
 - 1 - 

Performance Modeling of Emerging HPC Architectures 
Nikhil Bhatia, Sadaf R. Alam and Jeffrey S. Vetter 

Computer Science and Mathematics Division 
Oak Ridge National Laboratory 

Oak Ridge, TN, USA 37831 
bhatia,alamsr,vetter@ornl.gov 

 
Abstract. Current state-of-art HPCMOD performance modeling techniques primarily rely on combining performance 

profile of an application on a well-known HPC architecture, and the machine characteristics of an emerging architecture to 
project an application’s performance on the emerging architecture. Existing profiling and tracing tools on well-known 
architectures are typically used to collect the necessary performance data by executing applications and benchmarks on 
available systems. Since the performance enhancing features of novel processing devices can be significantly different from a 
conventional microprocessor system, current performance modeling schemes have limited applicability on systems like the 
Cray X1E vector supercomputer and parallel systems with accelerator devices like Cray XD1, which contains FPGAs. We 
employ an application modeling paradigm that allows a user to develop not only “architecture aware” but also “application 
aware” performance models. We extend the Modeling Assertions (MA) framework that permits a user to develop multi-
resolution, parameterized symbolic models. We demonstrate the application of our modeling scheme by augmenting the MA 
models with performance enhancing attributes of the Cray X1E Multistreaming Processors (MSPs). Using the extended MA 
framework, we develop symbolic performance models of critical code blocks of an HPCMOD TI-06 benchmark called 
HYCOM—an ocean modeling code. By representing the code characteristics of the critical code blocks in terms of both 
unique architectural attributes and key input parameters of the HYCOM application, we manage to reduce and sustain 
performance prediction error rates to less than 30%. 

1 Introduction 
Current state-of-art HPCMOD performance modeling techniques primarily rely on combining 

the performance profile of an application on a well-known HPC architecture, and the machine 
characteristics of an emerging architecture to project an application’s performance on the 
emerging architecture [9, 13]. Existing profiling and instruction tracing tools on the well-known 
architectures are typically used to collect the necessary performance data by executing 
applications and benchmarks on the available systems [17]. Since the performance enhancing 
features of novel processing devices can be significantly different from a conventional 
microprocessor-based system, current performance modeling schemes have limited applicability on 
systems like the Cray X1E vector supercomputer and parallel systems with accelerator devices like 
the Cray XD1, which contains FPGAs [14]. The ever-increasing gap between the processor speeds 
and memory access speeds known as the memory wall in the microprocessor-based systems has led 
to the design of these novel HPC architectures [1, 2, 15]. Our study focuses on the Cray X1E 
system, which incorporates vectorization and multistreaming capabilities in its Multi-streaming 
processors (MSPs) to reduce the impact of memory wall on the performance of scientific 
applications [3]. 

Due to the novel architectural attributes and unavailability of traditional profiling and tracing 
tools, the current HPCMOD performance modeling techniques are not sufficient to capture the 
performance enhancing features of the Cray X1E system. In addition to the performance attributes 
of the target architecture, it is essential to understand the workload requirements of the 
application for predictive performance modeling. Based on these two observations, we employ an 
application modeling paradigm that allows a user to develop not only “architecture aware” but also 
“application aware” performance models [8]. We extend the Modeling Assertions (MA) framework, 
which allows a user to develop multi-resolution, parameterized symbolic models. First, we ensure 
that the MA framework permits the user to incorporate the unique attributes of the Cray X1E 
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architecture [7]. This is achieved by adding new performance metrics that can be included in a 
symbolic model to quantify the degree of multistreaming and vectorization in an X1E MSP. 
Second, we instrument the critical code blocks of an application using the MA API annotations 
with X1E specific attributes to make our modeling process “architecture aware”. Third, we identify 
key input parameters of the application and develop “application aware” symbolic models. Finally, 
we implement runtime measurement and model validation capabilities in the MA framework. The 
Cray Performance Analysis Toolkit (Cray PAT) provides a collection of tools and an API to collect 
profiling, tracing and hardware counter data as the application executes on an X1E MSP [4]. We 
include the Cray PAT API calls within the MA framework so that the performance projections of 
MA symbolic models can be readily validated with the runtime data. We demonstrate the 
application of our MA scheme with the Cray X1E extensions for performance modeling of critical 
code blocks of an HPCMOD TI-06 benchmark called HYCOM, which is an ocean modeling code 
[11]. By representing the code characteristics of the critical code blocks in terms of both key 
application parameters and architectural parameters, we successfully capture the performance 
characteristics of HYCOM on a unique architecture.  

