPC Revolution, June 25-27,
2001

[5].F. D. Sacerdoti, M. J. Katz, M. L. Massie, D. E. Culler,
“Wide Area Cluster Monitoring with Ganglia,” IEEE
International Conference on Cluster Computing
(CLUSTER'03) pp. 289

[6].NCSA Clumon. http://clumon.ncsa.uiuc.edu/doc-info.html
[7].M.J. Sottile R. G. Minnich, “Supermon: A high-speed

cluster monitoring system,” IEEE International
Conference on Cluster Computing (CLUSTER'02)

[8].Z. Liang, Y. Sun, C. Wang, “ClusterProbe: An Open,
Flexible and Scalable Cluster Monitoring Tool,” 1st IEEE
Computer Society International Workshop on Cluster
Computing, December 1999 pp. 261

[9]. M. Marzolla, “A Performance Monitoring System for
Large Computing Clusters,” Eleventh Euromicro
Conference on Parallel, Distributed and Network-Based
Processing , February 2003. pp. 393

[10]. R. Buyya. “PARMON: A Portable and Scalable
Monitoring System for Clusters,” Software Practice and
Experience journal, 30(7):723–739, 2000.

[11]. Big Brother: Web-based systems and network monitor
www.quest.com/bigbrother/

[12]. IPMI - Intelligent Platform Management Interface
www.intel.com/design/servers/ipmi/

[13]. IPMI Specification v1.5 Document Revision 1.1
Published: Feb 20, 2002
www.intel.com/design/servers/ipmi/spec.htm

[14]. IPMI v2.0 specifications Document Revision 1.0
Published: Feb 12, 2004
www.intel.com/design/servers/ipmi/spec.htm

[15]. Netica, Bayesian network development software
http://www.norsys.com/

http://www.norsys.com/

