

Exploiting Lustre File Joining for Effective Collective IO

Abstract

Lustre is a parallel file system that presents high
aggregated IO bandwidth by striping file extents across
many storage devices. However, our experiments
indicate excessively wide striping can cause
performance degradation. Lustre supports an
innovative file joining feature that joins files in place.
To mitigate striping overhead and benefit collective
IO, we propose two techniques: split writing and
hierarchical striping. In split writing, a file is created as
separate subfiles, each of which is striped to only a few
storage devices. They are joined as a single file at the
file close time. Hierarchical striping builds on top of
split writing and orchestrates the span of subfiles in a
hierarchical manner to avoid overlapping and achieve
the appropriate coverage of storage devices. Together,
these techniques can avoid the overhead associated
with large stripe width, while still being able to
combine bandwidth available from many storage
devices. We have prototyped these techniques in the
ROMIO implementation of MPI-IO. Experimental
results indicate that split writing and hierarchical
striping can significantly improve the performance of
Lustre collective IO in terms of both data transfer and
management operations. On a Lustre file system
configured with 46 object storage targets, our
implementation improves collective write performance
of a 16-process job by as much as 220%.

1 Introduction

Many of the scientific applications running on
contemporary high end computing platforms are very
data-intensive, such as those in climate modeling,
fusion, fluid dynamics, and biology. For example, the
Gyrokinetic Toroidal Code (GTC [12]) -- an
application for fusion -- can require a throughput of
several 10s of gigabytes per second in order to
minimize the portion of time spent in IO and to
achieve good scalability on systems with tens or
hundreds of TeraFlops (1015) per second.

Figure 1 shows a diagram of software layers in typical
ultra-scale platform that supports data-intensive
applications. Collectively, these layers provide
portable abstractions for IO accesses. At the top end,
scientific applications perform IO through middleware
libraries such as Parallel netCDF [9], HDF [23, 24] and
MPI-IO [22], often cooperatively among their
processes. Parallel file systems, towards the bottom of
the stack, directly serve IO requests by striping file
extents and/or IO blocks across multiple storage
devices. Obtaining good collective-IO performance
across many processes on top of these software layers
is a complex task. It requires not only awareness of the
processes' collective data access patterns, but also
thorough understanding of the entire software stack
and, in particular, the behavior of underlying file
systems.

Figure 1 IO Software Stacks for HPC Applications

As shown in Figure 1, the mid-level libraries,
represented by MPI-IO, are directly implemented on
top of file systems. ADIO [19] is the abstract IO
interface of MPI-IO, which can be specialized for
specific file system implementations. Together, these
programming stacks offer crucial avenues for efficient
storage accesses. Numerous techniques have been
investigated and implemented to improve the
scalability of MPI-IO data operations, such as two-
phase IO [20], data sieving [21], and data shipping
[13]. Some of these techniques are designed for
generic file systems, and, as such, are unable to avoid
specific limitations of a particular file system. Yet
other techniques exploit specific features of individual
file systems, such as list IO for PVFS2 [2, 5] and data
shipping for GPFS [13, 16].

R. Shane Canon
Oak Ridge National Laboratory

National Center for Computational Sci.
Oak Ridge, TN, USA 37831

canonrs@ornl.gov

Weikuan Yu, Jeffrey Vetter
Oak Ridge National Laboratory

Computer Science & Mathematics
Oak Ridge, TN, USA 37831

{wyu,vetter}@ornl.gov

Song Jiang
Wayne State University

Electrical & Computer Engineering
Detroit, MI, USA 48202
sjiang@eng.wayne.edu

Lustre [8] is a file system that has been deployed on
many supercomputers, such as Jaguar at Oak Ridge
National Laboratory, Thunderbird at Sandia National
Laboratory, Tera-10 at CEA in Europe, and
TSUBAME at Tokyo Tech in Japan [3]. Because many
of the applications running on these systems use (or
could use) collective IO operations, developing
scalable collective-IO operations over Lustre will
benefit a large number of applications. Not
surprisingly, there has been an effort to provide a
Lustre-specific ADIO implementation, in which file
hints are introduced to specify striping pattern on a
per-file basis. However, the research on how to
leverage Lustre-specific file system features to
optimize MPI-IO design and implementation is still at
a nascent stage.

