
 - 1 -

Performance Modeling of Emerging HPC Architectures
Nikhil Bhatia, Sadaf R. Alam and Jeffrey S. Vetter

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN, USA 37831
bhatia,alamsr,vetter@ornl.gov

Abstract. Current state-of-art HPCMOD performance modeling techniques primarily rely on combining performance

profile of an application on a well-known HPC architecture, and the machine characteristics of an emerging architecture to
project an application’s performance on the emerging architecture. Existing profiling and tracing tools on well-known
architectures are typically used to collect the necessary performance data by executing applications and benchmarks on
available systems. Since the performance enhancing features of novel processing devices can be significantly different from a
conventional microprocessor system, current performance modeling schemes have limited applicability on systems like the
Cray X1E vector supercomputer and parallel systems with accelerator devices like Cray XD1, which contains FPGAs. We
employ an application modeling paradigm that allows a user to develop not only “architecture aware” but also “application
aware” performance models. We extend the Modeling Assertions (MA) framework that permits a user to develop multi-
resolution, parameterized symbolic models. We demonstrate the application of our modeling scheme by augmenting the MA
models with performance enhancing attributes of the Cray X1E Multistreaming Processors (MSPs). Using the extended MA
framework, we develop symbolic performance models of critical code blocks of an HPCMOD TI-06 benchmark called
HYCOM—an ocean modeling code. By representing the code characteristics of the critical code blocks in terms of both
unique architectural attributes and key input parameters of the HYCOM application, we manage to reduce and sustain
performance prediction error rates to less than 30%.

1 Introduction
Current state-of-art HPCMOD performance modeling techniques primarily rely on combining

the performance profile of an application on a well-known HPC architecture, and the machine
characteristics of an emerging architecture to project an application’s performance on the
emerging architecture [9, 13]. Existing profiling and instruction tracing tools on the well-known
architectures are typically used to collect the necessary performance data by executing
applications and benchmarks on the available systems [17]. Since the performance enhancing
features of novel processing devices can be significantly different from a conventional
microprocessor-based system, current performance modeling schemes have limited applicability on
systems like the Cray X1E vector supercomputer and parallel systems with accelerator devices like
the Cray XD1, which contains FPGAs [14]. The ever-increasing gap between the processor speeds
and memory access speeds known as the memory wall in the microprocessor-based systems has led
to the design of these novel HPC architectures [1, 2, 15]. Our study focuses on the Cray X1E
system, which incorporates vectorization and multistreaming capabilities in its Multi-streaming
processors (MSPs) to reduce the impact of memory wall on the performance of scientific
applications [3].

Due to the novel architectural attributes and unavailability of traditional profiling and tracing
tools, the current HPCMOD performance modeling techniques are not sufficient to capture the
performance enhancing features of the Cray X1E system. In addition to the performance attributes
of the target architecture, it is essential to understand the workload requirements of the
application for predictive performance modeling. Based on these two observations, we employ an
application modeling paradigm that allows a user to develop not only “architecture aware” but also
“application aware” performance models [8]. We extend the Modeling Assertions (MA) framework,
which allows a user to develop multi-resolution, parameterized symbolic models. First, we ensure
that the MA framework permits the user to incorporate the unique attributes of the Cray X1E

 - 2 -

architecture [7]. This is achieved by adding new performance metrics that can be included in a
symbolic model to quantify the degree of multistreaming and vectorization in an X1E MSP.
Second, we instrument the critical code blocks of an application using the MA API annotations
with X1E specific attributes to make our modeling process “architecture aware”. Third, we identify
key input parameters of the application and develop “application aware” symbolic models. Finally,
we implement runtime measurement and model validation capabilities in the MA framework. The
Cray Performance Analysis Toolkit (Cray PAT) provides a collection of tools and an API to collect
profiling, tracing and hardware counter data as the application executes on an X1E MSP [4]. We
include the Cray PAT API calls within the MA framework so that the performance projections of
MA symbolic models can be readily validated with the runtime data. We demonstrate the
application of our MA scheme with the Cray X1E extensions for performance modeling of critical
code blocks of an HPCMOD TI-06 benchmark called HYCOM, which is an ocean modeling code
[11]. By representing the code characteristics of the critical code blocks in terms of both key
application parameters and architectural parameters, we successfully capture the performance
characteristics of HYCOM on a unique architecture.

