
An Analysis of System Balance Requirements for Scientific Applications

Sadaf R. Alam and Jeffrey S. Vetter
Oak Ridge National Laboratory

Oak Ridge, TN 37831, USA

Abstract

Scientific applications are diverse in terms of the re-
source requirements, and tend to vary significantly from
commercial applications. In order to provide sustained
performance, a target high performance computing (HPC)
platform must offer a balance between CPU performance to
memory, interconnect and I/O subsystems performance. We
characterize the system balance requirements for two large-
scale Office of Science applications, GYRO (fusion simula-
tion) and POP (climate modeling), and develop platform-
independent parameterized requirement models. We mea-
sure the parallel efficiencies for GYRO and POP on three
multiprocessor systems: an SMP cluster (IBM p690), a
shared-memory system (SGI Altix) and a vector supercom-
puter (Cray X1). The higher computational intensity and
interconnect bandwidth requirements of GYRO result in
higher performance efficiencies on the vector platform. At
the same time, small message sizes in POP benefit from low
MPI latencies of the shared-memory platform. Overall re-
sults confirm system balance requirements that are gener-
ated by the requirement models.

1. Introduction

The data access patterns and inter-processor commu-
nication requirements of a number of large-scale scien-
tific applications vary significantly from database and on-
line transaction processing applications. As a result, sev-
eral critical Office of Science applications tend to achieve
a small fraction of theoretical peak performance on SMP
clusters [17]. The current supercomputing systems re-
sources thereby limit the application scientists to simulate
only small variants or problem sizes. The large problem
configurations, which give a better approximation and un-
derstanding of the real science phenomenon, are often be-
yond the capabilities of current supercomputing resources.
These larger simulation runs however often share the un-
derlying algorithms and workload mapping and distribution
schemes within a given implementation of an application.

We therefore aim at designing the machine independent re-
quirement models of large-scale scientific workloads that
capture underlying algorithmic characteristics and that are
driven by workload and scaling parameters. The focus of
our study is the system balance requirements for scientific
workloads. The system balance is represented as a set of
ratios, for instance, ratio of the CPU performance to mem-
ory and interprocessor performance. We characterize the
system balance requirements for two large-scale Office of
Science applications, GYRO and POP. GYRO is a fusion
science code [4] while the Parallel Ocean Program (POP) is
a climate code [12].

As a first step to identify the system balance require-
ments of basic calculation phases, we collect empirical per-
formance data for two applications on two parallel systems,
IBM p690 and SGI Altix. GYRO and POP are written in
Fortran, and use MPI communication library. We define the
workload requirements in terms of floating-point computa-
tion, memory operations and message passing communica-
tion patterns and sizes. The first two costs depend on the
compiler and the underlying system hardware, but the pat-
terns and sizes of the MPI messages are platform indepen-
dent. We therefore normalize the floating-point and mem-
ory costs but precisely measure the MPI message patterns
and sizes. Although vendor-specific performance tools are
available on the p690 and Altix platforms, we use two
portable performance tools, TAU and mpiP, to collect a con-
sistent set of performance data. TAU (Tuning and Analy-
sis Utilities) is a performance analysis framework, which
has been designed to support performance analysis for a
general model of parallel computation [9]. It interfaces
with a number of tools including the hardware counter API
called PAPI (Performance Application Programming Inter-
face) [2]. mpiP is a profiling library for MPI-based appli-
cations [15]. It collects statistical information about MPI
functions.

We collect PAPI hardware counter data and identify the
scaling behavior of functions and MPI messages within a
basic phase of scientific calculations. We then develop a
hierarchical (multiple functions in a basic phase), phase-
based parameterized simulation models for GYRO and POP

that represent control flow in a simulation time-step and are
independent of the target platform. The models are vali-
dated using the experimental results. From the quantitative
data generated by the models, we derive memory byte-to-
flop ratio for the basic phases of calculation and inter-node
message transfer rates. This derived data is useful in iden-
tifying the appropriate machine balance requirements for
these applications. Micro-benchmarking and vendor sup-
plied data are used to determine the target system char-
acteristics. We measure parallel efficiencies on three tar-
get platforms: IBM p690 (an SMP cluster), SGI Altix (a
shared memory system) and Cray X1 (a vector supercom-
puter) at the Oak Ridge National Laboratory [16]. The
higher computational intensity and interconnect bandwidth
requirements of GYRO result in higher performance effi-
ciencies on the Cray X1 vector platform. At the same time,
small message sizes in POP benefit from low MPI laten-
cies of the SGI Altix platform. Overall results confirm the
system balance requirements that are generated by the re-
quirement models.

