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SUMMARY

Co-Array Fortran is a parallel programming language for scientific applications that provides a very
intuitive mechanism for communication, and especially, one-sided communication. Despite the benefits
of this integration of communication primitives with the language, analyzing the performance ofCAF
applications is not straightforward, which is due, in part, to a lack of tools for analysis of the communication
behavior of Co-Array Fortran applications. In this paper, we present an extension to theKOJAK toolkit
based on a source-to-source translator that supports performance instrumentation, data collection, trace
generation, and performance visualization ofCo-Array Fortran applications. We illustrate this approach
with a performance visualization of a Co-Array Fortran version of the Halo kernel benchmark using the
VAMPIR event trace visualization tool.
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Introduction

Co-Array Fortran (CAF) [14] extends Fortran 2003 providing a simple, explicit notation for data
decomposition, communication, and synchronization, expressed in a natural Fortran-like syntax. These
extensions provide a straightforward and powerful paradigm for parallel programming of scientific
applications based on one-sided communication. One of the major problems facingCAF users is the
lack of Performance analysis tools for investigating the communication and synchronization behavior
of their application. This deficiency is due in part to the fact that communication operations inCAF

programs are not expressed through function calls, as inMPI, or via directives that are executed by
a run-time library, as inOpenMP. In contrast,CAF communication operations are integrated into the
language, and, on certain platforms like the Cray X1, they are implemented via remote memory access
instructions provided by the hardware.
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For MPI applications, performance data collection is, in general, facilitated by the existence
of the MPI profiling interface (PMPI), which is used by mostMPI tools [2, 8, 16]. Similarly,
performance measurement ofOpenMP applications can be done by instrumenting the calls to the
runtime library [1, 4, 5]. However, with the challenge ofCAF communication primitives being
integrated into the language, and potentially implemented with special hardware instructions, the
instrumentation of these communication primitives requires a similarly integrated approach.

In order to address this problem, we first definedPCAF, an interface specification of a set of routines
intended to monitor all important aspects ofCAF applications. Then, we extended theOPARI source-
to-source instrumentation tool [12] to search forCAF constructs and to generate instrumented source
code with the appropriatePCAF calls. Finally, we implemented thePCAF interface for theKOJAK

measurement system [15] enabling it to traceCAF communication and synchronization instructions.
With this extension, theKOJAK measurement system is able to support performance instrumentation
and performance data collection ofCAF applications, generating trace files that can be analyzed with
theVAMPIR event trace visualization tool [13].

The remainder of this paper is organized as follows. First, we present an overview ofCo-Array
Fortran. Then, we briefly describe theKOJAK performance measurement and analysis environment.
The main part of the article describes our approach for performance instrumentation and measurement
of Co-Array Fortran applications. Finally, we discuss performance visualization with an example using
the Halo kernel benchmark code.

An Overview of Co-Array Fortran

Co-array Fortran [14] is a parallel programming language extension to Fortran 2003 currently under
investigation for inclusion in the next Fortran language standard. At the highest level,CAF uses a
Single Program Multiple Data (SPMD) model to allow multiple copies (images) of a program to
execute asynchronously. Each image contains its own private set of data objects. When data objects
are distributed across multiple images, the array syntax ofCAF uses an additional trailing subscript in
square brackets to allow explicit access to remote data (as shown in Figure2), and it is referred to as
theco-dimension. Data references that do not use these square brackets are strictly local accesses.The
CAF compiler translates these remote data accesses into underlying communication mechanisms for
each target system.CAF also includes intrinsic routines to synchronize images, to return the number of
images, and to return the index of the current image. Besides functions for delimiting a critical region,
CAF provides four different forms of a barrier synchronization:

SYNC ALL(): a global barrier where every image waits for every other image.

SYNC ALL( <wait list>): a global barrier where every image waits only for the listed images.

SYNC TEAM( <team>): a barrier where a team of images wait for every other team member.

SYNC TEAM( <team>, <wait list>): a barrier where a team of images wait for a subgroup of the
team members.

