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Abstract 
 
 The demand for an efficient fault tolerance system 
has led to the development of complex monitoring 
infrastructure, which in turn has created an 
overwhelming task of data and event management. 
The increasing level of details at the hardware and 
software layer clearly affects the scalability and 
performance of monitoring and management tools. In 
this paper, we propose a problem notification 
framework that directly addresses the issue of monitor 
scalability. We first present the design and 
implementation of our step-by-step approach to 
analyzing, filtering, and classifying the plethora of 
node statistics. Then, we present experimental results 
to show that our approach only needs minimal system 
resource and thus has low overhead. Finally, we 
introduce our web-based cluster management system 
that provides hardware controls at both cluster and 
nodal levels. 
Key words: Scalability, High-Availability, IPMI. 
 
 
1. Introduction 
 
 Cluster monitoring software is a powerful tool for 
overseeing resources usage and performance 

assessment of computing nodes. However, for very 
large-scale systems, the massive amount of 
communication and collected data has caused serious 
concerns for scalability and manageability.  

Most developers considered this problem as design 
issues and thus reengineered their monitoring 
architecture to handle communication among the 
increasing number of nodes.  The advent of intelligent 
hardware technologies (e.g. IPMI [12]) for high-end 
server and cluster infrastructure strive for alleviating 
system manageability while resulting in the increasing 
level of hardware detail from cluster nodes.  

In this paper, we propose a framework that aims to 
provide a dynamic monitoring and filtering approach 
that can reduce the number of nodal information 
exchanges among individual system and throughout 
the entire cluster. It is based on user-defined policies 
for gathering hardware details to support dynamic 
monitoring and event notification. Furthermore, it 
analyses the sensor information using the exhibited 
characteristics and then classifies the information into 
predefined categories. The classified information is 
then processed in order to potentially reason 
anomalous behavior. The proof-of-concept result 
suggests that our approach can mitigate the scalability 
issues encountered due to the plethora of information 
from cluster hardware standards and sheer system size. 
 



   

2. Related Work 
 

Beowulf distributions like OSCAR [1][2], 
ROCKS[3], and SCE[4] are integrated with the 
capabilities to monitor and manage HPC clusters. 
Existing monitoring systems, such as ganglia [5], 
clumon [6], supermon[7], ClusterProbe [8], PerfMC 
[9] and PARMON [10] possess similar architecture 
with a central monitoring server and local daemons 
collecting node information.  

However, there are growing concerns caused by 
overwhelming complexity of monitoring a very scale 
cluster nodes with increasing amount of data available 
from individual nodes. Table 1 provides a comparison 
of the existing monitoring tools based on 
characteristics of cluster environment. 

Table 1. Comparison of cluster monitoring tools 
 
System Capability Scalable Completeness  
Ganglia Monitoring Medium Limited 

Clumon Monitoring Scalable 
within 
clusters 

400 metrics  

Dproc Monitoring High Extensible 

Supermon Monitoring High Limited 

Big-brother [11] Monitoring/ 
Alerting 

Low - 

ClusterProbe Monitoring and 
management 

Yes  - 

Ka-admin Monitoring Yes - 
 

The existing cluster monitoring tools face the 
scalability and performance issues when increasing 
number of nodes in the systems. In addition, the 
current alerting mechanism may not be effective as its 
naïve approach based on fixed thresholds. We 
introduce a framework that provides a step-by-step 
approach to gather hardware health characteristics. We 
also adopt dynamic polling rates based on the current 
analysis of the cluster and node statistics. The 
framework uses certain intelligence of hardware 
parameters apart from the threshold settings in 
reporting the watchful events. Furthermore, it also 
exploits the characteristics in tweaking the polling 
rates for individual sensors. 
 
3. IPMI Background 
 

Intelligent Platform Management Interface (IPMI) 
[12][13][14] is one such intelligent hardware 

technology available in most of the current generation 
of servers across vendors. Its adoption rate has 
increasingly advanced into cluster environments. IPMI 
supports both in-band and out-of-band management 
and takes lead over other industry specifications.  

IPMI is an abstraction layer above hardware 
management interfaces. It defines common 
commands, data structures, and message formats to 
monitor server physical health characteristics, such as 
temperature, voltage and so on. The goal of IPMI is to 
provide a foundation of interoperability for remote 
system monitoring/management across different 
hardware implementation. Figure 1 shows the IPMI 
management subsystem block diagram.  
 