In this paper, we show that excessively wide striping in
Lustre can cause performance degradation. An
important question, then, is how to continue
aggregating IO bandwidth available from many storage
devices while avoiding the performance hit of wide
striping.

Consequently, Lustre provides a file joining feature for
joining multiple files into a single combined file. Using
this feature, a file with mixed striping patterns can be
created by joining multiple files with different striping
parameters. We believe that leveraging this feature
could help mitigate the detrimental drawbacks of wide
striping while still retain the benefits from aggregating
bandwidth of many storage devices.

In this paper, we investigate the feasibility of using
Lustre file joining to benefit of collective IO. To this
end, we propose and evaluate two techniques: split
writing and hierarchical striping. In split writing,
different processes are allowed to open/create
individual files, each with a small stripe width for data
input/output. These files are also referred to as subfiles.
In addition, only one IO process opens the first subfile
for initial IO accesses, so bursts of metadata traffic by
a parallel open are avoided. Hierarchical striping
determines striping parameters for the subfiles so that:
(1) each of them is aggregating bandwidth from an
appropriate set of IO storage devices; (2) there is no
overlapping of storage devices between subfiles; (3)
and a good coverage of storage devices is achieved.
We have designed and prototyped a Lustre-specific
collective IO approach based on split writing and
hierarchical striping. In our experiments, when using
the proposed techniques, Lustre collective IO
performance is significantly improved for both data
transfer and management operations. Split writing is
able to provide highly scalable collective management

operations such as MPI_File_Open() and
MPI_File_Set_size(); hierarchical striping can
dramatically improve collective IO bandwidth by
aggregating IO bandwidth available to multiple files.
We also show that these optimizations in collective IO
benefit scientific applications' common IO patterns
using MPI-Tile-IO [14] and a modified NAS BT/IO
program [25].

The rest of the paper is organized as follows. In the
next section, we provide our motivation. Section 3
provides the detailed design of split writing and
hierarchical striping, and discusses how they
accomplish the intended goals. We evaluate our
proposed techniques in Section 4. Finally, we give an
overview of related work in Section 5 before
concluding the paper in Section 6.

2 Motivation

In this section, we motivate the work of exploring
Lustre file joining functionality for collective IO
optimizations. An overview of Lustre is provided first.
Then, we show the performance trends of Lustre with
the varying stripe widths.

2.1 An overview of Lustre

Lustre [8] is a POSIX-compliant, object-based parallel
file system. It provides fine-grained parallel file
services with its distributed lock management. Lustre
separates essential file system activities into three
components: clients, metadata servers, and storage
servers. These three components are referred to as
Object Storage Client (OSC), Meta-Data Server
(MDS) and Object Storage Targets (OST),
respectively. Figure 2 shows a diagram of the Lustre
system architecture. An OSC opens and creates a file
through an MDS (step 1), which creates objects in all
OSTs (step 2). IO is then performed in a striped
manner to all OSTs (step 3). By decoupling metadata
operations from IO operations, data access in Lustre is
carried out in a parallel fashion, directly between the
OSCs and OSTs. This allows Lustre to aggregate
bandwidth available from many OSTs. Lustre provides
other features such as read-ahead and write-back
caching for performance improvements. Here, we
discuss a few relevant features: file consistency, file
striping, and file joining.

File Consistency and Locking To guarantee file
consistency, Lustre serializes data accesses to a file or
file extents using a distributed lock management
mechanism. Because of the need for maintaining file
consistency, all processes first have to acquire locks

before they can update a shared file or an overlapped
file block. Thus, when all processes are accessing the
same file, their IO data performance is dependent not
only on the aggregated physical bandwidth from the
storage devices, but on the amount of lock contention
that exists among them.

Figure 2 Lustre System Architecture

Flexible Striping and Joining As shown in Figure 2,
file IO is striped across a number of OSTs. Striping
pattern parameters can be specified on a per-file or per-
directory basis. Such parameters include stripe size,
stripe width, and stripe index (the index of the first
storage device). In addition, Lustre also supports a file
joining feature. It allows files with different striping
patterns to be joined into a single file. This feature
allows a file to use different striping patterns for its
extents.

