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ORNL is currently evaluating several strategic applications on the Cray MTA-2 platform to better understand 

massively parallel multithreading as an architectural choice beyond scalar, vector, and multicore architectures. In 
this paper, we describe our initial experiences with several applications including molecular dynamics, finite 
difference methods, a fast multipole method and a discrete event simulation engine. 

 
1 Introduction 

Several vendors of high-end computing (HEC) 
systems have announced or deployed systems that 
include processing devices from a number of 
computing paradigms, including microprocessors, 
vector processors, multi-threaded processors, and 
other hardware accelerators like FPGAs. Dramatic 
speedups are possible for applications whose parts 
are mapped to appropriate compute devices in 
multi-paradigm systems. For instance, Cray has 
recently announced their Adaptive Supercomputing 
strategy that will incorporate microprocessors, 
vector processors, multi-threaded processors, and 
hardware accelerators into a single HEC system. 

To better understand massively parallel multi-
threading as an architectural choice compared to 
scalar, vector, and multi-core processors, Oak Ridge 
National Laboratory is evaluating several strategic 
applications on Cray’s current multi-threaded 
architecture platform, the Cray MTA-2 [4, 13]. The 
MTA-2 takes a non-traditional approach to 
addressing the ever-widening gap between the rate 
at which processors can execute instructions and 
the rate at which data can be transferred between 
processors and memory. 

Similar to the approach of overlapping 
communication with computation in a message 
passing parallel program, clever instruction 
scheduling can be used to hide some of the memory 
access latency with computation. For instance, a 
compiler can arrange the instructions of a program 
so that the instruction that loads data into a 
processor register is executed as far in advance as 

possible before the instruction that uses the 
register’s value. However, modern processors are 
able to execute tens or even hundreds of 
instructions in the time it takes to load one data 
word from memory into a processor register, and 
instruction scheduling alone is insufficient to hide 
the time required to access data in main memory.  

The conventional approach for dealing with the 
memory access latency problem is to insert data 
caches between the processor and main memory 
that contain data that is likely to be accessed either 
because it has recently been accessed, or because it 
is near some data that has been recently accessed. 
Because the time required to access data from a 
cache is less than that to access data from main 
memory, instruction scheduling can be effective in 
hiding the latency of accesses that are satisfied 
from the data cache(s). Unfortunately, data caches 
are small compared to the size of main memory, 
and sometimes accesses must be satisfied from 
main memory (a “cache miss”). Algorithms for 
solving certain types of important problems such as 
graph theory problems tend to produce memory 
access streams that cause a large number of cache 
misses, resulting in poor performance on systems 
with traditional cache-based designs. 

The MTA-2 takes a non-conventional approach 
to addressing the gap between processor and 
memory access performance. Instead of data caches 
to reduce the latency of some memory accesses, the 
MTA-2 uses a high degree of thread-level 
concurrency to hide memory access latency. If there 
are enough threads available to an MTA-2 
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processor, the time required to satisfy the memory 
accesses for any individual thread running on that 
processor is completely hidden by the execution of 
instructions from other threads. 

Over the past decade, there have been several 
studies investigating the performance of this 
approach as implemented in the Cray MTA-2 and 
its predecessors [2, 3, 9, 10, 19, 20, 22]. The 
primary question we are investigating is whether 
some types of algorithms require multithreading to 
demonstrate substantial performance relative to 
systems with more conventional processors. Also, 
unlike the previous studies, we are also 
investigating how best to map an application to 
systems containing both conventional processing 
elements and multi-threaded processors when only 
some of the application kernels require the multi-
threaded processors. 

1.1 Strong versus Weak Scaling 
Parallel computing was developed with the end 

goal of solving computational problems faster by 
applying more processing power. Realized speed up 
is bounded by the amount of parallelism that can 
be captured computationally, analytically described 
by Amdahl's Law [5] as  
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for s and p defined to be the serial and parallel 
portions, respectively, and N parallel processes. The 
implication is that a fundamental bound on 
performance is inherent for any given problem. The 
ability of a computer to solve such problems given a 
range of process counts is called strong scaling. The 
user is probably looking to discover some "sweet 
spot" where the time to solution is balanced with 
some resource management requirement. 

However, some scientists realized another use 
for the processing power that was being made 
available to them. They understood that for 
problems that they could not fully capture in the 
available computing resource, they could instead 
increase the size of their  problem in proportion to 
the number of processors and amount of memory. 
While not fully solving the ultimate problems of 
interest, insight can be gained, which at the least 
can be used to help clarify the issues that must be 
addressed once the full experiment can be executed. 

This so-called weak scaling was first described 
analytically by Gustafson [16] as 
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for s and p defined to be the serial and parallel 
portions, respectively, and N parallel processes. 
Good scaling here means that the time to solution 
remains fairly constant as the size of the problem is 
increased. 

Strong scaling problems are characterized by a 
change in problem definition, or complexity, as the 
problem size changes. The Community Climate 
Systems Model (CCSM) [7] is a well-known example 
of a strong scaling model. The NAS Benchmarks [6], 
derived from fluid dynamics experiments, define 
fixed problem sets. 