The paper outline is as follows: section 2 presents
an overview of GYRO and POP applications. Sec-
tion 3 describes our workload characterization and mod-
eling methodology. Section 4 provides the validation and
performance prediction experiments and results. An out-
line of the related work in the area of scientific workload
characterization and performance prediction is presented in
section 5. Finally, section 6 concludes the research.

2. Applications

A number of large-scale scientific applications have
some common characteristics: there is a notion of dis-
cretization of continuum to a multi-dimensional grid, a
mapping of time to discretized events and mapping and dis-
tribution of grid points to the processing nodes of a par-
allel system. In a Single Program Multiple Data (SPMD)
programming paradigm, sequence of operations are re-
peated during logical, simulation time-steps on all process-
ing nodes. GYRO and POP are the examples of such appli-
cations.

2.1. GYRO

GYRO is a code for the numerical simulation of tokamak
microturbulance, solving time-dependent, nonlinear Gyro-
Kinetic-Maxwell (GKM) equations [4]. It is used by the
researcher worldwide to study phase physics, which helps
in understanding the concept of power production by fusion
reactions. GYRO uses a five-dimensional grid (three spa-
tial and two velocity coordinates) and propagates the system
forward in time using a fourth-order, explicit, Eularian al-
gorithm. There are three problem instances of GYRO, two

instances use multiple of 16 processors while the most de-
manding uses multiple of 64 processors. GYRO has three
problem instances: B1-std, B2-cy and B3-gtc [3] where B1-
std has a 16 x 140 x 8 x 8 x 20 x 2 problem resolution.
The input parameters for the GYRO requirement models are
listed in table 1.

Parameter Description

nstep number of simulation steps
time skip write output files per nstep
n proc number of processors
n x, n n, n stack,
n orbit, n energy

grid dimensions

n kinetic kinetic or adiabatic processes

Table 1. Input parameters for GYRO require-
ment models

The cost per time-step in a GYRO simulation is pre-
sented in equation (1).

Cnstep = Ccollision + Ctimestep + Cfield plot +
Cadaptive + Cfield fluxave +
Cerror + Cwrite@TIME SKIP (1)

The control flow of the application also depend on in-
put parameters. For instance, Ccollision does not take place
in all problem instances and Cwrite cost only incur at the
time skip intervals, which are specified in the input scripts.
In addition, a separate Ctimestep function is called for B3-
gtc. The number of floating-point and memory access is
collected for individual functions within a basic calcula-
tion phase. The communication cost can be point-to-point
or collective. The collective communication operations,
MPI ALLTOALL and MPI ALLREDUCE in GYRO, not
only send and receive different message sizes but also take
place in different sub-communicators. There are altogether
five MPI communicators with three different sizes.

2.2. POP

POP is an ocean modeling code developed at the Los
Alamos National Laboratory, which executes in a time-step
fashion and has a standard latitude-longitude grid with (km)
vertical levels. There are two main processes in a POP
time-step: baroclinic and barotropic. Baroclinic requires
only point-to-point communication and is highly paralleliz-
able. Barotropic contains a conjugate gradient solver, which
requires global reduction operations. Moreover, the dis-
cretized POP grid is mapped and distributed evenly on avail-
able two-dimensional processor grid. POP has two standard

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1 2 3 4 5 6 7

F
lo

at
in

g-
po

in
t o

pe
ra

tio
ns

Basic blocks

IBM p690(16)
SGI altix(16)

IBM p690(32)
SGI altix(32)

(a) GYRO

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1 2 3 4 5 6 7 8 9 10

F
lo

at
in

g-
po

in
t o

pe
ra

tio
ns

Basic blocks

IBM p690(8)
SGI altix(8)

IBM p690(16)
SGI altix(16)

(b) POP

Figure 1. Number of floating-point operations for each basic phase of calculation

problem instances: x1 and .01 [12]. Processor grid dimen-
sions are compile time parameters in POP. Input parameters
for the POP requirement model are listed in table 2.