Table 1 Commands for Stripe Width Analysis

Program Detail Command
dd write time dd if=/dev/zero if=/Lustre/file count=4M

dd read time dd of=/dev/null if=/Lustre/file count=4M
IOzone write iozone –e –i 0 –j 8 –L 128 –S 2048 –s 4194304 –

r 64K –f /Lustre/file
IOzone read iozone –e –i 1 –j 8 –L 128 –S 2048 –s 4194304 –

r 64K –f /Lustre/file

2.2 Impacts of Lustre Striping Width

We conducted several experiments to evaluate the
Lustre performance with various striping patterns. The
first two experiments measured Lustre read/write
performance using the UNIX dd command and the
IOzone benchmark [1]. These experiments were
conducted with a Lustre file system composed of one
MDS and 64 OSTs, as described in Section 4, using
Lustre version 1.4.7. Table 1 lists the commands used
for these experiments.

Figure 3 shows the performance of Lustre read/write as
measured from the UNIX dd command and the
IOzone benchmark. The file stripe width ranges from
1 to 64 OSTs. These IO performance results suggest
that wider stripe width does not help IO accesses with
small request block sizes (512B, dd), and the
performance trend is improved with larger request
sizes (64KB, IOzone), up to only 4 or 8 OSTs for reads
and writes, respectively. Beyond that, even wider
stripe width gradually brings the IO bandwidth down
because of the overhead of striping data to more OSTs.

Unix dd

0

40

80

120

160

2 9

1
6

2
3

3
0

3
7

4
4

5
1

5
8

Stripe Width

E
xe

c
u

ti
o

n
 T

im
e

(s
e

c
)

Write
Read

IOzone

0

40

80

120

160

1 8 16 24 32 40 48 56 64

Stripe Width

B
W

 (
M

B
/s

)

Write
Read

Figure 3 Impact of Stripe Width to dd and IOzone
Performance

Note that these experiments were done with rather
small IO requests from a single client to reveal the
striping cost. It is not to be interpreted as direct
contrast to the earlier report [15], in which Lustre
achieves good performance with many processes
making large IO requests. Based on the Lustre
architecture shown in Figure 3, we speculate the
performance degradation of wide striping may come
from at least two aspects. One is the increased protocol
processing overhead when an OSC is communicating
with more OSTs; the other is the reduced memory
cache locality when the client’s communication buffer
space is multiplexed for more OSTs.

3 Collective IO with File Joining

As discussed in Section 2.2, wide striping leads to
performance degradation beyond certain stripe width

stripe

MDS

OSS

Metadata

OSC OSC
1

open
create
IO

3
striping

OSC: Object Storage Client
OST: Object Storage TargetMDS: Metadata Server

caching
locking

OSS OSS

OSS: Object Storage Server

2

OST

3 3

3

1

2

for small IO requests. We attempt to investigate how
Lustre file joining can help mitigate this problem while
still achieving wide striping when necessary. In this
paper, we focus on the feasibility of using file joining
by examining a higher-level parallel IO library, MPI-
IO [22]. We propose two techniques: split writing and
hierarchical striping to address this issue. Both
techniques are built on top of file joining. Split writing
allows processes to create/open separate subfiles for
IO. Hierarchical striping computes the striping
parameters for the subfiles to ensure high aggregated
IO bandwidth from a sufficient number of OSTs.

3.1 Split Writing

Writing file contents to multiple subfiles is not a new
idea. However, one needs to be aware of Lustre
characteristics to take advantage of this idea and the
strength of Lustre file joining. For example, we need to
answer a variety of questions, such as when to create
all the subfiles, when to join them together, which
process is to manage what subfiles, as well as how to
maintain MPI-IO semantics for file consistency.

Figure 4 Diagram of Split Writing

Figure 4 shows a diagram of split writing among three
MPI processes. At the beginning of the file creation,
only one process, rank 0, creates an actual subfile. All
other processes open their portion of file extents as a
ghost subfile. Ghost subfiles (marked with dashed
boxes) are actually created only when applications
write to them. This optimization avoids a burst of
metadata operations for the same file to the metadata
server, a problem known as parallel open to large scale
applications. By delaying the creation of other subfiles,
metadata operations are amortized across the course of
the entire file IO. At the end of parallel open, all
processes exchange and synchronize on the file
attributes, including those of the ghost subfiles. File
attributes are also exchanged and synchronized in
every MPI_File_sync() operation to ensure
consistency during run-time. Note that this does not
violate MPI-IO consistency semantics as MPI-IO
specification requires all IO processes to call sync
operations if global data consistency is desired.