Weak scaling problems are characterized by an 
improvement in problem definition as the problem 
size increases. The radiation-hydrodynamics 
application SAGE [18] is a well-known example of a 
weak-scaling application code. The LINPACK 
benchmark creates a linear system of dimension 
limited only by the available memory. 

Large scale parallel processing architectures, 
while often good at weak scaling, are also often not 
very good at strong scaling. The MTA-2 provides a 
strong exception to this, a claim supported 
throughout this paper.  

2 Cray MTA-2 Overview 
In this section, we present an overview of the 

Cray MTA-2 system organization, compute node 
processor, and front-end system. We conclude the 
section by comparing MTA-2 with Eldorado, Cray’s 
forthcoming system with multi-threaded 
architecture processors. We leave a detailed 
description of the system’s programming 
environment for Section 3. 

2.1 System Organization 
The MTA-2 consists of a collection of compute 

nodes connected by an interconnection network. The 
topology of the MTA-2 interconnection network is 
described in the literature as a “modified Cayley” 
topology [14] and as a 3D torus that is missing 
some links [4]. 

Unlike most modern parallel systems, memory 
is not collocated with the compute nodes. Instead, 
memory is located in separate memory units 
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attached directly to the interconnection network. All 
memory requests traverse the network from the 
originating processor across the network to a 
memory unit, and (in the case of memory loads) 
back to the originating processor. Because all 
memory requests traverse the interconnection 
network, the time required to access memory is 
nearly no matter which processor originates the 
request and which memory unit satisfies it. To 
alleviate contention caused by the spatial and 
temporal locality of memory accesses with some 
algorithms (e.g., sequential access to an array), 
virtual addresses are hashed to memory units so 
that sequential addresses in a process’ address 
space do not refer to locations in the same memory 
unit, freeing the compiler from the need for careful 
data placement and memory access instruction 
scheduling. 

2.2 Processor 
The MTA-2 processor tolerates memory access 

latency by supporting many concurrent threads of 
execution. The processor uses 64-bit VLIW 
instructions. Each instruction can contain one fused 
multiply-add instruction, one add or control 
operation, and one memory load or store operation. 
To be able to hide the memory access latency of the 
worst-case scenario in which a thread issues one 
memory access per instruction), the MTA-2 
processor supports 128 concurrent instruction 
streams and can switch between streams on each 
clock cycle. To enable such rapid switching between 
streams, the processor maintains a complete thread 
execution context for each of its 128 streams. 

Although the MTA-2 processor does not use a 
data cache, it does include an instruction stream 
shared between all of its hardware streams. 

2.3 Front-end System 
Like many high-end computing systems, the 

MTA-2 uses a separate front-end system. Users log 
in to the front-end system for software development 
and to run programs on the MTA-2 compute nodes. 
In contrast to the MTA-2 compute nodes, the 
system’s front-end system uses a SPARC processor 
and runs the Solaris version of UNIX from Sun 
Microsystems. 

2.4 Cray Eldorado 
The MTA-2 is no longer an active product in the 

Cray product line. However, multi-threaded 
processors seem likely to be a feature of future 
systems from Cray. Multithreaded processors are 
explicitly mentioned in the company’s Adaptive 

Supercomputing strategy overview, and are the 
primary processor in the forthcoming Eldorado 
system [14]. Although Eldorado uses multithreaded 
processors similar to the MTA-2, there are several 
important differences. Unlike the MTA-2, Eldorado 
will use a complete 3D mesh/torus network similar 
to that used in the Cray XT3 parallel processing 
system, and each compute processor will have an 
associated local memory. Consequently, Eldorado 
will not have the MTA-2’s nearly uniform memory 
access latency, so data placement and access 
locality will be an important consideration when 
programming Eldorado. Eldorado’s multithreaded 
processors will operate at 500 MHz, over twice the 
clock rate of the MTA-2 processor. Finally, the 
Eldorado design will allow systems with up to 8192 
processors, whereas the largest possible MTA-2 
system contains only 256 processors. 

3 Programming the Cray MTA-2 
Because of its use on multi-threading instead of 

data memory caches to address the gap between 
processor speed and memory access latency, the 
Cray MTA-2 platform is significantly different from 
other modern architectures. These differences are 
reflected in the MTA-2 programming model and, 
consequently, its software development 
environment. 

3.1 Programming Model 
The key to obtaining high performance on the 

MTA-2 is to keep its processors saturated, so that 
each processor always has a thread whose next 
instruction can be executed. If the collection of 
threads presented to a given processor is not large 
enough to ensure this condition (where “large 
enough” depends on the timing and frequency of 
memory accesses performed by the threads in the 
collection) the processor will be under-utilized. For a 
given program, the size of this thread collection 
depends on how well the program exposes its 
parallelism to the system. Because the MTA-2 is a 
shared memory system, its programming model 
involves collections of threads that synchronize their 
access to shared data in memory, rather than 
separate address spaces communicating via 
messages as in the MPI programming model. 