The paper layout is as follows: Section 2 gives brief overview of the HYCOM code, the Modeling
Assertions (MA) framework and the Cray X1E platform. Section 3 provides implementation details
of the MA attributes for the Cray X1E architecture. Experiments and results are presented in
Section 4. Finally, Section 5 concludes the research and outlines future research plans.

2 Overview
2.1 HYCOM

The Hybrid Coordinate Ocean Model (HYCOM) is a general circulation model, which has been
developed in collaboration between the University of Miami, the Los Alamos National Laboratory,
and the Naval Research Laboratory [11]. HYCOM addresses the known shortcomings of vertical
coordinates of its predecessor, MICOM. The vertical coordinates enable smooth transition between
the upper-ocean mixed layer, shallow water regions and very shallow water regions in ocean. The
HYCOM user has control over setting up the model domain, generating the force fields, and
ingesting either the climatology or output fields from other model simulations to use for boundary
and interior relaxation. The model is parallelized using the message passing library (MPI) and
multi-threading using OpenMP. Since the Cray X1E system is a distributed memory system, we
consider the MPI based implementation for our performance analysis and modeling studies.

HYCOM uses a two-dimensional Cartesian coordinate grid to map a three-dimensional spatial
grid (i x j x k) that represents ocean or land or regions. The grid is subdivided into tiles in i
and j directions. In order to change the region size or the number of layers, the user can change i, j
and k parameters in a file called dimensions.h. Default grid is 57 by 52, and 16 vertical layers
for the Atlantic 2.00 degree domain. The results presented in this paper are conducted with TI-06
standard size benchmark, which uses a 1500 by 1100 grid, with 26 vertical layers.

There are two main phases of calculation in HYCOM: baroclinic and barotropic. The
calculations in a HYCOM simulation time step include: 1) continuity equation, 2) advection and
diffusion, 3) momentum, 4) barotropic calculation, 5) thermal forcing function, 5) hybrid coordinate
grid generation, 6) vertical diffusion, mixing and convection calculations for velocity coordinates.

2.2 Modeling Assertions Framework (MA)
The MA approach for symbolic model development encapsulates features of analytical and

empirical measurement based modeling schemes [7]. The MA framework has two main

 - 3 -

components: an API and a post-processing toolset. The MA API is used to annotate the source code
with symbolic expressions that represent the expected workload of a given code block. This is
similar to analytical modeling strategies since an application input parameters are used to
describe the expected workload. As the application executes, the runtime system captures
important information in trace files using profiling libraries such as PAPI (hardware counter) [5]
and PMPI (MPI profiling API). This process is similar to the empirical measurement based
techniques, where target system features are incorporated in application modeling. We have
included a set of performance attributes to the symbolic expressions that augment quantitative
information with qualitative information. For instance, a user can write a symbolic expression for
the number of memory operations using an application’s input parameters and can then augment
it with the anticipated memory access pattern.

The trace files generated by the MA API are post-processed to validate, analyze, and construct
models. The post-processing toolset is a collection of tools or Java classes. The post-processor
currently has three main classes: model validation, control-flow model creation and symbolic model
generation classes. This symbolic model can be evaluated and is compatible with MATLAB and
Octave. If developed carefully, the symbolic MA models allow a user to not only explore the
sensitivity of an application for future problem sizes but also understand the workload distribution
and mapping schemes and potential hotspots and bottlenecks [8].

2.3 Cray X1E Architecture
The Cray X1E is distributed shared memory system with globally addressable memory. The

primary functional building block of a X1E is a compute module [3]. A compute module contains
four multi-chip modules (MCMs), local memory, and System Port Channel I/O ports. Each MCM
contains two multi-streaming processors (MSPs). Each MSP is comprised of 4 single-streaming
processors (SSPs). Each SSP contains two deeply-pipelined vector units running at 1.13 GHz and a
single scalar unit running at 0.565 GHz. All SSPs within a MSP share a 2MB E-cache and each
SSP has a 16KB Data cache and a 16B instruction cache.