Parameter Description

n procx number of processor in x dimension
n procy number of processor in y dimension

nstep number of simulation steps
imt, jmt, km, nt POP grid points

Table 2. Input parameters for POP models

The cost of a simulation time-step in POP is composed
of the computation and communication costs listed below.

Cnstep = Csurface forcing + Ctavg 2d + Cdhdt +
Cdiag + Cbclinic driver + Cboundary bclinic +
Cbtropic driver + Cbclinic correct +
Cboundary btropic + 2 ∗ km ∗ Cstate (2)

Local workload depends on the number of grid points as-
signed to a processor. POP uses a virtual, two-dimensional
mesh topology nproc x X nproc y. The local grid di-
mensions imt local for instance is calculated as:

imt local =
imt − 1
nproc x

+ 1 + 2 ∗ num ghost cells

The two grid dimensions, km and nt, are not di-
vided among processors. The point-to-point communica-
tion is nearest neighbor only (in two dimensions) and the
message volume depends on the local workload volume
(imt local and jmt local). POP has a single com-
municator for the MPI operations.

3. Methodology

The creation of the requirement models is a three-step
process. First, the simulation phases and workload param-
eters are identified using the profiling and debugging tools,
and a first-order analytical requirement model is created
(presented in the previous section). Second, the empirical
data is collected on the two parallel platforms, IBM p690
and SGI Altix, with different processor count and workload
distribution schemes. The empirical data is analyzed and
utilized in designing the requirement models. Finally, the
workload models are verified against the experimental re-
sults.

3.1. Data collection and analysis

The empirical performance data is collected by alter-
ing the processor count, workload parameters and the num-
ber of simulation time-steps. This enabled us to identify
the functions that depend on the local workload volume as
well as functions that are scaling invariant. Figure 1 shows
the floating-point operation count for GYRO and POP. The
hardware counter values are collected on p690 and Altix
for basic phases of computation with two different proces-
sor counts. For GYRO, experiments are run on 16 and 32
processing nodes and for POP two different processor grid
sizes are used: 2x4 and 4x4. PAPI hardware counters
are used together with the TAU callgraph facility, such that
counter values are collected on the call tree nodes. There are
some variations in the floating-point and load-store opera-
tion count on the two systems, however, typically the differ-
ences in the PAPI hardware counter values is approximately
10%.

Figure 2 shows the memory read and write traffic gener-
ated per time-step for GYRO and POP. These results show
the scaling pattern and behavior of the basic phases and en-

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 1 2 3 4 5 6 7

M
em

or
y

tr
af

fic
 (

by
te

s)

Basic blocks

IBM p690(16)
SGI altix(16)

IBM p690(32)
SGI altix(32)

(a) GYRO

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1 2 3 4 5 6 7 8 9 10

M
em

or
y

tr
af

fic
 (

by
te

s)

Basic blocks

IBM p690(8)
SGI altix(8)

IBM p690(16)
SGI altix(16)

(b) POP

Figure 2. Data transfer requirements within the basic phases of calculation

abled us to identify the most demanding calculation phases
of an application. In GYRO for instance, phase 2 is most
demanding both in terms of the floating-point computation
and memory operations.

The MPI profiling was done using the mpiP profil-
ing tool. GYRO has a very small number of point-to-
point communication operations. A large number of MPI
calls are MPI ALLTOALL and MPI ALLREDUCE with
two different sub-communicator sizes. POP, on the other
hand, has a large number of nearest-neighbor, point-to-point
communication operations as well as frequent, fixed-size,
MPI ALLREDUCE operations. The distribution of MPI
message volume in presented in section 4.2 (figure 6).