In the high-level language source code of an 
MTA-2 program, parallelism can be expressed both 
implicitly and explicitly [12]. Implicit parallelism is 
expressed using the source language’s loop 
constructs, such as a C for loop or Fortran DO loop. 
The MTA-2 compilers automatically parallelize the 
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body of such loops so that a collection of threads 
executes the loop, with each thread executing some 
of the loop iterations. Ideally, this collection of 
threads will be interleaved on one or more MTA-2 
processors so that the loop iterations are executed 
in parallel.  

There are some restrictions on the types of loops 
the MTA-2 compilers can parallelize automatically, 
and sometimes compiler directives must be used to 
indicate that a given loop can be parallelized. For 
instance, the number of loop iterations must be 
determinable before the loop executes, and the loop 
must not contain complex data dependencies 
between loop iterations (though the compilers can 
handle linear recurrences). Directives may be 
needed to indicate that a given loop can be 
parallelized, especially for C and C++ programs 
where the compiler cannot tell whether two pointer 
variables used within a loop body do not actually 
point at the same memory location. 

In addition to implicit expressions of 
parallelism in MTA-2 programs, parallelism can be 
expressed explicitly using futures. A future is best 
suited for expressing task parallelism and 
recursion, though it could be used for data 
parallelism. A future is similar to a traditional 
high-level language function, in that it contains a 
body comprised of a sequence of statements, can 
accept input parameters, and can return a result. 
Unlike a traditional function, executing a future 
causes a new thread to be spawned; the body of the 
future executes in the context of this new thread. 
Because the new thread could execute concurrently 
with the original thread, futures provide a 
convenient mechanism for the original thread to 
synchronize with the future. If the future produces a 
result, it is assigned to a future variable with the 
same name as the future. The future variable must 
be a simple type like integer or double, and must be 
declared using the future keyword before the future 
itself is declared. Once the future has begun 
executing, the full/empty bit of the associated future 
variable is marked empty. If the original thread (or 
any other thread) accesses the future variable while 
it is marked empty, the accessing thread will block 
until the variable is marked full. When the future 
executes its return statement, the value it returns 
is assigned to the future variable and the variable 
is marked full, allowing any threads that were 
blocked on the future variable to resume. 

Whenever multiple threads execute concurrently 
and access the same location in memory, thread 
synchronization is usually required to ensure correct 
operation. For example, if a thread updates a 

memory location by writing a value to it, and 
another thread wants to obtain that updated value 
by reading the memory location, the two threads 
must synchronize so that the reading thread does 
not access the location until the writing thread has 
finished updating the value. The MTA-2 full/empty 
bits provide a natural mechanism for synchronizing 
threads.  

A future variable is one approach for using the 
MTA-2 full/empty bits for synchronization between 
a thread executing the future that will produce the 
future variable’s value and other threads that 
consume the value. Future variables can also be 
declared independent of a future and used for 
synchronization. When used in this manner, a 
collection of MTA-2 generic functions are used in 
conjunction with simple variable reads and writes 
for synchronizing access to the future variable’s 
value. MTA-2 generic functions explicitly and 
atomically manipulate a future variable’s value and 
its associated full/empty bit. For example, the 
readfe() generic function tests the full/empty bit 
for a memory location, and if the full/empty bit is 
marked empty, the function blocks till some other 
thread marks it as full. Then the function reads the 
memory location, sets the full/empty bit to empty, 
and returns the location’s value. A synchronization 
variable (denoted using the sync qualifier in the 
variable’s declaration) can be used for 
synchronization like a future variable without a 
future, but simple read and write accesses 
performed on synchronization variables have 
slightly different semantics than simple reads and 
writes to a future variable. 

3.2 Programming Environment 
The MTA-2 provides a traditional programming 

environment that includes compilers, a linker, build 
management software (i.e., a make command), and 
a debugger in addition to the analysis tools 
described in Section 3.1. The development 
environment is hosted on the MTA-2 login system, 
called the “Programming Environment server” or in 
the Cray documentation [11]. This login node 
contains SPARC processors and runs Solaris, a 
version of UNIX from Sun Microsystems. 
Widespread support for Solaris in the open source 
community makes it relatively easy to augment the 
default MTA-2 development environment with tools 
that operate on source files or control the build 
system (e.g., the Eclipse Integrated Development 
Environment). However, because the processor and 
operating system differ between the MTA-2 



 

 - 5 - 

compute nodes and its login node and because the 
MTA-2 compute node processor is not widely 
supported in the open source community, it is 
significantly more difficult to deploy open source 
packages that operate on MTA-2 object files or 
executables. 

The MTA-2 development environment includes 
C, C++, and Fortran compilers. The Fortran 
compiler accepts both Fortran 77 and Fortran 90 
programs, though support for some Fortran 90 
features (e.g., modules) lacks maturity. According to 
the MTA-2 Programmer’s Guide [12], the C compiler 
accepts both programs that adhere to the 1989 
ANSI C language standard and the traditional 
Kernighan and Ritchie syntax. The C++ compiler 
accepts programs that comply with a draft of the 
ISO 14882 C++ standard specification; it is unclear 
how this draft differs from the final specification 
approved in 1998. These compilers share a 
language-independent back-end. 