When a file is to be closed, all processes exchange
information such as the number of its subfiles, their
real names, and their representative file domains.
Remaining ghost files are left as holes in the final file.
No alteration is introduced on the Lustre internal
storage management of file holes. These subfiles are
then joined into a single file. Instead of joining files in
a tree fashion through many processes, the subfiles are
joined by Rank 0. Interestingly, this does not increase
the processing overhead because all metadata
operations are essentially serialized by the Lustre MDS
as a single thread per request. More clients will only
add to its processing burden.

3.2 Hierarchical Striping

Lustre stripes file objects across its object storage
targets (OSTs). The striping pattern is determined by a
combination of three parameters: stripe size, stripe
width (or stripe count), and stripe index.

Figure 5 Comparison of Default Striping and
Hierarchical Striping

As discussed earlier, split writing creates multiple
subfiles. To achieve the best IO rate for the collection
of subfiles, one needs to ensure the following for the
subfiles: (1) a small subfile, (i.e., a file smaller than 1
MB, does not need to be striped); (2) each subfile
should not stripe too wide (Our experiments (c.f.
Figure 2) used a stripe width of 2); (3) the subfiles
should not have any overlap; and (4) the subfiles
together should cover a sufficient number of OSTs for
a good aggregated bandwidth. To achieve this, we
apply a technique called hierarchical striping to
determine the striping parameters for a subfile,
including (a) subfile_size: the size of a subfile; (b)
subset_size: the number of OSTs for this subfile; and
(c) subset_index: the index of the OST subset. Figure 5

open

read/write

close

Attributes

Subfiles

Joined file

shows a comparison between the default striping and
the hierarchical striping. Compared to the default
striping pattern of (stripe_size: M, stripe_width: W,
stripe_index: 0), the provided example has a hierarchical
striping pattern of (subfile_size: S*M, subset_size: 2,
subset_index: 0), with each subfile’s striping parameters
as (M, 2, 2*i). The index, i, is the rank of a subfile.
Note that, by default, Lustre has a load balancing
mechanism to select an OST for the stripe_index.
Hierarchical striping maintains the same feature to use
this index as the first OST of the first subset.

Hierarchical striping also reshapes IO access pattern to
the OSTs. A file created to stripe across all OSTs
forces the process to communicate with all the OSTs.
Hierarchical striping reduces the number of
connections between Lustre clients and OSTs.
Communication memory buffers are more frequently
recycled among a few connections, resulting in better
memory locality. Hence, hierarchical striping could
both reduce striping overhead and enhance the
communication scalability [26].

4 Performance Evaluation

We have implemented a prototype of the proposed
techniques in the ROMIO of MPICH2-1.0.3 release. In
this section, we describe its performance evaluation.
Our experiments are conducted on a cluster of 80 Ciara
VXB-7520J blades: each with dual Intel Xeon 3.4 GHz
processors, 2MB cache, 800MHz Front Side Bus, 4GB
physical memory, and a Gigabit Ethernet card
connected to PCI-X 100 Mhz bus. On the nodes
configured as Lustre OSTs, a 7200 RPM, ATA/100
Western Digital hard disk WD800JB is used for disk
storage. These nodes are running CentOS 4.4 Linux
operating system and Lustre version 1.4.7. Out of the
eighty-node cluster, a Lustre file system is configured
with 46 OSTs and one MDS, unless specified
otherwise.

4.1 Collective Management Operations

Management operations, such as MPI_File_open() and
MPI_File_set_size(), do not involve massive data
transfer, but they do require support for scalable
metadata operations from the underlying file system
[8]. To evaluate the benefits of our optimizations to
these management operations, we have performed the
following experiments using a microbenchmark
available in the PVFS2 [2] distribution. The first
experiment measures the average time to create a file
using collective MPI_File_open(). As shown in Table
2, compared to the original ADIO implementation, our

implementation, denoted as New, significantly
improves the time to create an MPI file. Furthermore,
the creation time does not increase as the number of
processes increase. This improvement is due to two
benefits of split writing. First, split writing is able to
reduce the striping width when creating new files,
therefore reducing the striping cost. Secondly,
although it presents an abstraction of a shared file to all
processes, there is only one process that actually
creates the file, therefore reducing the amount of
metadata requests to the Lustre MDS.