 
Figure 1 Management subsystem Block diagram 

 
IPMI hardware consists of a microcontroller called 
Baseboard Management Controller (BMC). The user, 
application, or any intelligent device can send a 
request/command to BMC. BMC processes such 
requests without any additional load on the system 
CPU. There could be several Management Controllers 
(MC) that monitor different parts of the subsystem. 
The sensors can generate critical events 
asynchronously and report them to the BMC. 

In addition, IPMI hardware consists of non-volatile 
memory called System Event Log (SEL) and Sensor 
Data Repository (SDR) to store critical events and 
sensor information respectively. SEL and SDR records 
can be fetched sequentially from the non-volatile 
memory by sending IPMI requests to the BMC. 
 
4. Architecture 
 

This section presents the design issues, architecture, 
and implementation of our framework. It consists of 
three modules: Data Gathering and Analysis Engine 
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(DGAE), Policy-Based Monitoring (PBM) and 
Problem Notification Agents (PNA).  

The DGAE is the basic monitoring daemon, which 
gathers multiple samples of sensor readings, computes 
certain characteristics and classifies the information 
into predefined categories.  

The PBM agent works with data gathering engine in 
providing the dynamic monitoring capability. The 
PNA as the top layer of our framework receives the 
exhibited behavior of hardware sensors from the 
analysis engine after determining the cause of such 
activity.  

The framework is capable of providing notifications 
of unusual hardware behavior that could lead to 
hardware failure. Figure 2 illustrates the architecture 
layered over operating system, and hardware 
management technologies as the foundation. 
 

 
Figure 2. Our Framework Architecture 

 
4.1. Data Gathering and Analysis Engine  
 
DGAE provides an interface to hardware management 
and capability to gather hardware sensor information. 
It analyzes the information upon consultation with the 
policy module (PBM). The collecting mechanism is 
thereby influenced by the policy module. This 
mechanism enables the DGAE to adapt according to 
the existing environment. DGAE is involved in the 
following operations: 
• Polling hardware sensors at regulated intervals. 
• Analyze the hardware state statistics to uncover 

unusual characteristics and determine polling 
intervals 

• Log/Retrieve the OS/application state into hardware 
event logs 

• Validate the hardware events 
 

 
Figure 3 DGAE block diagram 

 
4.2. DGAE 
 

Figure 3 illustrates the DGAE block diagram and 
the interface to other modules. DGAE invokes the 
sensor discovery to gather information about existing 
sensors via OpenIPMI library. The sensor information 
is categorized based on the sensor device. The device 
components are represented by an n-tuple D = (C1, C2, 
C3 … Cn) where each component is associated with set 
of sensors represented by k-tuple Ci = (s1, s2, s3… sk). 
For instance, processor component monitored by the 
temperature, core voltage and booster sensor are 
represented by the tuple (ptemp, pvolt, pbst, pstat) and the 
respective samples are: 
(31.000000, 31.000000, 1.474200, 6000.00),  
(30.000000, 30.000000, 1.474200, 5880.00), 
(31.000000, 31.000000, 1.474200, 6000.00), 
(31.000000, 30.000000, 1.474200, 6000.00) 

DGAE collects samples of sensor information and 
then analyzes certain characteristics like the rate of 
change, frequent transition, and threshold etc. The 
analysis triggers the appropriate policy for 
determining the next monitoring intervals. The metrics 
that were found to be constant in the sample space are 
provided longer monitoring intervals than those 
exhibit major changes.  

Based on the observed behavior of sensor samples, 
these policies could trigger some actions defined in the 
rule base. The result of such actions can reduce the 
number of events reported to the problem notification 
agent. The rule specification is defined as follows: 

temp
T
temptemptemptemp SCCCC ⇒∧∧∧ ...321  

It specifies that if multiple components or devices Ci 

exhibit abnormal temperature then the DGAE should 
report the problem. In this example, the system 
temperature event will be notified. 

 



   

 

fan
T
fanfanfanfan SCCCC ⇒∧∧∧ ...321  

Similarly, if the analysis engine detects that the 
processor fan, baseboard fan and other component 
fans exhibit unusual behavior, it reports the system 
cooling has a problem. 

( ) voltvoltTvoltvv SBBBB ⇒∧∨∨ ...1125   
The above rule states that the baseboard voltage levels 
are either the standard or converted voltages exhibiting 
similar behavior that they are reported as the system 
voltage problem. 

The basic algorithm used by DGAE in reporting 
critical issues is presented in Figure 4. DGAE 
continues to poll for hardware sensor information 
under the direction of the given policies. The critical 
events are reported to the DGAE asynchronously like 
redundancy lost, fan failure, device removed. The 
critical alert may be prone to errors and should 
undergo the validation process. 
 