3.2. Inter-comparison

GYRO and POP applications have a number of similar
characteristics including an SPMD programming paradigm
and a notion of simulation time-steps. However, the way
in which the workload is mapped and distributed on paral-
lel resources is substantially different for the two applica-
tions. For example, the distribution of array indices onto
MPI tasks are not fixed in GYRO. The indices are re-
assigned and redistributed using transpose operations that
involves calling MPI ALLTOALL functions for different
phases of calculation. GYRO simulations employ MPI sub-
communicators to reduce the collective communication and
memory requirements per node. POP on the other hand
has a single communicator. The two-dimensional nearest-
neighbor communication and global reduction operations in
its conjugate gradient algorithm dominate the POP simula-
tions.

Except for a couple of user-defined input-output and
check-pointing steps, both applications repeat a fixed se-
quence of operations in logical time steps. Thus, the number
of time-step iterations are an input parameter in workload

models for POP and GYRO. However, the number of con-
jugate gradient iterations in POP’s barotropic process rely
on the runtime residual values. Hence, requirement model
of POP takes number of conjugate gradient iterations as a
fixed input along with the number of time-steps. Unlike the
real application, number of iterations remain constant in the
performance model; the number of iteration parameter pro-
vides an upper bound to the barotropic process runtime.

4. Experiments

4.1. Model validation

The requirement models are validated by running multi-
ple experiments with different processor count and by col-
lecting hardware counter data on the call tree nodes. The
measured values are then compared with the data generated
by the requirement models. Figure 3 shows the ratio of data
transfered as a result of load-store operations to the floating-
point operations during GYRO and POP simulations. In fig-
ure 3, rather than comparing the byte-to-flop ratio for basic
phases, we show the dominant system balance requirements
during a simulation time-step. We calculate the percent-
age of floating-point operations per basic phase and only
show the compute-intensive phases of calculation in figure
3. These compute-intensive phases account for over 95% of
total floating-point operations per simulation time-step. For
instance, the phase 2 in GYRO and phase 4 in POP (figure
1) are the most expensive calculation phases in terms of the
floating-point calculation requirements per simulation time-
step. The byte-to-flop ratio for these blocks are around 7
and 4 respectively.

Figure 3 shows that our model results are within the 20%
range of the experimental values. It also shows the scal-
ing characteristics for the two applications. In POP, the
byte-to-flop ratio does not scale from 32 to 64 processing

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

B
yt

es
/fl

op

measured(48)
predicted(48)

measured(64)
predicted(64)

(a) GYRO

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

B
yt

es
/fl

op

measured(32)
predicted(32)

measured(64)
predicted(64)

(b) POP

Figure 3. Byte-to-flop ratio distribution

nodes except for a single code execution block that repre-
sents approximately 5% of total floating-point operations.
On the other hand, the byte-to-flop ratio increases slightly
for over 80% code blocks as the workload volume decreases
in GYRO for experiments on 48 and 64 processing nodes.
This is attributed to a large number of collective communi-
cation operations.

Since the size and pattern of the MPI operations do not
vary with the underlying system hardware and compiler,
the communication requirements generated by the work-
load requirement models are identical to the results col-
lected for GYRO and within 2% error range for POP. POP
uses a conjugate gradient iterator and the number of itera-
tions required to converge vary from one simulation step to
other. Figure 4 shows the communication volume (byte) per
floating-point operation for POP and GYRO respectively.

We also compare and contrast the two applications in
terms of their overall system balance requirements. Fig-
ure 5(a) compares the data memory byte-to-flop ratio for
GYRO and POP. The aggregate memory requirement in-
creases rapidly for GYRO. Figure 5(b) compares the com-
munication volume to flop ratio for GYRO and POP. Al-
though the overall communication volume increases signif-

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7

M
es

sa
ge

 s
iz

e
(b

yt
es

)/
flo

p

Basic blocks

measured(48)
predicted(48)

measured(64)
predicted(64)

(a) GYRO

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 3 4 5 6 7 8 9

M
es

sa
ge

 s
iz

e
(b

yt
es

)/
flo

p

Basic blocks

measured(32)
predicted(32)

measured(64)
predicted(64)

(b) POP

Figure 4. Communication volume (bytes)-to-
flop ratio distribution

icantly for large processor runs in POP, we will show in the
next section that the message size for individual processing
nodes remain in order of a few KBytes. In GYRO, since the
size of one sub-communicator remain constant, the message
sizes reduce at a faster rate than the total floating-point op-
eration count.