The Cray X1E compilers can exploit the data level parallelisms by vectorizing inner loops so
they execute in the vector units of an SSP. The compiler can also parallelize outer loops such that
the loops iterations can be executed concurrently on each of the four SSPs within an MSP.
Together, these two features can result in a theoretical peak performance of 18 GFLOPS/MSP.
From the memory subsystem point of view, the memory hierarchy is different for scalar and vector
memory references. Vector memory references are cached in the E-cache but not in the D-cache.
On the other hand, the scalar memory references are cached in the E-cache as well as the D-cache.
The vector register space acts as a level-1 cache for vector memory references. The E-cache acts a
level-2 cache for scalar memory references.

3 Implementation
We extended our MA framework to provide new API calls to write symbolic models on the Cray

X1E and validate them at runtime. On the X1E system, loops are optimized by the compilers to
obtain maximum performance on the X1E MSP. Hence, we provide a mechanism to predict
runtimes of critical loop blocks on X1E using our extensions. The modifications to the MA
framework to model the loops include: a loopmark listings analyzer, X1E processor performance
attributes, X1E memory bandwidth attributes, and an infrastructure for runtime performance
model validation and prediction. Here we briefly describe the three extensions to the MA
framework; details can be found in [10].

 - 4 -

3.1 Loopmark Listings Analyzer
The Cray X1E Fortran and C/C++ compilers generate text reports called loopmark listings that
contain information about optimizations performed when compiling a program, such as whether a
given loop was vectorized and multi-streamed [4]. To support our modeling approach, we have
created a loopmark analyzer that can generate an analysis file. The tuples in the analysis file
indicate whether a loop has been multi-streamed (mflag=1) and/or vectorized (vflag=1). We
introduce an abstract definition that includes both flags, which we call the “MV” score of a loop.

3.2 X1E processor performance attributes
Based on the information gathered from our loopmark listing analyzer, we introduce

“architecture aware” metrics within the MA framework for predicting application run times on the
X1E. Our first metric is the average vector length (AVL). Each Cray X1E SSP has two vector units;
both contain vector registers that can hold 64 double-precision floating point elements. Thus, the
peak memory bandwidth can be obtained if all 64 registers are utilized. In other words, if AVL for
a loop is less than 64, it will be unable to utilize the peak memory bandwidth. Our performance
models incorporate this penalty if AVL is less than AVLmax. The AVL of a loop can be computed
using the loop bounds of a fully vectorized loop. The loop bounds of critical loops can be
symbolically expressed as functions of input parameters of an application. Therefore, we can
express AVL in the form of MA annotations.

3.3 X1E memory bandwidth attributes
In addition to AVL, there are certain performance attributes like memory bandwidth

requirements that depend on an application’s intrinsic properties. For instance, memory access
patterns of critical loops determine spatial and temporal locality of a loop block and its demand for
memory bandwidth. The achievable bandwidth depends on architectural complexities such as sizes
and bandwidths of D-cache, E-cache and the main memory. On the X1E system, these
architectural complexities in turn depend on compiler generated optimizations as specified by the
MV score of a loop block. The peak memory bandwidth for vector memory references on Cray X1E
is ~34 GBPS and for scalar memory references is ~4.5 GBPS.

Due to the lack of sufficient memory tracing tools for the Cray X1E system and a unique
memory subsystem hierarchy for scalar and vector memory operations, quantifying an
application’s temporal and spatial localities precisely on the Cray X1E is not a straightforward
task. Therefore, it becomes necessary to quantify an application’s memory bandwidth through
empirical methods. We use prior knowledge of an application and its profile information, obtained
from various performance tools like TAU [6], KOJAK [12] and CrayPAT (Performance Analysis
Toolkit) [4].

We characterize the memory bandwidth requirements of the critical loops across three
dimensions. The first dimension is the MV score of the loop. The second and the third dimension
are the loop’s intrinsic features like spatial and temporal localities [16]. In our current approach
we categorize a loop’s temporal locality (TL) and spatial locality (SL) into three distinct levels.
These levels are described in Table 1.