CAF was originally developed on the Cray-T3D, and, as such, it is very efficient on platforms
that support one-sided messaging and fast barrier operations. On systems with globally addressable
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Figure 1.KOJAK OVERALL ARCHITECTURE.

memory, such as the Cray X1 or the SGI Altix 3700, these mechanisms may be as simple as load
and store memory references. By contrast, on distributed memory systems that do not support efficient
Remote Direct Memory Access (RDMA), these mechanisms can be implemented inMPI, SHMEM, or
some lower level library likeGasNET or ARMCI.

The KOJAK Measurement System

The KOJAK performance-analysis tool environment provides a complete tracing-based solution for
automatic performance analysis ofMPI, OpenMP, SHMEM, or hybrid applications using combinations
of these three paradigms running on parallel computers.KOJAK describes performance problems using
a high-level of abstraction in terms of execution patterns that result from an inefficient use of the
underlying programming model(s).KOJAK’s overall architecture is depicted in Figure1. Tasks and
components are represented as rectangles and their inputs and outputs are represented as boxes with
rounded corners. The arrows illustrate the whole performance-analysis process from instrumentation
to result presentation.
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TheKOJAK analysis process is composed of two parts: a semi-automatic, multi-level instrumentation
of the user application followed by an automatic analysis of the generated performance data. The first
part is considered semi-automatic because it requires the user to slightly modify the makefile.

To begin the process, the user supplies the application’s source code, written in eitherC, C++,
or Fortran, to OPARI, which is a source-to-source translation tool. OPARI performs automatic
instrumentation ofOpenMP constructs and redirection ofOpenMP-library calls to instrumented wrapper
functions on the source-code level, based on thePOMP OpenMP monitoringAPI [11]. Later, in Section
”Performance Instrumentation,” we describe how we extendedOPARI for instrumentation ofCAF

programs with the appropriatePCAF calls.
Instrumentation of user functions is done either during compilation by a compiler-supplied

instrumentation interface or on the source-code level usingTAU [2]. TAU is able to automatically
instrument the source code of C, C++, and Fortran programs using a preprocessor based on thePDT

toolkit [10].
Instrumentation forMPI events is accomplished with a wrapper library based on thePMPI profiling

interface. AllMPI, OpenMP, CAF and user-function instrumentation calls theEPILOG run-time library,
which provides mechanisms for buffering and trace-file creation. The application can also be linked to
thePAPI library [3] for collection of hardware counter metrics as part of the trace file. At the end of the
instrumentation process, the user has a fully instrumented executable.

Running this executable generates a trace file in theEPILOG format. After program termination, the
trace file is fed into theEXPERT analyzer. (See [15] for details of the automatic analysis, which is
outside of the scope of this paper.) In addition, the automatic analysis can be combined with a manual
analysis usingVAMPIR [13], which allows the user to investigate the patterns identified byEXPERT

in a time-line display via utilities that convert theEPILOG trace file into theVAMPIR VTF3 andOTF

formats.

Performance Instrumentation and Measurement Approach

In this section, we describe the event model that we use to describe the behavior ofCAF applications,
and the approach we take to instrumentCAF programs and to collect the necessary measurement data.

An Event Model of CAF

KOJAK uses an event-based approach to analyze parallel programs. A stream or trace of events allow it
to describe the dynamic behavior of an application over time. If necessary, execution statistics can be
calculated from that trace. The events represent all the important points in the execution of the program.
Our CAF event model is based onKOJAK’s basic model for one-sided communication [6]. We extended
KOJAK’s existing set of events, which cover describing the begin and end of user functions andMPI

and OpenMP related activities, with events for representing the execution ofCAF programs, namely
the begin and end ofCAF synchronization primitives and the begin and end of remote load and store
operations.

Table I summarizesKOJAK’s event types used for analyzingCAF applications. For each of these
events, we collect a time stamp and location. ForCAF synchronization functions, we also record which
function was entered or exited. For the barrier routines, we also collect the group of images which
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Table I.KOJAK’s event types forCAF programs

Abstraction Event type Type specific Attributes

Entering / leaving a region (e.g., a function) ENTER region id
EXIT region id

Leaving a collectiveCAF synchronization regions CAFCEXIT region id, team id, wait group id

Start / end ofRMA one-sided transfers PUT 1TS rma id, length, destination loc
PUT 1TE rma id, length, source loc
GET 1TS rma id, length, destination loc
GET 1TE rma id, length, source loc

participate in the barrier and the group of images waited for, if applicable. Finally, for loads and
stores, we collect the amount of data transferred (i.e., the number of array elements) and the source or
destination of the transfer, as well as a uniqueRMA operation identifier that provides an easier mapping
of # 1TE to the corresponding #1TS events in the later analysis stage.