The MTA-2 development environment also 
includes a debugger called mdb, based on the GNU 
gdb debugger, but extended to support parallel 
programs and the MTA-2 processor architecture. 

As noted above, the key to obtaining good 
performance on the MTA-2 is to ensure that each 
processor always has a thread whose next 
instruction can be executed (i.e., is not blocked 
waiting for a memory access to complete), and that 
one reason that threads are created is for executing 
the iterations of a loop. However, because program 
loops are an implicit representation of parallelism, 
it is difficult for a non-expert to determine whether 
the MTA-2 compilers will automatically parallelize 
a loop, and if not, why. To provide insight into the 
compiler’s automatic parallelization, the MTA-2 
provides a compiler analysis tool called canal that 
produces an annotated program listing indicating 
which program loops have been parallelized, which 
haven’t, and why. The canal tool also reports the 
compiler’s estimate of how much parallelism has 
been exposed for each loop, in terms of the number 
of processor streams that will be requested when 
the loop’s threads are executed. 

In some cases, the compiler under-estimates the 
number of streams required to keep the processor 
saturated when executing a given loop. A program’s 
run time on the MTA-2 is fairly predictable if the 
processors are saturated, so situations where the 
compiler under-estimated the stream requirements 
are indicated when the program’s run time greatly 
exceeds the predicted run time. When performance 
falls short of expectations (or when no prediction 

has been made to establish the expectation), two 
MTA-2 development environment tools can provide 
insight into the program’s dynamic behavior. The 
BPROF tool is a traditional basic block profiler that 
supports both a graphical user interface and a text-
only report mode. BPROF is useful for drawing the 
user’s attention to portions of the code that took a 
long time to execute, but does not necessarily 
provide insight into why each portion took as long 
as it did. The traceview tool does provide that 
insight by showing how well the program used the 
hardware streams available to it during its 
execution. Using a program trace produced when 
the program was run, the traceview tool presents 
a graphical display that shows a timeline of the 
program’s execution. The timeline shows how many 
hardware streams were allocated to the program at 
each point during its execution, and how many 
hardware streams were actually in use. A large gap 
between the two indicates a portion of the code 
(e.g., a loop) that did not make efficient use of the 
processors allocated to it. With a click on the 
timeline display, traceview can provide detailed 
information about which code was executing at any 
given time during the program run, including a 
listing of the program source code. If the compiler 
under-estimated the number of streams required to 
saturate the available processors for a loop, the 
user can use information from traceview to 
estimate how many additional streams to request 
for the loop, and add a directive to the program 
source to indicate the number of streams the 
compiler should request. 

4 Applications 
We investigated applications and application 

kernels from several problem domains on the Cray 
MTA-2. In this section, we detail our evaluation of 
the MTA-2 for molecular dynamics applications, a 
fast multipole method, finite difference methods, 
and a discrete event simulation engine. 

4.1 Molecular Dynamics 
Molecular Dynamics (MD) is a computer 

simulation technique where the time evolution of a 
set of interacting atoms is followed by integrating 
the equations of motion. In the Newtonian 
interpretation of dynamics, the translational motion 
of a molecule is caused by force exerted by some 
external agent. The motion and the applied force 
are explicitly related through Newton’s second law: 

iii
amF = .  



 

 - 6 - 

i
m is the atom’s mass,  

2

2

dt

rd
a

i

i
= is its acceleration, and  

i
F is the force acting upon it due to the interactions 

with other atoms. MD techniques are extensively 
used in many areas of scientific simulations 
including biology, chemistry and materials. Atoms 
in an MD simulation are expected to behave in a 
way atoms in a real substance would do. For 
instance, in a MD computer simulation, atoms 
within a simulated system will move and bump 
into each other, wander around if the system is 
fluid, oscillating in waves with its neighbors, in 
some cases evaporate away from the system if there 
is a free surface. 

MD simulations are computationally very 
expensive. Typically the computational cost is 
proportional to N2, where N is the number of atoms 
in the system. In order to reduce the computational 
cost, techniques such as cutoff limit are used. It is 
assumed that atoms within a cutoff limit contribute 
to the force and energy calculations on an atom. As 
a result, the MD simulations do not exhibit a cache 
friendly memory access pattern. An atom and its 
neighbors continuously move during a simulation 
run, and an atom does not interact with a fix pair of 
atoms. Since, usually the positions of atoms are 
stored in arrays, multiple accesses to the position 
arrays in a random manner is required to calculate 
the cutoff distance, and subsequently to perform 
force calculations.  

The MTA-2 architecture provides an optimal 
mapping to the MD calculations because of its 
uniform memory latency architecture. In other 
words, there is no penalty for accessing atoms 
outside the cutoff limit or the cache boundaries as 
in the microprocessor-based systems. 