Input Sample set of component readings 
Output undesirable behavior of the component  
AnalyzeFilter( S, rulebase ) 
01 for all Ci Є S 
02 for all sensors Є Ci 
03 aggregate(sensor) 

/* aggregate the collection of sensor 
samples provided by the gathering 
module to compute the rate of 
increase in the reading, frequent 
transition around the nominal value 
and check against the threshold 
levels*/ 

04 compute(rateofchange, freqtransition, 
checkthreshlevel) 

05 end for 
06 check(rulebase) 
07 classify(sensor) 
08 if(undesirable) 

/* If the computations reveal the 
undesirable behavior of the component 
sensor, it is checked against the rule 
base to determine the problem*/ 

09 report(problem) 
10 end if 
 

Figure 4. Algorithm for analyze and filter process 
 
The critical events are categorized into the following 
severity levels; nominal, non-critical, critical, non-
operational and failure.  

Table 2 Classification of the events reported by DGAE 
Events Event class 
Fully Redundant 
Nominal sensor readings 

Nominal 

Fan Redundancy Degrade 
Memory Parity 

Out of nominal range 

Power Redundancy Lost 
Fan Redundancy Lost 
ECC correctable 

non critical range 

Processor Intrusion 
AC lost 
Critical thresholds 

critical range 

FRB hang 
Processor disabled 

Non operational 
range 

Processor failure 
Thermal trip 
Memory Scrub failure 
Memory failure 
ECC uncorrectable 

Failure range 

 
Policy based monitor (PBM) 

Policy-based monitor (PBM) defines set of policies 
aiming to reduce overhead while collecting and 
processing data from the hardware subsystem. PBM 
also regulates the sensor threshold in the passive 
monitoring by setting policies. The policy throttles the 
threshold value to get the prior notification of the 
increasing sensor value. However, the approach of 
periodically setting the threshold may not be very 
efficient.  

We resolve the inefficiency with a novel mechanism 
by making use of the platform event filtering with 
which will set the thresholds in an intelligent manner. 
We also make use of system event log for the 
historical events and correlate them in such a manner 
that if some of these events materialize then an alert 
will be fired through the event filter tables. This alert 
will serve as an indication that one should change 
thresholds for some sensors to receive any prior 
notification. For example, considering dependency 
between different temperature sensors, it is possible 
that Processor1 and ambience temperature have 
exceeded the thresholds (which may have been set 
already) and then the events are fired. We will get an 
alert through the platform event filtering mechanism 
signifying that these two events have materialized. We 
may infer the fact that the processor2’s temperature 
has not exceeded its threshold, which may be a cause 
of concern. We can then change the threshold to see 
whether the event is fired or not (through the IPMI 
alert mechanism). Finally, we may also want to 
change the thresholds of the two processor 
temperature sensors if we know that certain related or 
correlated events (such as ambience temperature 
increase). It is also possible that the threshold values 
may change through wear and tear or through the 
lifetime of the hardware component. Therefore, it is 
important to set the thresholds so that events would be 
logged. The thresholds could also be set using a 
relative frequency approach. This approach observes 
the relative frequency of a particular event in the 
system event log using different thresholds. 

 



   

Figure 5 shows our experimental and benchmark 
results of the resource load encountered in active and 
passive monitoring.  
 

Monitoring approach Resource overhead 
Active poll based 
monitoring 

0.0065%CPU/s &  
0.1625%MEM/s 

Passive monitoring  0%CPU/s & 0.0%MEM/s 
Figure 5 Comparison of two monitoring approaches 
 
Figure 6 shows a policy example to define monitoring 
intervals for the next sample of sensor readings. 
 
Watch senreadings 

Service dgae 
Monitor constmetrics 
Interval 3s 
Monitor lowratemetrics 
Interval 2s 
Monitor highratemetrics 
Interval 1s 
Alert policy_module 

Figure 6 policy definition 
 
Figure 7 provides an insight into the %CPU overhead 
by the adaptive data gathering and analysis engine 
through the policy based support. The percentile of 
sensor activity represents the ratio of sensors 
exhibiting undesirable characteristics. 
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Figure 7. Analysis of policy based effects on data 

gathering engine 
 

4.3. Problem Notification agent 
 
The undesirable characteristics exhibited by the sensor 
are classified into the severity class and reported by 
the problem notification agent. The PNA receives the 
sequence of events from which the DGAE failure 
analysis model is based on the Bayesian belief 
network [15] to learn the system/component behavior 
and determine the cause of such activity. 