Locality Level Characteristics
Level 0 EXTREMELY LOW
Level 1 MODERATE
Level 2 EXTREMELY HIGH

Table 1: Locality level abstraction description

 MV=00 MV=10 MV=01 MV=11
SL=0 0.2 0.8 2.5 10.0
SL=1 0.3 1.2 4.0 16.0
SL=2 0.4 1.6 6.0 24.0

Table 2: Memory bandwidth (GBPS) for TL=0

 - 5 -

 MV=00 MV=10 MV=01 MV=11
SL=0 0.3 1.2 3.0 12.0
SL=1 0.4 1.6 5.0 20.0
SL=2 0.6 2.4 7.0 28.0

Table 3: Memory Bandwidths (GBPS) for TL =1

 MV=00 MV=10 MV=01 MV=11
SL=0 0.4 1.6 3.5 14.0
SL=1 0.6 2.4 6.0 24.0
SL=2 0.8 3.2 8.25 34.0

Table 4: Memory Bandwidths (GBPS) for TL=2

In order to characterize the memory bandwidth requirements for the three memory bandwidth
dimensions, we run a memory benchmark called MEMBENCH that benchmarks the memory
hierarchy of a system for different access patterns. We formulate the observed memory
bandwidths across the three dimensions in Table 2-4. Table 2 presents memory bandwidths for
TL=0 and different spatial localities and MV scores. Similarly Table 3 lists memory bandwidth for
TL=1 and Table 4 lists memory bandwidth for TL=2. All bandwidths are reported in GBPS.

3.4 Runtime performance model validation and prediction
After collecting the empirical performance data and characterizing performance attributes of

the X1E MSP processor, we formulate performance validation and runtime performance prediction
techniques. MA performance attributes are validated with X1E hardware counter values. The X1E
provides native counters to measure AVL, Loads and Stores (both vector and scalar), and floating
point operations (vector and scalar). We use the PAPI library to capture these counter values [5].

We compute the execution times according to mathematical formulae that consider two
components of execution time of a loop: first, the time taken to do the floating point-computation;
and second, the time taken to access memory subsystem. On the Cray X1E system, the two
runtime components (shown in Figure 1) have two representations: one for vector and another for
scalar execution: Tv and Ts. The memory access times are Tvm and Tsm, and the compute times are
Tvc and Tsc respectively. These formulae are based on the MV score of a loop. If a loop is vectorized,
the runtime is predicted using the formula Tv+Ts. If the loop is also multi-streamed, the peak
processor performance is 18 GFLOPS; otherwise it is 4.5 GFLOPS. If a loop is not vectorized, the
runtime is predicted using the formula for Ts. If the loop is also multi-streamed the peak processor
capability is 2.26 GFLOPS; otherwise it is 0.565 GFLOPS. Note that the value of bandwidth (BW)
is driven by the three-dimensional memory requirements explained in the previous section. In
Figure 1, VFLOPS refers to the vector floating point operations, VLOADS refer to the vector load
operations, VSTORES refers to the vector store operations, SFLOPS refers to the scalar floating
point operations, SLOADS refers to the scalar load operations and SSTORES refers to the scalar
store operations.

⎟
⎠
⎞

⎜
⎝
⎛=

+=

GFLOPSGFLOPS
VFLOPST

TTT

vc

vcvmv

18/5.4

⎟
⎠
⎞

⎜
⎝
⎛=

+=

GFLOPSGFLOPS
SFLOPST

TTT

sc

scsms

26.2/565.0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

AVLBW
VSTORESVLOADSTvm *10*

64*8*)(
9

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
= 910*

8*)(
BW

SSTORESSLOADSTsm

Figure 1: Tv is the time for vector processing and Ts is the time for scalar processing

4 Experiments and Results
We used the MA framework to build symbolic models for HYCOM and used these models to

predict the runtime of the most time-critical loops. There are 18 such loop blocks that have been
optimized in the TI-06 HYCOM release to exploit the multi-streaming and vector resources of the
Cray X1E system.

 - 6 -

4.1 Memory bandwidths of loops
The memory bandwidth is a crucial metric in determining the performance of an application.

Since, memory bandwidth of a loop cannot be obtained on a novel architecture using existing
HPCMOD memory tracing tools; we use empirical information to measure the observed
bandwidths listed in Table 5 (note that the peak bandwidth depends on the MV score of a loop).
Moreover, we estimate the SL and TL ranges on these measured bandwidth values. The
percentage of peak bandwidth obtained by a loop enables us to compute SL and TL values for a
given loop block.