The paper layout is as follows: Section 2 gives brief overview of the HYCOM code, the Modeling 
Assertions (MA) framework and the Cray X1E platform. Section 3 provides implementation details 
of the MA attributes for the Cray X1E architecture. Experiments and results are presented in 
Section 4. Finally, Section 5 concludes the research and outlines future research plans.  

2 Overview 
2.1 HYCOM 

The Hybrid Coordinate Ocean Model (HYCOM) is a general circulation model, which has been 
developed in collaboration between the University of Miami, the Los Alamos National Laboratory, 
and the Naval Research Laboratory [11]. HYCOM addresses the known shortcomings of vertical 
coordinates of its predecessor, MICOM. The vertical coordinates enable smooth transition between 
the upper-ocean mixed layer, shallow water regions and very shallow water regions in ocean. The 
HYCOM user has control over setting up the model domain, generating the force fields, and 
ingesting either the climatology or output fields from other model simulations to use for boundary 
and interior relaxation. The model is parallelized using the message passing library (MPI) and 
multi-threading using OpenMP. Since the Cray X1E system is a distributed memory system, we 
consider the MPI based implementation for our performance analysis and modeling studies. 

HYCOM uses a two-dimensional Cartesian coordinate grid to map a three-dimensional spatial 
grid (i x j x k) that represents ocean or land or regions. The grid is subdivided into tiles in i 
and j directions. In order to change the region size or the number of layers, the user can change i, j 
and k parameters in a file called dimensions.h. Default grid is 57 by 52, and 16 vertical layers 
for the Atlantic 2.00 degree domain. The results presented in this paper are conducted with TI-06 
standard size benchmark, which uses a 1500 by 1100 grid, with 26 vertical layers. 

There are two main phases of calculation in HYCOM: baroclinic and barotropic. The 
calculations in a HYCOM simulation time step include: 1) continuity equation, 2) advection and 
diffusion, 3) momentum, 4) barotropic calculation, 5) thermal forcing function, 5) hybrid coordinate 
grid generation, 6) vertical diffusion, mixing and convection calculations for velocity coordinates. 

2.2 Modeling Assertions Framework (MA) 
The MA approach for symbolic model development encapsulates features of analytical and 

empirical measurement based modeling schemes [7]. The MA framework has two main 
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components: an API and a post-processing toolset. The MA API is used to annotate the source code 
with symbolic expressions that represent the expected workload of a given code block. This is 
similar to analytical modeling strategies since an application input parameters are used to 
describe the expected workload. As the application executes, the runtime system captures 
important information in trace files using profiling libraries such as PAPI (hardware counter) [5] 
and PMPI (MPI profiling API). This process is similar to the empirical measurement based 
techniques, where target system features are incorporated in application modeling. We have 
included a set of performance attributes to the symbolic expressions that augment quantitative 
information with qualitative information. For instance, a user can write a symbolic expression for 
the number of memory operations using an application’s input parameters and can then augment 
it with the anticipated memory access pattern. 

The trace files generated by the MA API are post-processed to validate, analyze, and construct 
models. The post-processing toolset is a collection of tools or Java classes. The post-processor 
currently has three main classes: model validation, control-flow model creation and symbolic model 
generation classes. This symbolic model can be evaluated and is compatible with MATLAB and 
Octave. If developed carefully, the symbolic MA models allow a user to not only explore the 
sensitivity of an application for future problem sizes but also understand the workload distribution 
and mapping schemes and potential hotspots and bottlenecks [8].  

2.3 Cray X1E Architecture 
The Cray X1E is distributed shared memory system with globally addressable memory. The 

primary functional building block of a X1E is a compute module [3]. A compute module contains 
four multi-chip modules (MCMs), local memory, and System Port Channel I/O ports. Each MCM 
contains two multi-streaming processors (MSPs). Each MSP is comprised of 4 single-streaming 
processors (SSPs). Each SSP contains two deeply-pipelined vector units running at 1.13 GHz and a 
single scalar unit running at 0.565 GHz. All SSPs within a MSP share a 2MB E-cache and each 
SSP has a 16KB Data cache and a 16B instruction cache.  

The Cray X1E compilers can exploit the data level parallelisms by vectorizing inner loops so 
they execute in the vector units of an SSP. The compiler can also parallelize outer loops such that 
the loops iterations can be executed concurrently on each of the four SSPs within an MSP. 
Together, these two features can result in a theoretical peak performance of 18 GFLOPS/MSP. 
From the memory subsystem point of view, the memory hierarchy is different for scalar and vector 
memory references. Vector memory references are cached in the E-cache but not in the D-cache. 
On the other hand, the scalar memory references are cached in the E-cache as well as the D-cache. 
The vector register space acts as a level-1 cache for vector memory references. The E-cache acts a 
level-2 cache for scalar memory references.  