PNA proof-of-concept was implemented with the 
Norsys [15] library providing the Bayesian belief 
network learning capability. Figure 8 exemplifies a 

fault propagation model for a given hardware system. 
The classified events reported by DGAE are mapped 
to the node variables mentioned in the model. 
 

 
Figure 8. General model to represent the propagation of 

component failure 
 

5. Experiments and analysis 
 

Figure 9 shows the benchmark comparison of 
existing IPMI libraries that fetch hardware sensor 
information.  The comparison is based on the sensor 
retrieval time period, resource overhead and 
authentication capabilities. Since the retrieval time is a 
significant criterion in determining the best 
techniques, we adopt the OpenIPMI library in or 
DGAE to fetch sensor information.  Figure 10 
illustrates that DGAE based monitoring obviously 
provides better retrieval overhead when compared 
with the existing approach. 
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Comparison of OpenIPMI and DGAE/PBM
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Figure 10 Comparison of DGAE/PBM and OpenIPMI 
sensor polling duration 

The samples similar to those provided in Table 3 are 
processed through the analysis engine to categorize the 
“temperature sensor of the baseboard, hot swap and 
processor component” under “out of non critical 
range” and the fan speed under “out of nominal 
range”. DGAE will determine the possible cause of the 
increasing temperature of hardware components and 
the unusual rise in fan speed. The experimental results 
from the PNA model specified in Figure 11 are 
provided in Table 4. The results from PNA model 
were collected by stimulating external activity like 
“Low inflow of air” and observing the hardware 
sensor activity. 

Table 3 Sample collected by Data gathering module 
from the experimental node 

Baseboard 
temp 

Hot swap 
temperature 

Processor 
temperature 

Fan speed 

37.00 
37.00 
38.00 
38.00 
37.00 
37.00 
38.00 

… 
37.00 
37.00 
38.00 

 

25.00 
26.00 
26.00 
26.00 
26.00 
26.00 

.. 
26.00 
26.00 
27.00 
27.00 

 

44.00 
44.00 
44.00 
44.00 
44.00 
44.00 

... 
45.00 
45.00 
45.00 
45.00 

 

8211.00 
8415.00 
8415.00 
8211.00 
8415.00 

... 
8415.00 
8415.00 
8415.00 
8670.00 
8415.00 

 

 
Figure 11 PNA model depicting the fault propagation 

 
Table 4. PNA output based on the observed behavior 

Voltage out of 
normal range

Temperature out 
of nominal 
range

Fan redundancy 
degrade

Temperature out of 
non critical range

 
Observed behavior Probability of “Low 

inflow of air” 
temperature out-of-nominal 0.893057 
temperature out-of-nominal and 
voltage ok 

0.935664 

temperature out-of-nominal, 
voltage ok and fan speed out-of-
nominal 

0.991379 

temperature out-of-nominal, 
voltage ok, fan speed out-of-
nominal and temp out-of-non-
critical 

0.991379 

 
6. Future work 

 
Consider the fact that a series of events or problems 
may be recognized by the DGAE and forwarded to the 
PNA for further analysis. This strategy may overlook a 
possibility that multiple events logged into the SEL 
and the alert generated by the PNA may have a 
correlation. To alleviate the possible issue, we are 
looking into a correlation mining approach that would 
realize such events. The notification events from PNA 
could also be logged into SEL as higher-level 
abstraction. This way the complexity of the correlation 
engine is kept in check. We plan to explore Platform 
event filtering (PEF) to notify any higher-ordered 
events. The PEF is a mechanism where events are 
filtered by the means of event filtering configured into 
the platform event filter table. The alerts may be 
trapped using mechanisms such as SNMP. The 
composite events can be matched using certain filters. 

 



   

This way notification will be provided for higher 
possible events using event correlation and PEF.  

 
7. Conclusion 

 
In this paper, we presented the design, 
implementation, and evaluation of problem 
notification framework for IPMI-based hardware 
platform. The intelligent threshold setting, analysis 
and monitoring features are strengths of the proposed 
framework. The notification mechanism has proved 
advantageous over existing solutions with adaptive 
and high configurable monitoring filtering capabilities. 
The experimental results suggest that our approach 
promises reduction in resource overhead when 
compared to traditional monitoring approaches. The 
dynamic monitoring approach with filtering 
mechanism provides effective notification, especially 
for the large scale cluster system. 
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