Our MD kernel contains two important parts of 
an MD calculation: force evaluation and integration. 
Calculation of forces between bonded atoms is 
straightforward and less computationally intensive 
as there are only a very small numbers of bonded 
interactions as compared to the non-bonded 
interactions. The effect of non-bonded interactions 
are modeled by a 6—12 Lennard-Jones (LJ) 

potential model: 
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LJ potential combines large distance attractive 
forces (r-6 term) and short distance repulsive force (r-

12 term) between two atoms. The integration in our 

kernel is implemented using the velocity Verlet 
algorithm, which calculates the trajectories of atoms 
from the forces. The Verlet algorithm uses positions 
and acceleration at time t and positions from time 

tt !+ to calculate new positions at time tt !+ . The 
pseudo code for our implementation is given in 
Figure 1. Steps are repeated for n simulation time 
steps. n depends on the time-scale of the simulated 
system and the value of δt. 

 

 
Figure 1: MD kernel implemented on MTA-2 (velocity 
Verlet method) 

      
The most time consuming part is step 2, which 

is parallelized by the MTA compiler after a simple 
modification to a reduction operation. Rest of the 
kernel is parallelized by the MTA compiler without 
any code modification. We ran two tests using the 
MD kernel. First, in the strong scaling mode where 
the problem size is fixed and the number of MTA 
processors are increased. Second, we keep the 
problem size per processor fixed by increasing the 
number of atoms and the number of MTA 
processors by a factor of two. Results of the 
experiments are shown in Figure 2 and Figure 3 
respectively. In the strong scaling mode, the results 
are consistent with parallel implementations of the 
MD kernel, which typically does not scale beyond 8 
or 16 processors on an SMP cluster.  
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Figure 2: MD simulation in strong scaling mode 

 
The weak scaling mode experiments on the 

MTA-2 system result in relatively higher 

1. advance velocities 
2. calculate potential energy and forces 

for i=1 to N atoms 
  for j=1 to N-1 atoms 
    if(i & j in cutoff limits) 
       compute force 

3. complete velocities update 
4. calculate new kinetic and total energies 
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performance ratios as compared to microprocessor 
based systems. Note that the computation cost 
increase by N*(average number of atoms in cutoff 
limit), therefore, the simulation time is not constant 
as expected in the weak scaling mode. On parallel 
systems, the inter-processor communication cost is 
proportional to the number of atoms, therefore, the 
performance ratios in the weak scaling mode are 
even lower than the MTA-2 system. As shown in 
Figure 3, the runtime cost on a single 
microprocessor system increases rapidly by 
increasing the number of atoms in an MD 
simulation. 
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Figure 3: MD simulation with fix workload per 

processor 
 

4.2 Finite difference solution of an elliptic 
PDE 

A broad range of physical phenomena in science 
and engineering can be described mathematically 
using partial differential equations. Determining 
the solution of these equations on computers is 
commonly accomplished by mapping the continuous 
equation to a discrete representation. One such 
technique is the finite differencing method, letting 
us solve the equation using a difference stencil, 
updating the solution at each point as a function of 
the point and its neighbors, given some discrete 
time step. Notationally, this is represented by 

5

1,,1,,11,1

,

t

ji

t

ji

t

ji

t

ji

t

jit

ji

uuuuu
u

++!!+
++++

= , 

for i, j = 1, …, n, for time step t. The Fortran 
implementation of the above equation is shown in 
Figure 4. 

 

 
 
 
The strong scaling performance of the 5-point 

stencil is shown in Figure 5. Our experiments show 
that regardless of the size of the grid (as long as 
each processor has a reasonable amount of work), 
the ability of the MTA-2 to compute the solution 
scales almost linearly. Further, performance almost 
perfectly tracks that predicted by the MTA-2 Canal 
performance tool. That is, for the 5-point stencil 
loop, Canal shows that five floating point 
instructions will be executed with eight memory 
references per loop iteration, for a predicted 
performance of (5/8)*220MFLOPS*numpes. 

 
Figure 5: This graph shows the scaling performance of 
the 5-point difference stencil executed on the MTA-2. 
Whether operating on a 2,000 x 2,000 grid or a 10,000 x 
10,000 grid, the performance is the same, staying within 
90% of theoretical peak up to 40 processors. 

 

4.3 Fast Multipole Method 
The Adaptive Fast Multipole Method 

(FMM) [15] approximates the solution to the O(n2) 
n-body problem in O(n) time.  The FMM is an 
interesting candidate for the MTA because the 
combination of its reliance on a tree data structure, 
by definition a global object, and the adaptive 
nature of the algorithm make it extremely 

REAL :: GRID ( M+2, N+2 )  
      ! Extra space for ghost boundaries. 
 