3 Implementation 
We extended our MA framework to provide new API calls to write symbolic models on the Cray 

X1E and validate them at runtime. On the X1E system, loops are optimized by the compilers to 
obtain maximum performance on the X1E MSP. Hence, we provide a mechanism to predict 
runtimes of critical loop blocks on X1E using our extensions. The modifications to the MA 
framework to model the loops include: a loopmark listings analyzer, X1E processor performance 
attributes, X1E memory bandwidth attributes, and an infrastructure for runtime performance 
model validation and prediction.  Here we briefly describe the three extensions to the MA 
framework; details can be found in [10]. 
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3.1 Loopmark Listings Analyzer 
The Cray X1E Fortran and C/C++ compilers generate text reports called loopmark listings that 
contain information about optimizations performed when compiling a program, such as whether a 
given loop was vectorized and multi-streamed [4]. To support our modeling approach, we have 
created a loopmark analyzer that can generate an analysis file. The tuples in the analysis file 
indicate whether a loop has been multi-streamed (mflag=1) and/or vectorized (vflag=1). We 
introduce an abstract definition that includes both flags, which we call the “MV” score of a loop.  

3.2 X1E processor performance attributes 
Based on the information gathered from our loopmark listing analyzer, we introduce 

“architecture aware” metrics within the MA framework for predicting application run times on the 
X1E. Our first metric is the average vector length (AVL). Each Cray X1E SSP has two vector units; 
both contain vector registers that can hold 64 double-precision floating point elements. Thus, the 
peak memory bandwidth can be obtained if all 64 registers are utilized. In other words, if AVL for 
a loop is less than 64, it will be unable to utilize the peak memory bandwidth. Our performance 
models incorporate this penalty if AVL is less than AVLmax. The AVL of a loop can be computed 
using the loop bounds of a fully vectorized loop. The loop bounds of critical loops can be 
symbolically expressed as functions of input parameters of an application. Therefore, we can 
express AVL in the form of MA annotations.  

3.3 X1E memory bandwidth attributes 
In addition to AVL, there are certain performance attributes like memory bandwidth 

requirements that depend on an application’s intrinsic properties. For instance, memory access 
patterns of critical loops determine spatial and temporal locality of a loop block and its demand for 
memory bandwidth. The achievable bandwidth depends on architectural complexities such as sizes 
and bandwidths of D-cache, E-cache and the main memory. On the X1E system, these 
architectural complexities in turn depend on compiler generated optimizations as specified by the 
MV score of a loop block. The peak memory bandwidth for vector memory references on Cray X1E 
is ~34 GBPS and for scalar memory references is ~4.5 GBPS.  

Due to the lack of sufficient memory tracing tools for the Cray X1E system and a unique 
memory subsystem hierarchy for scalar and vector memory operations, quantifying an 
application’s temporal and spatial localities precisely on the Cray X1E is not a straightforward 
task. Therefore, it becomes necessary to quantify an application’s memory bandwidth through 
empirical methods. We use prior knowledge of an application and its profile information, obtained 
from various performance tools like TAU [6], KOJAK [12] and CrayPAT (Performance Analysis 
Toolkit) [4]. 

We characterize the memory bandwidth requirements of the critical loops across three 
dimensions. The first dimension is the MV score of the loop. The second and the third dimension 
are the loop’s intrinsic features like spatial and temporal localities [16]. In our current approach 
we categorize a loop’s temporal locality (TL) and spatial locality (SL) into three distinct levels. 
These levels are described in Table 1. 

Locality Level Characteristics 
Level 0 EXTREMELY LOW 
Level 1 MODERATE 
Level 2 EXTREMELY HIGH 

Table 1: Locality level abstraction description 

  MV=00 MV=10 MV=01 MV=11
SL=0 0.2 0.8 2.5 10.0 
SL=1 0.3 1.2 4.0 16.0 
SL=2 0.4 1.6 6.0 24.0 

Table 2: Memory bandwidth (GBPS) for TL=0  
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 MV=00 MV=10 MV=01 MV=11 
SL=0 0.3 1.2 3.0 12.0 
SL=1 0.4 1.6 5.0 20.0 
SL=2 0.6 2.4 7.0 28.0 