The event model is also the basis for the instrumentation and measurement. The events and their
attributes specify the elements ofCAF programs that need to be instrumented and the data that has to
be collected.

Performance Instrumentation

Instrumentation ofCAF programs can be done on either of two levels, depending on howCAF is
implemented on a specific computing platform. On systems whereCAF constructs andAPI calls
are translated into calls to a run-time library, these calls could easily be instrumented by traditional
techniques (e.g., linking a pre-instrumented run-time library or instrumenting the calls with a binary
instrumentation tool). However, for systems like the Cray X1, where theCAF communication is
executed via hardware instructions, this approach is not always possible. Therefore, we extended
OPARI, KOJAK’s source-to-source translation tool, to also locate and instrument allCAF constructs
of a program.

As Fortran statements can occupy more than one source line,OPARI reads a program line by line,
taking into consideration continuation lines and multiple statements on the same source line. Each line
is scanned for occurrences ofCAF constructs and synchronization calls (but ignoring comments and
contents of strings). CAF constructs can be located by looking for pairs of brackets ([...]) which are not
used otherwise in Fortran, except for array constructors in the 2003 Fortran standard. This exception
can be easily handled.

The first word of the statement determines whether it is a declaration line, an allocation statement
involving Co-Arrays, or a statement containing a remote load or store operation. ForCAF declarations
and allocations,OPARI collects attributes like array dimensions, and lower and upper bounds for later
use. The allocate and deallocate statements that involveCo-Arrays, as well as automatic deallocation at
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integer :: me, num, left integer :: me, num, left
integer :: A(1024,1024)[*] integer :: A(1024,1024)[*]
. . . . . .
me = this image() me = this image()
num = numimages() num = num images()
left = me - 1 left = me - 1
if ( left < 1 ) left = num if ( left < 1 ) left = num

call PCAF rma store begin(-1+left, &
1 * max((ubound(A,2)- &

lbound(A,2)+2)/2,0))
A(me,::2)[left] = me A(me,::2)[left] = me

call PCAF rma store end(-1+left)
call sync all() call PCAFsync all ()

(a) (b)

Figure 2. (a) Example of aCAF source code and (b)OPARI instrumented version

the end of subprograms, also contain internal synchronization and therefore would be good candidates
for some additional form of instrumentation, probably insertion of a call before and after the statement,
or at the end of a subprogram when there is automatic deallocation. OPARI currently does not support
this functionality, but it could be easily extended to do so.

The handling of statements containing remote memory operations is more complex. First, all
operations are located in the line. If it is an assignment statement and the operation appears before
the assignment operator, it is a store operation. In all other cases it is a load.OPARI determines
which CAF array is referenced by the operation, the number of elements transferred (by parsing
the index specification), and the source or destination of the transfer (determined by the expression
inside the brackets). Simple assignment statements containing a single remote memory operation are
instrumented by inserting calls to the correspondingPCAF monitoring functions before and after the
statement, which get passed in the attributes determined byOPARI. In case of more complex statements
where a remote memory operation cannot be easily separated out and wrapped by the measurement
calls, or when it is necessary to keep instrumentation overhead low,OPARI uses the single call version
of the PCAF remote memory access monitoring functions (instead of separate begin and end calls)
and inserts them either before (for loads) or after (for stores) the statement for each identified remote
memory access operation.

Finally, OPARI scans the line for calls toCAF synchronization routines, and replaces them by calls
to PCAF wrapper functions that will execute the original call in addition to collecting all important
attributes.