Loop MV Observed
B/W

Peak
B/W

SL TL

0 11 14.0 34.0 0 2

1 11 14.0 34.0 0 2

2 10 0.8 3.2 0 0

3 10 0.8 3.2 0 0

4 11 14.0 34.0 0 2

5 11 16.0 34.0 1 0

6 11 14.0 34.0 0 2

7 11 12.0 34.0 0 1

8 11 34.0 34.0 2 2

Loop MV Observed
B/W

Peak
B/w

SL TL

9 01 3.0 8.5 2 2

10 11 10.0 34.0 0 0

11 11 28.0 34.0 2 1

12 11 28.0 34.0 2 1

13 11 20.0 34.0 1 1

14 11 24.0 34.0 1 2

15 11 28.0 34.0 2 1

16 01 3.5 8.5 0 2

17 01 2.5 8.5 0 0

Table 5: Memory Bandwidths of HYCOM loops obtained on 24 MSPs for 1 time-step

In order to identify the most time critical loop blocks, we characterized the loops according to
their independent contribution to the overall application runtime for a single time-step run with
24 MSPs. Figure 2 shows the distribution of the loop runtimes for TI-06 standard benchmark run
on 24 MSPs. Loop 0, loop 9, loop 10, loop 13, loop 16 and loop 17 constitute around 90% of the total
runtime of these loops for the run.

Loop blocks

0 123456 78

9

10

11

12

131415

16

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 2: Distribution of runtime across the optimized loop blocks

4.2 Performance prediction results
We validated our technique on the 18 optimized loops by collecting hardware counter

information for 48 simulation time-steps on 24, 47 and 59 MSPs experiments. We used the
hardware counter values and memory bandwidths from Table 5 to predict the runtime of these

 - 7 -

loops according to our prediction formulae as described in section 3.4. We then compared the
predicted runtimes with the measured runtimes on the Cray X1E system. The error rates are
computed as:

Measured

edictedMeasured
Time

TimeTimeError)(Pr−= .

We observed that our prediction techniques for predicting the runtime for the 18 optimized
loops in TI-06 HYCOM code consistently provide low error rates (<30%). Results for 24 and 59
MSP experiments are shown in Figure 3 and Figure 4 respectively. The X-axis represents the 18
loops which we used to validate our prediction strategy. The Y-axis represents the error-rates
obtained by using our strategy for predicting runtimes compared with 3 other strategies. Our
prediction strategy is represented by the keyword “pred”. The second strategy which we devised is
represented by “pred_novl”. The “pred_novl” strategy does not utilize the AVL for the loops when
predicting a loop’s runtime. The third and the fourth strategies also do not consider the AVL while
predicting the runtime for the loops. Apart from not considering the AVL, these techniques also do
not utilize the locality levels of the loops while predicting their runtimes. The third technique,
“pred_lb”, uses the lowest bandwidth according to the MV score of a loop to predict the runtime.
Finally, the fourth strategy, “pred_hb”, predicts using the highest available bandwidth for each
loop depending upon its MV score. The positive spikes in the table represent error-rates when a
technique is under-predicting the runtime. That is, the observed runtime is greater than the
predicted runtime. Correspondingly, the negative spikes represent the error-rates when a
technique “over-predicts” the runtime.

-120

-100

-80

-60

-40

-20

0

20

40

60

80

%
 E

rr
or

 ra
te

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Loop blocks

pred pred_novl pred_lb pred_hb

-80

-60

-40

-20

0

20

40

60

80

100

%
 E

rr
or

 ra
te

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Loop blocks

pred pred_novl pred_lb pred_hb

Figure 3: Performance predictions with 24 MSPs Figure 4: Performance prediction on 59 MSPs

The loops 2 and 3 have an MV score of “10”—these loops are multi-streamed but not vectorized.
Moreover, the estimated locality levels of theses loops are SL=0 and TL =0. Hence, the error-rate
for “pred” is equal to the error-rates for “pred_novl”, and “pred_lb” strategies. However, the error-
rate for “pred_hb” is extremely high. The AVL for loop 14 is ~32.0. Therefore, we see a rise in the
error-rate for the technique “pred_novl”. Also, the locality levels for loop 14 are SL=1 and TL=2
because of which it achieves ~70% of the peak memory bandwidth. Therefore, the error-rate for
“pred_lb” is extremely high due to not incorporating the AVL and the achieved memory bandwidth
metric in the prediction technique. Finally, in loop 15, we observe that the “pred” strategy is
under-predicting the runtime with a relatively high error-rate (~30%) and the “pred_lb” is over-
predicting with a low error-rate. The locality level for loop 15 is SL=2 and TL=1 and the obtained
memory bandwidth is 80% the peak memory bandwidth. Therefore, the low error rates for
“pred_lb” can be attributed to the exclusion of AVL information from the prediction strategy, which
decreases the predicted time.