Table 3: Memory Bandwidths (GBPS) for TL =1 

 MV=00 MV=10 MV=01 MV=11
SL=0 0.4 1.6 3.5 14.0 
SL=1 0.6 2.4 6.0 24.0 
SL=2 0.8 3.2 8.25 34.0 

Table 4: Memory Bandwidths (GBPS) for TL=2 

In order to characterize the memory bandwidth requirements for the three memory bandwidth 
dimensions, we run a memory benchmark called MEMBENCH that benchmarks the memory 
hierarchy of a system for different access patterns. We formulate the observed memory 
bandwidths across the three dimensions in Table 2-4. Table 2 presents memory bandwidths for 
TL=0 and different spatial localities and MV scores. Similarly Table 3 lists memory bandwidth for 
TL=1 and Table 4 lists memory bandwidth for TL=2. All bandwidths are reported in GBPS. 

3.4 Runtime performance model validation and prediction 
After collecting the empirical performance data and characterizing performance attributes of 

the X1E MSP processor, we formulate performance validation and runtime performance prediction 
techniques. MA performance attributes are validated with X1E hardware counter values. The X1E 
provides native counters to measure AVL, Loads and Stores (both vector and scalar), and floating 
point operations (vector and scalar). We use the PAPI library to capture these counter values [5]. 

We compute the execution times according to mathematical formulae that consider two 
components of execution time of a loop: first, the time taken to do the floating point-computation; 
and second, the time taken to access memory subsystem. On the Cray X1E system, the two 
runtime components (shown in Figure 1) have two representations: one for vector and another for 
scalar execution: Tv and Ts. The memory access times are Tvm and Tsm, and the compute times are 
Tvc and Tsc respectively. These formulae are based on the MV score of a loop. If a loop is vectorized, 
the runtime is predicted using the formula Tv+Ts. If the loop is also multi-streamed, the peak 
processor performance is 18 GFLOPS; otherwise it is 4.5 GFLOPS. If a loop is not vectorized, the 
runtime is predicted using the formula for Ts. If the loop is also multi-streamed the peak processor 
capability is 2.26 GFLOPS; otherwise it is 0.565 GFLOPS. Note that the value of bandwidth (BW) 
is driven by the three-dimensional memory requirements explained in the previous section. In 
Figure 1, VFLOPS refers to the vector floating point operations, VLOADS refer to the vector load 
operations, VSTORES refers to the vector store operations, SFLOPS refers to the scalar floating 
point operations, SLOADS refers to the scalar load operations and SSTORES refers to the scalar 
store operations.  
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Figure 1: Tv is the time for vector processing and Ts is the time for scalar processing 

4 Experiments and Results 
We used the MA framework to build symbolic models for HYCOM and used these models to 

predict the runtime of the most time-critical loops. There are 18 such loop blocks that have been 
optimized in the TI-06 HYCOM release to exploit the multi-streaming and vector resources of the 
Cray X1E system. 
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4.1 Memory bandwidths of loops 
The memory bandwidth is a crucial metric in determining the performance of an application. 

Since, memory bandwidth of a loop cannot be obtained on a novel architecture using existing 
HPCMOD memory tracing tools; we use empirical information to measure the observed 
bandwidths listed in Table 5 (note that the peak bandwidth depends on the MV score of a loop). 
Moreover, we estimate the SL and TL ranges on these measured bandwidth values. The 
percentage of peak bandwidth obtained by a loop enables us to compute SL and TL values for a 
given loop block. 

Loop MV Observed 
B/W 

Peak 
B/W 

SL TL

0 11 14.0 34.0 0 2 

1 11 14.0 34.0 0 2 

2 10 0.8 3.2 0   0   

3 10 0.8 3.2 0  0   

4 11 14.0 34.0 0 2 

5 11 16.0 34.0 1 0 

6 11 14.0 34.0 0 2 

7 11 12.0 34.0 0 1 

8 11 34.0 34.0 2 2 
 

Loop MV Observed 
B/W 

Peak 
B/w 

SL TL

9 01 3.0 8.5 2 2 

10 11 10.0 34.0 0 0 

11 11 28.0 34.0 2 1 

12 11 28.0 34.0 2 1 

13 11 20.0 34.0 1 1 

14 11 24.0 34.0 1 2 

15 11 28.0 34.0 2 1 

16 01 3.5 8.5 0 2 

17 01 2.5 8.5 0 0 
 

Table 5: Memory Bandwidths of HYCOM loops obtained on 24 MSPs for 1 time-step 
 

In order to identify the most time critical loop blocks, we characterized the loops according to 
their independent contribution to the overall application runtime for a single time-step run with 
24 MSPs. Figure 2 shows the distribution of the loop runtimes for TI-06 standard benchmark run 
on 24 MSPs. Loop 0, loop 9, loop 10, loop 13, loop 16 and loop 17 constitute around 90% of the total 
runtime of these loops for the run.  
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Figure 2: Distribution of runtime across the optimized loop blocks 