Figure 2(b) shows the instrumented source code generated for the example in Figure2(a). In
this example, there is a two-dimensional arrayA, which is distributed on all processors. In the
CAF statementA(me,::2)[left] = me , each processor updates the odd entries of the row
corresponding to its image in the left neighbor array with its index, and then waits on a barrier.
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Remote Memory Access Monitoring Routines
SUBROUTINE PCAFrma store begin(dest, nelem)
SUBROUTINE PCAFrma store end(dest)
SUBROUTINE PCAFrma store(dest, nelem)
SUBROUTINE PCAFrma load begin(src, nelem)
SUBROUTINE PCAFrma load end(src)
SUBROUTINE PCAFrma load(src, nelem)

where INTEGER, INTENT(IN) :: dest, src, nelem

CAF Synchronization Wrapper Routines
SUBROUTINE PCAFsync all()
SUBROUTINE PCAFsync all(wait)
SUBROUTINE PCAFsync team(team)
SUBROUTINE PCAFsync team(team, wait)
SUBROUTINE PCAFsync file(unit)
SUBROUTINE PCAFsync memory()
SUBROUTINE PCAFstart critical()
SUBROUTINE PCAFend critical()

where INTEGER, INTENT(IN) :: unit
INTEGER, INTENT(IN) :: wait(:), team(:)

Figure 3. PCAF Measurement Function Interface Specification

OPARI identifies theCAF statement, and adds a begin and end instrumentation event. The call to
indicate the beginning of the event contains the destination of the store (normalized to the range 0 to
num images()-1 ) and the number of array elements being transferred; the end call only gets passed
the destination. The barrier call (sync all ) is translated into a call of the correspondingwrapper
function.

For some programs, complete instrumentation of allCAF constructs may be unnecessary or too
intrusive; therefore, the amount of instrumentation can be controlled via command line options to
OPARI, allowing to disable instrumentation by groups (e.g., synchronization functions or remote
memory transfers).

Performance Measurement

Finally, the KOJAK measurement system was extended by implementing the necessaryPCAF

monitoring functions and wrapper routines and adding support for the handling of the new remote
memory access event types. We chose to implement our approach within theKOJAK framework, as
KOJAK is very portable and supports all majorHPC computing platforms. Also, this way, we could
re-use many ofKOJAK’s features like event trace buffer management, generation, and conversion.
Finally, it allows us not only to analyze plainCAF applications but also hybrid programs using any
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combination ofMPI, OpenMP, SHMEM, andCAF. A separate, new instrumentor just forCAF would
probably be problematic in this respect, as the modifications done by two independent source-to-source
preprocessors could conflict.

ThePCAF interface is shown in Figure3. The first group of functions are used for the instrumentation
of CAF remote load and store operations. As explained in the last section, for each case, there is a
”begin/end” two call version as well as a single call one. The second group of functions are wrapper
functions, one for each intrinsic synchronization and utility function defined forCAF. The list shown
in Figure3 is not complete in that regard; it only includes those functions which were supported by the
Cray Fortran compiler we used for our experiments. Especially, the current draft standard forCAF [7]
(as of February 2006) specifies a slightly different list of synchronization functions as well as new
CAF collective functions likeCOPRODUCTor COSUM. Implementing support for allCAF intrinsic
functions once theCAF standard stabilizes is very easy.

Since this monitoringAPI is open, andOPARI is a stand-alone tool, other performance analysis
projects could use this infrastructure to also supportCAF. For example, it would be very easy to
implement a version of thePCAF monitoring library which (instead of tracing) just collects basic
statistics (number ofRMA transfers, amount of data transferred) for each participating image. Ideally,
in the future,CAF compilers could support this interface directly.

Performance Visualization

For illustration of our performance analysis approach, we ran the Halo kernel benchmark on the Cray
X1 system at the Oak Ridge National Laboratory, using 16 and 64 processors. The Halo benchmark
simulates a halo border exchange with the four different synchronization methodsCAF provides. The
exchange procedure has the following outline:

S1 HINS(1:3*n) = HOEW(1:3*n)
S2 CALL synchronization method
S3 HONS(1:n) = HINS(1:n)[MYPEN]
S4 HONS(n+1:3*n) = HINS(n+1:3*n)[MYPES]
S5 CALL synchronization method
S6 HIEW(1:3*n) = HONS(1:3*n)
S7 CALL synchronization method
S8 HOEW(1:n) = HIEW(1:n)[MYPEW]
S9 HOEW(n+1:3*n) = HIEW(n+1:3*n)[MYPEE]
S10 CALL synchronization method