DO J = 2, N+1  
  DO I = 2, M+1 
    GRID_NEW(I,J) = &                                       

              GRID(I-1,J)+             &                  
      GRID(I,J-1)+GRID(I,J)+GRID(I,J+1)+  & 

               GRID(I+1,J) )           &                   
          * 0.2 

  END DO 
END DO 
GRID_OLD = GRID_NEW 

Figure 4: Fortran implementation of the 5-point 
difference stencil. This Fortran code segment  
implements a five point differencing scheme on an M x N 
grid. Note the extra (ghost) space allocated for storing 
the boundary condition. 



 

 - 8 - 

challenging to parallelize effectively on distributed 
memory platforms.  Keeping the ratio between 
interaction computation and tree construction and 
maintenance low is particularly challenging. 

At a very high level the adaptive version of the 
algorithm proceeds as follows: 

 
• Insert particles into an adaptive oct-tree. 
• Traverse tree to create interaction lists. 
• Traverse tree from the leaves up to 

propagate information summarizing 
particles below. 

• Traverse tree to compute interactions. 
• Traverse tree from root down to propagate 

potential to particles below. 
 

A great deal of parallelism can be obtained simply 
by parallelizing the tree traversals.  Our initial 
MTA implementation of the traversals used the 
"future" construct to spawn new threads at each 
internal node of the tree to explore succeeding 
nodes.  Since the upward and downward passes 
both require synchronization between parents and 
children, those traversals spawned "named futures" 
whereby the spawner awaits the completion of 
spawnees. Traversals that did not require 
synchronization instead spawned "anonymous 
futures", touching a synchronization variable to 
ensure that the futures actually executed. 

We found that the use of futures was quite 
expensive and the insight that there was no need to 
actually traverse the tree yielded a substantial 
improvement in performance.  For non-synchronized 
traversals we simply parallelized a forall loop 
over an array containing all the nodes.  We used a 
similar forall loop to implement synchronized 
traversals, with the addition of read and write 
operations to empty/full bits to ensure that parents 
or children had already executed. 

The only major algorithmic phase that required 
a different parallelization strategy was the initial 
tree construction phase.  The obvious solution is to 
parallelize the loop that inserts particles into the 
tree.  This approach, however, requires substantial 
synchronization to ensure that new tree nodes are 
uniquely created and properly linked to their 
parents.  Unnecessary locking of boxes at upper 
levels of the tree in our initial implementation 
serialized particle insertion: we locked each box, 
and its parent, on the way down to the leaf in order 
to ensure that when a thread found the leaf box in 
which to insert a particle, the leaf was not 
transformed into a parent box by another thread. 

The improved version instead uses 
synchronizing reads of parent boxes to get to a leaf, 
and only then locks the leaf.  A retry mechanism 
ensures that if the leaf has been modified between 
the last read and obtaining the lock, then the lock 
is released and traversal to the new leaf continues.  
The mechanism is similar to a cmpxchg atomic 
instruction in which if the content of the targeted 
memory location is not equal to the expected 
content, then the exchange is not performed. 
 

 

 
Figure 6: Weak (top, 64K particles/processor) and 
strong (bottom, 64K total particles) scaling performance 
of the initial FMM implementation. 
 

Figure 6 demonstrates that while the 
implementation described above does quite well 
under weak scaling assumptions, it does not fare as 
well when the number of particles is held constant 
as processors are added. 

The problem appears to be the result of the 
coarse granularity of our parallelization strategy.  
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As described above, parallelism comes from tree 
traversals, and is therefore limited by the number 
of nodes in the tree, low compared to the number of 
particles.  Additionally the amount of work per node 
is not consistent in the adaptive algorithm, 
depending as it does on the number of particles a 
node contains (if a leaf), and the number and 
quality of its neighbors.  The very slow single-
thread performance of the MTA makes it 
particularly susceptible to this kind of load 
imbalance. 

 

 
Figure 7: Improved strong scaling due to lowering the 
maximum particles per leaf from 128 to eight. 
 

We have found that one way to address both 
problems at once is to adjust the maximum number 
of particles per leaf.  This is a runtime parameter to 
the algorithm, allowing the following tradeoff: more 
particles per leaf means a shallower tree, fewer 
nodes, thus fewer interactions between nodes and 
greater accuracy; fewer particles per leaf means a 
deeper tree, more interactions between nodes, more 
savings but less accuracy, and for our purposes, 
more parallelism.  An additional benefit is more 
consistency in the work per box, since that work is 
dependent on the particles in a box, and as the 
maximum particles per box decreases the variance 
in the number of particles per box also decreases. 
Figure 7 demonstrates the improvement in scaled 
performance that results from decreasing the 
particles per leaf from 128 down to eight. 

Finally, we describe a completely different 
approach to parallelizing interaction computation 
that is likely feasible only on the MTA: we move the 
granularity of parallelism from the nodes 
participating in the interactions down to the 
interactions themselves. 

In the original formulation of the adaptive FMM 
algorithm, and in every implementation of it we 
have seen, the interaction lists are parameterized 
by the source node, that is, the node for which the 
interactions are to be computed.  This leads to a 
straightforward computation partitioning strategy 
for parallelizing interactions: divide nodes across 
processors based on the total work as determined 
by each node's list contents, then compute 
interactions for the nodes in parallel.  A major 
advantage of this strategy is the absence of the 
need to synchronize updates to the fields of a node 
after each computation. 
 