The second experiment measures the average time to
perform a resize operation using collective
MPI_File_Set_size(). As shown in Table 2, our
implementation brings down the cost of resize
operations dramatically. This is because split writing
allows only one process to update the attributes (such
as size) of a file. When the subfiles are to be closed,
their attributes, such as file size, are committed to the
physical storage. Our approach essentially eliminates
the contention of metadata operations from many
processes. The remaining cost is due to a single system
call and the need of synchronization among parallel
processes.

Table 2 Comparison of the Scalability of
Management Operations

No. of Processes Original New

Create (Milliseconds)
4 8.05 8.75
8 11.98 8.49

16 20.81 8.63
32 37.37 8.98

Resize (Milliseconds)
4 182.67 0.56
8 355.28 0.81

16 712.68 1.03
32 1432.5 1.36

4.2 Concurrent Read/Write

To measure the concurrent read/write performance, we
use a parallel program that iteratively performs
concurrent read and write to a shared file. Each process
writes and then reads a contiguous 256MB data at
disjoint offsets based on its rank in the program. At the
end of each iteration, the average time taken for all
processes is computed and recorded. Twenty-one
iterations are performed, and the lowest and highest
values are discarded.

Figure 6 shows the performance of concurrent read and
write. Compared to the original, our implementation

improves the aggregated bandwidth by 220% and 95%
for writes and reads, respectively. Note that the
measured write bandwidth is close to the aggregated
peak write bandwidth for all 46 IDE disks. As it
reaches the plateau, the available bandwidth for 32
processes drops slightly for writes. Read bandwidth is
further improved with the increase of processes. The
aggregated read/write bandwidth of the original
implementation remains much lower compared to our
optimized implementation. In addition, we have also
tested the performance of concurrent read and write to
an existing join file. It is interesting to note that both
implementations report low IO rates. These low rates
are due to the manipulation and placement of extent
attributes for a joined file. An optimization on the
management of a joined file’s extent attributes is
needed for a proper fix. Nonetheless, this performance
degradation is mostly avoided during file IO to a new
file because a file is not joined until it is to be closed.

Concurrent Read/Write

0

200

400

600

800

1000

1200

1400

Write Read

B
an

dw
id

th
 (M

B
/s

ec
)

16-proc Original

16-proc New

32-proc Original

32-proc New

Figure 6 Performance of Concurrent Read/Write

4.3 NAS BT-IO

NAS BT-IO [25] is an IO benchmark that tests the
output capability of NAS BT (Block-Tridiagonal)
parallel benchmark. It is developed at NASA Ames
Research Center. Its data set undergoes diagonal multi-
partitioning and is distributed among MPI-processes.
The data structures are represented as structured MPI
datatypes and written to a file periodically, which is
typically every 5 timesteps. There are several different
BT-IO implementations, which vary how its file IO is
carried out among all the processes. In our
experiments, we used an implementation that performs
IO using MPI-IO collective IO routines, so called full
mode BT-IO.

Figure 7 shows the performance of BT-IO. Compared
to the original implementation, our implementation
actually has longer execution time for BT-IO if we use
a default subset_size 2 in hierarchical striping. Further

analysis reveals that data in BT-IO is written
sequentially in 40 different steps. With a subset_size of
2 for a Lustre file system of 46 OSTs, the output file’s
extents are divided into 23 subfiles, each for two
OSTs. In every step, the data falls into only 1/40th of
the entire file, i.e. one subfile. Therefore, the effective
bandwidth is close to what’s available from 2 OSTs.
We have also tested BT-IO with 8 timesteps. This
scenario investigates whether the collective IO pattern
in BT-IO, even with a reduced number of repetitions,
can benefit from hierarchical striping. The last set in
Figure 7 shows the performance of modified BT-IO.
Hierarchical striping does indeed reduce the IO time
by 5.21 and 3.87 seconds, for class B, 16 and 25
processes, respectively. This suggests that hierarchical
striping is beneficial to the scientific IO pattern as
exhibited by BT-IO, when the file access is no longer
limited to a single subfile. But further investigation is
needed to make the benefits generally applicable to
output files of arbitrary lengths.