4.2. Architecture mapping

After the validation of requirement models, we assess the
mapping of the two scientific applications on three architec-
turally different parallel systems: IBM p690, SGI Altix and
Cray X1. The key architectural features of the three systems
are listed in table 3. Details can be found at [14].

In addition to system metrics, we compare the machine
balance offered by the three systems in terms of data mem-
ory bytes accessed per floating-point operation and inter-
node byte communication volume per floating-point opera-
tions. Byte-per-flop for p690 and Altix is 1, while for the X1
it is around 3. The bytes communicated per flop is less than
0.1 for p690, about 0.2 for Altix and is 1 for the X1. Thus,

Feature IBM p690 SGI Altix Cray X1

System classification SMP cluster shared memory vector MPP
Processor peak performance (GFlops) 5.2 6 12.8
Main memory bandwidth (GB/s) 51 (per Multi- chip-module=32 processors) 6.4 26
MPI bandwidth (MB/s) 174 within node, 2186 inter-node 1968 12125

Table 3. Architectural features of the IBM p690, SGI Altix and Cray X1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 16 32 64 128 256

M
em

or
y

by
te

s-
pe

r-
flo

p

Number of processors

GYRO
POP

(a) Memory byte-to-flop ratio

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 16 32 64 128 256

M
es

sa
ge

 s
iz

e
(b

yt
es

)-
pe

r-
flo

p

Number of processors

GYRO
POP

(b) Message volume-to-flop ratio

Figure 5. Overall system balance require-
ments for GYRO and POP

the Cray X1 system provides the highest memory byte-to-
flop and communication byte-to-flop ratio. Although, the
MPI bandwidth in Cray X1 is the highest, the MPI laten-
cies are about 3 times large as well compared to the other
two systems. The high MPI latencies affect the small mes-
sage sizes. In order to understand the MPI message dis-
tribution and scaling characteristics, we calculate the MPI
message sizes and patterns for the two applications. Fig-
ure 6(b) shows point-to-point message distribution in POP
and figure 6(a) shows distribution of collective communica-
tion operations in GYRO. As shown in the figure 6(b), the
large volume of communication in POP takes place with

small data packets (order of few KBytes). The frequent
MPI ALLREDUCE operation is always performed on 8
bytes. On the other hand, data packets of 10-100s KByte
are exchanged in the frequent collective communication op-
erations in GYRO (figure 6(a)).

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5 6 7 8

In
di

vi
du

al
 m

es
sa

ge
 s

iz
e

(b
yt

es
)

Basic blocks

(31%)

(31%)
(24%)

(12%)

(1%)

(0.5%)

(1%)

16 Processors
32 Processors

(a) GYRO

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10

In
di

vi
du

al
 m

es
sa

ge
 s

iz
e

(b
yt

es
)

Basic blocks

(2%)

(1%) (89%) (1%)

(1%)

8 Processors
16 Processors

(b) POP

Figure 6. Distribution of MPI message volume

We ran Pallas MPI benchmarks (PMB) to identify the
native MPI implementation characteristics [18]. The SGI
Altix and IBM p690 systems show better performance for
the PingPong benchmark for small message sizes (less than
1 KByte) due to low point-to-point communication laten-
cies. However, large message sizes benefit from high band-
width network of the Cray X1 system. The latencies for
the collective communication operations, MPI ALLTOALL

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

R
un

tim
e

(s
ec

)

Number of processors

IBM p690
SGI altix
Cray X1

(a) GYRO

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 8 16 32 64 128 256

R
un

tim
e

(s
ec

)

Number of processors

IBM p690
SGI altix
Cray X1

(b) POP

Figure 7. Parallel efficiency of the applications on IBM p690, SGI Altix and Cray X1

and MPI ALLREDUCE, are measured using the PMB col-
lective communication benchmarks. Like the point-to-point
communication, performance for small message sizes in
collective communication operations are lower on the X1
system. Moreover, the latencies for MPI ALLTOALL and
MPI ALLREDUCE operations increase rapidly on the Al-
tix system as compared to the other two systems.