 - 8 -

5 Conclusions and future plans
We have demonstrated that the architecture aware attributes in the MA models are critical for

reducing the performance prediction error rates in the TI-06 HYCOM standard benchmark. For
the most time critical loop blocks in HYCOM, the error rates are reduced from over a 100% to less
than 30%. Furthermore, the error rates are consistent for simulation experiments with different
processor count or Cray X1E MSPs. In order to predict the overall application runtimes, we are
planning to develop application aware symbolic models of critical calculation phases and to include
MPI attributes in the MA framework. This will enable us to carry out performance prediction and
scaling experiments for HYCOM and other TI-06 applications on existing and future DoD
supercomputing systems. We anticipate that the MA modeling paradigm can prove to be useful in
modeling HPCMOD applications on a variety of emerging architectures including the Multi-
Threaded Architecture (MTA2) and FPGA-accelerated HPC architectures by incorporating
performance attributes specific to these architectures within the MA framework.

Acknowledgements
We gratefully acknowledge financial support of the DoD High Performance Computing Modernization Program. The

submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-
00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for U.S. Government purposes.

References
1. AMD Dual-Core and Multi-Core Processors. http://www.amdboard.com/dual_core.html
2. The Cell Project at IBM Research, http://www.research.ibm.com/cell/
3. Cray X1E supercomputer. http://www.cray.com/products/x1e/
4. Optimizing Applications on Cray X1 Series Systems, available at http://docs.cray.com
5. Performance Application programming Interface (PAPI), http://icl.cs.utk.edu/papi/
6. Tuning and Analysis Utilities (TAU), http://www.cs.uoregon.edu/research/tau/
7. S. Alam, and J. Vetter, “A Framework to Develop Symbolic Performance Models of Parallel

Applications”, 5th International Workshop on Performance Modeling, Evaluation, and Optimization
of Parallel and Distributed Systems (PMEO-PDS 2006). To be held in conjunction with IPDPS 2006.

8. S. Alam and J. Vetter, “Hierarchical Model Validation of Symbolic Performance Models of Scientific
Applications,” European Conference on Parallel Computing (Euro-Par), 2006.

9. D. Bailey and A. Snavely, “Performance Modeling: Understanding the Present and Prediction the
Future,” European Conference on Parallel Computing (Euro-Par), 2005.

10. N. Bhatia, S. Alam and J. Vetter, “An Exploration of Performance Attributes for Modeling Emerging
HPC Architectures,” International Conference on High Performance Computing (HiPC), 2006
(submitted).

11. D. J. Kerbyson, and K. J. Barker, “A Performance Model and Scalability Analysis pf HYCOM Ocean
Simulation Application,” Proc. IASTED PDCS, 2005.

12. B. Mohr and F. Wolf, “KOJAK - A Tool Set for Automatic Performance Analysis of Parallel
Applications,” European Conference on Parallel Computing (EuroPar), 2003.

13. A. Snavely, et. al., “A Framework for Application Performance Modeling and Prediction,” ACM/IEEE
Supercomputing Conference, 2002.

14. O. Storaasli, S. Alam and M. Smith, “Cray XD1 Experiences and Comparisons with other FPGA-
based Supercomputer Systems”, Cray User Group (CUG) Conference, 2006.

15. J. Vetter, S. Alam, R. Barrett, C. McCurdy and P. Roth, “Characterizing Applications on the Cray
MTA-2 Multi-threaded Architecture,” Cray User Group Conference, 2006.

16. J. Weinberg, et. al., “Quantifying Locality in the Memory Access Patterns of the HPC Applications,”
ACM/IEEE Supercomputing Conference, 2005.

17. T. Yang, X. Ma and F. Mueller, “Predicting Parallel Applications’ Performance Across Platforms
using Partial Execution,” ACM/IEEE Supercomputing Conference, 2005.