During each iteration, the following events from our event model occur:S2 a synchronization call;
S3 a remote load ofn elements from the north neighbor;S4 a remote load of2n elements from the
south neighbor;S5 a synchronization call;S7 another synchronization call;S8 a remote load ofn
elements from the west neighbor;S9 a remote load of2n elements from the east neighbor; and finally
S10 a synchronization call. For each synchronization method, this procedure is repeated 5 times per
iteration, with 10 iterations being executed withn varying from 2 to 1024 in powers of 2.
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syncall syncall(wait) syncteam syncteam(wait)

Figure 4. Timeline view of the complete Halo benchmark using 16 processors

The original Fortran 77 code for the benchmark actually used separate loops for each of theCAF

assignment statements (S1, S3, S4, S6, S8, S9 ). For example, statementS3 was coded as

...
DO i=1,n

HONS(i) = HINS(i)[MYPEN]
END DO
...

Changing the code to use Fortran 90 array syntax had several advantages: First, instrumenting
and measuring the improved version generates considerably less overhead (2 PCAF calls instead of
2 × n). For the Halo benchmark, which is an extreme case as it only consists ofCAF remote memory
accesses and synchronization calls, it meant that we could not successfully perform a measurement of
the original code, as we ran out of disk space for the resulting huge trace files. Secondly, the compact
array syntax form very likely has more performance stability across implementations and architectures.
Ideally, a smart compiler would generate the same code for both forms, however, using the compact
form ensures that even a non-optimizing compiler generates code for one remote block-transfer instead
of a loop of a lot of short remote memory operations. Especially on a system which does not haveRDMA

hardware support, this can make a huge difference. Finally, we think that the improved code is easier
to understand and to maintain.

Figure 4 shows the timeline view of the Halo benchmark running with 16 processors. The four
phases of the code (marked with white lines in the figure) can easily be identified due to the different
communication behavior of each of the synchronization methods. The communication pattern between
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(a) One exchange usingsync all

(b) One exchange usingsync team(wait)

Figure 5. Partial timeline views of the Halo benchmark

processors, as well as the amount of data exchanged, can be observed with the pair-wise communication
statistics view, shown in Figure6 (left).

Figure5 (a) and Figure5 (b) show a section of the timeline corresponding to a full exchange (one
call to the exchange subroutine) forsync all andsync team(wait) synchronization methods,
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(16 processor run) (64 processor run)

Figure 6. Message statistics view of the Halo benchmark using 16 processors (left) and Summary Chart View of
Function times running on 16 and 64 processors (right)

respectively. We observe that the region corresponding to thesync team(wait) synchronization
method is much more irregular (unsynchronized) than the one for thesync all , where the waiting
times are longer, due to the global synchronization.

Finally, on Figure6 (right), we observe the time spent on each synchronization method for the
16 and 64 processors runs, respectively. We notice that with the increase of number of processors,
thesync team(wait) method performs significantly better in this benchmark than thesync all
method, going from about 10% faster with 16 processors to about 30% faster with 64 processors.

Conclusion

The CAF parallel programming language extends Fortran 2003 providing a simple technique for
accessing and managing distributed data objects. This language-level abstraction hides much of the
complexity of managing communication, but, unfortunately, this also makes diagnosing performance
problems much more difficult. In this paper, we have proposed one approach to solve this problem.
Our solution uses a portable source-to-source translator to allow performance instrumentation,
data collection, trace generation, and performance visualization ofCo-Array Fortran applications,
implemented as an extension of theKOJAK performance analysis toolset. We illustrated this approach
with performance visualization of aCo-Array Fortran version of the Halo kernel benchmark, running
on a Cray X1 system and using theVAMPIR event trace visualization tool. Our initial results are
promising; we can obtain statistical quantification and graphical presentation ofCAF communication
and synchronization characteristics.

In view of our experience with analyzingCAF applications with theKOJAK toolkit, we are
considering several extensions to our work: First, we need to determine the benefits of this approach

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2006;00:1–12
Prepared usingcpeauth.cls



12 B. MOHR, L. DEROSE, J. VETTER

for real-world CAF and hybridMPI, SHMEM, andCAF applications. Second, it would be interesting
to extendKOJAK’s automated analysis to also coverCAF constructs. Last, we need to synchronize
our work with some recent work on a proposed performance tool interface for global address space
languages [9].
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