From the machine balance view-point, the Cray X1 sys-
tem has a clear advantage on the other two systems for the
two applications. GYRO has a high memory access to flop
count ratio and message volume to flop count ratio; there-
fore, the overall performance is expected to be consistently
higher than the other two platforms. At the same time, the
implementation of the MPI collective operations, particu-
larly for small message sizes, can slightly reduce the over-
all performance gains. Altix has a performance advantage
over p690 because of its higher clock speed, comparatively
high memory bandwidth and very low point-to-point MPI
latencies. Thus, the overall performance of POP in particu-
lar is expected to be higher on Altix than on the p690 sys-
tem due to a relatively low memory and message volume to
flop ratios. The collective communication latencies are typ-
ically higher on the Altix system than the p690 system with
processor count > 16, therefore, Altix could not sustain a
higher performance for GYRO with a large number of MPI
tasks.

The performance and scaling behavior of GYRO and
POP are shown in figure 7. Results in the figure 7 confirm
our characterization of the two workloads and analysis of
the target system behavior. In terms of the peak processor
performance, X1 vector processor is twice as powerful as
the Altix Itanium2 processor, which in turn is almost twice
as fast as the p690 Power4 processor. The Cray X1 systems
show largest performance gains for experiments with up to
8 and 48 MPI tasks for POP and GYRO respectively. This
is primarily because of the large workload volume (com-

putation and communication requirements) per processor
with small processor count. The SGI Altix system does
not show significant performance gains over p690 due to
the MPI ALLTOALL bottleneck in GYRO, which we iden-
tified in the PMB benchmark runs. Likewise, high collec-
tive communication latencies with a large processor count
(greater than 32) affect performance of POP on the Altix
system. At the same time, the low-latency point-to-point
communication latencies on Altix contribute to the higher
performance for the nearest-neighbor communication oper-
ations in POP for up to 32 processors.

5. Related work

Luo and Cameron [8] collected the hardware counter val-
ues of ASCI workloads on two parallel systems and devised
analytical models that represent the CPU requirements. I/O
characterization of I/O intensive scientific workload was
presented by Pasquale and Polyzos [10]. Although these
workload characterization and analytical modeling studies
provide insights into a single feature of a given application,
the workload models do not provide a mechanism to under-
stand and to study larger problem instances, which are of
interest to the scientific community.

Predictive performance models for a number of bench-
marks and a couple of large-scale scientific workloads have
been developed using a variety of approaches. Design-
ing accurate and reliable models of large-scale, production-
level scientific code is considered as a time-consuming pro-
cess requiring an expert knowledge of the application de-
sign and its underlying algorithms [5, 6, 7]. These per-
formance models precisely capture the communication and
computation characteristics of the application by extensive
micro-benchmarking, simulation and actual measurement.
Alternatively, performance characteristics are investigated
by gathering simulation traces [11]. The tracing schemes,

which generates substantial amount of data for full-scale
applications, provides limited information about the appli-
cation runs with different problem sizes and machine con-
figurations.

Our scheme primarily relies on capturing the control
flow, scaling characteristics and workload mapping and dis-
tribution scheme of the application as well as on the col-
lection of empirical performance data using portable per-
formance tools. Depending on the target platform and the
underlying compiler implementation, we anticipate that ad-
ditional platform-dependent parameters will be necessary to
predict achievable performance precisely using the require-
ment models. For instance, detailed performance models
of POP presented in [7] include both application parame-
ters and a number of target system parameters. In addition,
such a model development requires an expert understanding
of the code implementation and the underlying algorithms
in addition to extensive measurements and empirical data
collection on a range of parallel platforms.