4.2 Performance prediction results 
We validated our technique on the 18 optimized loops by collecting hardware counter 

information for 48 simulation time-steps on 24, 47 and 59 MSPs experiments. We used the 
hardware counter values and memory bandwidths from Table 5 to predict the runtime of these 
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loops according to our prediction formulae as described in section 3.4. We then compared the 
predicted runtimes with the measured runtimes on the Cray X1E system. The error rates are 
computed as: 

Measured

edictedMeasured
Time

TimeTimeError )( Pr−= . 

We observed that our prediction techniques for predicting the runtime for the 18 optimized 
loops in TI-06 HYCOM code consistently provide low error rates (<30%). Results for 24 and 59 
MSP experiments are shown in Figure 3 and Figure 4 respectively. The X-axis represents the 18 
loops which we used to validate our prediction strategy. The Y-axis represents the error-rates 
obtained by using our strategy for predicting runtimes compared with 3 other strategies. Our 
prediction strategy is represented by the keyword “pred”. The second strategy which we devised is 
represented by “pred_novl”. The “pred_novl” strategy does not utilize the AVL for the loops when 
predicting a loop’s runtime. The third and the fourth strategies also do not consider the AVL while 
predicting the runtime for the loops. Apart from not considering the AVL, these techniques also do 
not utilize the locality levels of the loops while predicting their runtimes. The third technique, 
“pred_lb”, uses the lowest bandwidth according to the MV score of a loop to predict the runtime. 
Finally, the fourth strategy, “pred_hb”, predicts using the highest available bandwidth for each 
loop depending upon its MV score. The positive spikes in the table represent error-rates when a 
technique is under-predicting the runtime. That is, the observed runtime is greater than the 
predicted runtime. Correspondingly, the negative spikes represent the error-rates when a 
technique “over-predicts” the runtime.  
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Figure 3: Performance predictions with 24 MSPs Figure 4: Performance prediction on 59 MSPs 

The loops 2 and 3 have an MV score of “10”—these loops are multi-streamed but not vectorized. 
Moreover, the estimated locality levels of theses loops are SL=0 and TL =0. Hence, the error-rate 
for “pred” is equal to the error-rates for “pred_novl”, and “pred_lb” strategies. However, the error-
rate for “pred_hb” is extremely high. The AVL for loop 14 is ~32.0. Therefore, we see a rise in the 
error-rate for the technique “pred_novl”. Also, the locality levels for loop 14 are SL=1 and TL=2 
because of which it achieves ~70% of the peak memory bandwidth. Therefore, the error-rate for 
“pred_lb” is extremely high due to not incorporating the AVL and the achieved memory bandwidth 
metric in the prediction technique. Finally, in loop 15, we observe that the “pred” strategy is 
under-predicting the runtime with a relatively high error-rate (~30%) and the “pred_lb” is over-
predicting with a low error-rate. The locality level for loop 15 is SL=2 and TL=1 and the obtained 
memory bandwidth is 80% the peak memory bandwidth. Therefore, the low error rates for 
“pred_lb” can be attributed to the exclusion of AVL information from the prediction strategy, which 
decreases the predicted time.  
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5 Conclusions and future plans 
We have demonstrated that the architecture aware attributes in the MA models are critical for 

reducing the performance prediction error rates in the TI-06 HYCOM standard benchmark. For 
the most time critical loop blocks in HYCOM, the error rates are reduced from over a 100% to less 
than 30%. Furthermore, the error rates are consistent for simulation experiments with different 
processor count or Cray X1E MSPs. In order to predict the overall application runtimes, we are 
planning to develop application aware symbolic models of critical calculation phases and to include 
MPI attributes in the MA framework. This will enable us to carry out performance prediction and 
scaling experiments for HYCOM and other TI-06 applications on existing and future DoD 
supercomputing systems. We anticipate that the MA modeling paradigm can prove to be useful in 
modeling HPCMOD applications on a variety of emerging architectures including the Multi-
Threaded Architecture (MTA2) and FPGA-accelerated HPC architectures by incorporating 
performance attributes specific to these architectures within the MA framework. 
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