 
Figure 8: Improved strong scaling due to more fine-
grained parallelization of interaction computation. 
 

We instead modify the list creation phase to 
create a single global interaction list, and then 
parallelize the loop that goes through the list. Each 
thread computes a single interaction and then 
executes a readfe/writeef combination to 
atomically update the appropriate field.  Figure 8 
demonstrates the effectiveness of this approach.  
Note that it enables significantly more parallelism 
even when the number of particles per box is high.  
It is unclear whether the drop in efficiency at high 
processor counts is the result of contention or 
residual load imbalance due to variance in the time 
to compute interactions.  Another question for 
future exploration is whether we can similarly crack 
open the computation in the upward and downward 
passes. 

 

4.4 Discrete Event Simulation 
Discrete-event simulations (DES) are a special 

class of computer systems simulation in which the 



 

 - 10 - 

ordering and timing of events is the main focus of 
interest. These systems primarily focus on the 
timing or time stamp of an activity, when it 
commences or ceases within a system. For example, 
in simulating computer networks to estimate 
effective system capacity or queue sizes, the 
important parameters may be the start time and 
duration of job processing rather than details of the 
signal transmission in the network. Thus, in such a 
problem, it is not efficient to advance time in small 
fixed time steps but to advance to the time of the 
next event. Since events can occur at any time, the 
time advances in non-uniform and can be either 
very small or very large. Typical applications of the 
discrete-event simulation systems include factory 
layout and process planning, transport systems, 
telecommunication networks and office 
management systems. 

The model development process in a DES 
system begins with identifying the important events 
that occur in a real system. Typically, the events 
and their consequences that influence the progress 
of a simulation are stored in a ‘list’ or a ‘queue’. The 
simulation is progressed by working through the 
time-stamped ‘event list’.  These calculations are 
inherently sequential and exhibit very low memory 
locality. Optimization techniques such as look-
ahead and roll-back have been used to process the 
events in the event list out-of-order. But the 
overheads involved in implementing let alone 
parallelizing these techniques are very large. 

We have ported and optimized a simple DES 
kernel onto the MTA-2 system.  The kernel consists 
of a priority queue implementation and two loops: 
the first loop generates random events and inserts 
them into the queue; the second removes events 
from the queue in timestamp order. 

A straightforward parallelization strategy for 
the two loops simply serializes insertion and 
removal from the queue via a lock is shown in 
Figure 9: 

 

 
 
 

However, this code performs extremely poorly on 
the MTA, even on a single processor, due to the lack 
of actual parallelism.  Our goal for this initial 
exploration was to attempt to improve the 
performance of the kernel by taking advantage of 
the extremely fine-grained synchronization 
mechanisms offered by the MTA to enable 
simultaneous insertions or removals from the 
priority queue. 

The priority queue implementation is binary 
tree-based. Both insertion and removal operations 
maintain the invariant that a parent is smaller 
than both of its children -- thus the smallest 
element is located at the root – and, moreover, do 
so in O(log n) operations. The sequential operations 
are implemented as follows: 

 
• Insert: add the element as a leaf; move the 

element up the tree, swapping with its 
parent, until its timestamp is greater than 
that of the parent. 

 
• Remove: remove the root and replace it with 

the last leaf; move the new root down the 
tree, swapping with the smallest child, until 
both children are larger. 

 
Insertions can occur in parallel so long as 1) 

each newly inserted element is given a unique slot, 
and 2) the test for whether a swap is necessary 
occurs atomically with the actual swap, which also 
must be an atomic operation, so two threads do not 
attempt to swap the same parent with different 
children at the same time.  We ensure the first 
condition is met through the use of the 
int_fetch_add()intrinsic procedure, which 
atomically increments an integer  variable, to find 
the next available slot in the tree.  We lock the 
parent and child before checking, and potentially 
swapping, to ensure the second condition holds. 

Similarly, removals can occur in parallel so long 
as 1) a unique leaf is found and moved to replace 
the removed root, 2) the new root is not removed 
prior to a necessary swap with one of its new 
children, and 3) the tests for swaps, and the swaps, 
occur atomically.  Again, the int_fetch_add() 
intrinsic enables us to meet the first condition, 
while locks around the parent and each of its 
children ensure the remaining two conditions hold. 

  

For 1 to MAX_ELEMENTS in Parallel 
   Create an event with a random timestamp 
   Lock() 
   Insert event in Priority Queue 
   Unlock() 
 
For 1 to MAX_ELEMENTS in Parallel 
   Lock() 
   Remove the event with minimum timestamp 
   Unlock() 

Figure 9: DES kernel using the priority queue method 
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Figure 10: Performance of the parallelized insertion 
(top) and removal (bottom) loops on a single processor. 
 