6. Conclusions

Future supercomputing systems are likely to have a large
number of processing nodes and are going to offer uncon-
ventional combinations of system balances. Bluegene/L [1]
and Cray X1E [13] are examples of such systems. It is
therefore essential to characterize and to get an insight into
the applications performance behavior that are going to ex-
ploit future supercomputing resources. Our low-overhead
characterization scheme involve collecting and analyzing
empirical performance data from existing supercomputing
systems to identify system balance preferences for scientific
applications. We identify key calculation phases and, us-
ing profile data, develop machine-independent requirement
models for two Office of Science applications. We measure
parallel efficiencies for the two applications on a combina-
tion of scalar and vector parallel systems. The results con-
firm the system balance requirements that are generated by
the requirement models. The workload characterization and
parameterized requirement models are thus useful not only
in identifying optimal architectural mapping for an applica-
tion but also in leveraging the designs of the next generation
supercomputing systems.

Acknowledgments

This research was sponsored by the Office of Math-
ematical, Information, and Computational Sciences, Of-
fice of Science, U.S. Department of Energy under Contract
No. DE-AC05-00OR22725 with UT-Batelle, LLC. Accord-
ingly, the U.S. Government retains a non-exclusive, royalty-
free license to publish or reproduce the published form of

this contribution, or allow others to do so, for U.S. Govern-
ment purposes.

References

[1] N. R. Adiga et. al. An overview of the BlueGene/L Super-
computer, Proceedings of the ACM/IEEE conference on Su-
percomputing, 2002.

[2] S. Browne, et. al. A Portable Programming Interface for
Performance Evaluation on Modern Processors, The Inter-
national Journal of High Performance Computing Applica-
tions, Volume 14, number 3, 2000.

[3] M. R. Fahey and J. Candy, GYRO: Analyzing New Physics in
Record Time on the Cray X1, Proceedings of the 46th Cray
User Group Conference, 2004.

[4] M. R. Fahey and J. Candy, GYRO: A 5-D Gyrokinetic-
Maxwell Solver, Proceedings of the ACM/IEEE conference
on Supercomputing, 2004.

[5] A. Hoisie, et. al. A General Predictive Performance Model
for Wavefront Algorithms on Clusters of SMPs, Proceedings
of the International Conference on Parallel Processing, 2000.

[6] D. J. Kerbyson, et. al. Predictive performance and scalabil-
ity modeling of a large-scale application, Proceedings of the
ACM/IEEE conference on Supercomputing, 2001.

[7] D. J. Kerbyson and P. W. Jones, A Performance Model of
the Parallel Ocean Program, International Journal of High
Performance Computing Applications, Vol. 19, No. 3, 261-
276 (2005).

[8] Y. Luo, et. al. Instruction-level Characterization of Compu-
tational Physics and Multimedia Applications Using Perfor-
mance Counters. Workshop on Workload Characterization,
1998.

[9] A. Malony and S. Shende, Performance Technology for
Complex Parallel and Distributed Systems, Third Austrian-
Hungarian Workshop on Distributed and Parallel Systems,
DAPSYS 2000.

[10] B. K. Pasquale, and G. C. Polyzos, Dynamic I/O characteri-
zation of I/O-intensive Scientific Application, In Proceedings
of Supercomputing, 1994.

[11] A. Snavely, et. al. A framework for performance modeling
and prediction, Proceedings of the ACM/IEEE conference
on Supercomputing, 2002.

[12] P. Worley and J. Levesque, The performance evolution of the
Parallel Ocean Program on the Cray X1, Proceedings of the
46th Cray User Group Conference, 2004.

[13] Cray X1E Supercomputer,
http://www.cray.com/products/x1e/

[14] Evaluation of Early Systems at ORNL.
http://www.csm.ornl.gov/evaluation/

[15] mpiP: Lightweight, Scalable MPI Profiling
(http://www.llnl.gov/CASC/mpip/).

[16] The National Center for Computational Sciences (NCCS) at
ORNL. http://www.ccs.ornl.gov/user/computers.html

[17] Networking and Information Technology Re-
search and Development (Blue book). Available at
http://www.hpcc.gov/pubs/bluebooks/2005/index.html

[18] Pallas MPI Benchmarks,
http://www.pallas.com/e/products/pmb/