 

To evaluate the effectiveness of our fine-
grained locking strategy on MTA hardware we 
compare the running times of a kernel using our 
improved insert and remove routines with a version 
that serializes insertions and removals with a 
coarse-grained lock. 

Figure 10 compares performance of the two 
implementations on a single processor as the 
number of elements inserted and removed 
increases.  The fine-grained locking in the insertion 
algorithm appears to allow hardware threads to 
fully utilize the resources of the processor: the 
speedup over the serial execution is nearly 40X.  
The improvement for the removal algorithm, on the 
other hand, tops out at 8X.  While a significant 
improvement, the lower factor suggests that 
contention is preventing threads from fully utilizing 
the resources available even on a single processor. 

Figure 11, which demonstrates the 
performance of multiple processors operating on a 
fixed (256K) number of elements, confirms these 
suspicions: while the insertion routine exhibits 
near-perfect scaling as the number of processors 
increases, the removal routine does not scale at all.   
 

 

 
Figure 11: Multiprocessor scaling performance of the 
insertion (top) and removal (bottom) loops.  The number 
of elements is fixed at 256K. 
 

At this point we do not see any obvious means 
of improving our locking strategy for removals.  
Perhaps the best path forward is to determine 
whether removal is actually on the critical path of a 
more realistic discrete event simulation, and if so to 
look into different data structures and/or 
implementations of the priority queue.  
Additionally, we still need to ensure that insertions 
can occur simultaneously with removals under our 
current locking strategy. 
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5 Inferring Eldorado Performance 
Because the MTA-2 is no longer a commercial 

product, perhaps the most important question we 
set out to answer with this work is: What do these 
experiments on a 40-processor MTA-2 tell us about 
the potential performance of our applications on 
Eldorado? 

A major change from the MTA-2 to the Eldorado 
architecture is the move away from uniform memory 
access latency. MTA-2 programmers are encouraged 
not to be concerned with memory access locality, but 
the extent to which such locality must be considered 
on Eldorado is not yet known. One encouraging 
observation is that the FMM algorithm provides a 
great deal of locality that we have not exploited in 
our current implementation.  On the other hand, 
the tree construction algorithm and the cracked 
open interaction computation of our implementation 
are both heavily dependent on low latency 
synchronization provided by MTA-2. Similarly, our 
discrete event simulation algorithms rely heavily on 
the low-latency synchronization provided by the 
MTA-2. It is yet not clear how these algorithms will 
perform on Eldorado if the synchronization cost is 
higher than that on the MTA-2, or if the 
synchronization cost depends on the placement of 
synchronized objects within the system’s memory. 

6 Related Work 
This research follows several earlier 

investigations into the suitability of multithreading 
(as implemented by the MTA-2 and its predecessor) 
for scientific computing. Snavely et al [22] 
investigated the performance of several kernels and 
applications on a Tera MTA system, the 
predecessor to the MTA-2. Oliker and Biswas [21] 
considered the suitability of the MTA approach for 
irregular, dynamic applications. Miyamoto and Lin 
[19] considered SPMD programs written in the 
Titanium programming language [23] on the MTA 
platform. Our work complements this previous work 
by examining applications and kernels from 
problem domains that were not previously 
considered, on a recent incarnation of the 
architecture. 

Henry et al [17] present an implementation and 
preliminary performance results of a discrete-event 
simulation kernel on the MTA. This particular 
kernel is designed for modeling large-scale computer 
networks. Performance results show that the 
implementation is competitive with a single 
processor system and scales only if the number of 

timelines is large, i.e. the timelines are greater than 
the number of streams available on the MTA 
system.  

Bokhari and Sauer [8] investigated dynamic 
programming sequence alignment algorithms for 
DNA sequences on the Cray MTA-2 system. Their 
algorithms are reported to scale to up to eight MTA-
2 processors and the implementation relies 
extensively on the use of full/empty bits in MTA-2 
memory to facilitate parallel execution in the 
dynamic programming algorithms. They do not 
discuss performance comparisons with their 
algorithm on other systems, or with other 
algorithms. 

7 Conclusions 
General purpose platforms like the Cray 

XT3 [1] successfully address a broad set of scientific 
computing requirements. However, some important 
types of algorithms, such as graph theoretic and 
pointer-chasing algorithms, cause data access 
patterns that do not map well to traditional cache-
based architectures. The MTA-2 uses an approach 
that is strikingly different from this traditional 
system architecture, an approach that can result in 
extremely high utilization and excellent scalability 
for these troublesome algorithms. In this report, we 
have shown quantitatively that applications from 
several areas, including molecular dynamics, fast 
multipole methods, and discrete event simulations 
can perform well on the MTA-2 architecture. 

The MTA-2 was not a commercially successful 
product for Cray. Nevertheless, because of the 
Eldorado platform, the highly multi-threaded model 
remains a viable option to support high 
performance computing. When Eldorado systems 
become available, we expect to perform a similar 
evaluation to the one described in this report as 
part of our continuing system evaluation efforts, 
and anticipate an interesting and insightful 
comparison of that new architecture’s performance 
with the results presented in this report. 
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