BT-IO Performance

0

50

100

150

200

250

300

350

400

BT-IO BT-IO (Modif ied)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Original-16

New -16

Original-25

New -25

Figure 7 BT-IO Performance

MPI-Tile-IO Performance

0

50

100

150

200

250

Proc-8 Proc-16

B
an

dw
id

th
 (M

B
/s

ec
)

Original

New

Figure 8 MPI-Tile-IO Performance

4.4 MPI-Tile-IO

MPI-Tile-IO [14] is an MPI-IO benchmark testing the
performance of tiled data accesses. In this application,
data IO is non-contiguous and issued in a single step

using collective IO. It tests the performance of tiled
access to a two-dimensional dense dataset, simulating
the type of workload that exists in some visualization
applications and numerical applications. In our
experiments, each process renders a 1x1 tile with
2048x1536 pixels. The size of each element is 64
bytes, leading to a file size of 192*N MB, where N is
the number of processes.

MPI-Tile-IO requires an existing file for read. We
focus our experiments on tiled write because writes are
the focus of our study. Figure 8 shows the write
performance of MPI-Tile-IO with 8 and 16 processes.
Our implementation improved MPI-Tile-IO write
bandwidth by 91% and 42%, respectively. These
results also indicate that our optimizations are able to
effectively aggregate write bandwidth for applications
with non-contiguous collective IO as exhibited in MPI-
Tile-IO [14].

5 Related Work

Numerous researchers have studied techniques to
optimize data access for parallel scientific applications.
ROMIO [4] provides the most popular implementation
of a parallel IO interface, MPI-IO. One of its important
features for collective IO is extended two-phase IO
[20], which employs a two-phase strategy to distribute
IO requests amongst a set of IO aggregator processes,
thus consolidating many small, noncontiguous IO
requests into a small number of large, contiguous
requests for effective collective-IO. Extended two-
phase IO [20] optimizes collective IO only for cases
with overlapped, non-contiguous accesses. Liao et .al.
[10, 11] have carried out a series of studies on
improving collective IO by caching application data at
the user level. It has also been shown as beneficial at
the MPI-IO layer [10]. We believe this user-level
caching optimization is complementary to our work
because it uses write-back to commit the data to the
storage, which results in large IO request sizes.

Parallel netCDF (PnetCDF) [9] is a project that
provides collective IO optimizations for scientific
applications on top of netCDF. Its main purpose is to
enable parallelism for netCDF. Its design strategies do
not take the parallel file system features into account.
Rather it leaves that to lower programming layers, such
as MPI-IO.

Tatebe et al. have exploited the concepts of local file
view in the design of a distributed file system for Grid
[17, 18]. The idea of local file view is similar to split
writing in this paper, except our technique is an

abstraction at the user-level inside MPI-IO, which does
not require instrumentation into the implementation of
file system client architecture. Our hierarchical striping
technique is similar in concept to another technique:
two-level striping. Two-level striping is a disk striping
technique used in the implementation of the Panasas
[7] file system, and is used as an internal storage
organization policy. Our hierarchical striping is built
on top of the user-level file joining feature. It works at
the level of IO middleware, aimed to reduce the
overhead of excessive striping. Nonetheless, these two
techniques are similar in the way they both provide
another level of striping to reshape the communication
pattern between storage clients and devices.

MPI-IO/GPFS [13] is an implementation that is similar
to our work in that it introduces file-system specific
optimizations to ADIO. It provides an optimized MPI-
IO implementation on top of IBM General Parallel File
System (GPFS) [16]. Collective data access operations
in MPI-IO/GPFS are optimized by minimizing
message exchanges in sparse accesses and by
overlapping communication with file operations. MPI-
IO/GPFS also takes advantage of GPFS programming
features, such as data shipping, to achieve effective
collective IO.

6 Conclusions

In this paper, we have shown that it is feasible to
exploit the Lustre file joining feature for effective
collective IO. We first show that IO middleware and
programming libraries over Lustre need to be aware of
its characteristics such as stripe width because
excessive stripe width may incur significant striping
overhead for both metadata and file read/write
operations. We propose split writing and hierarchical
striping to mitigate the striping cost while still being
able to cover many storage devices. We have
prototyped and evaluated these techniques inside a
Lustre-specific ADIO implementation. Experimental
results have shown our techniques are able to provide
effective collective-IO and scalable management
operations. The performance evaluation on other
application IO benchmarks, such as BT-IO and MPI-
Tile-IO, suggests that the benefits of Lustre file joining
can be beneficial to scientific IO patterns, but further
investigation is needed to increase the applicability of
our techniques to general workloads and overcome its
drawback of low performance with an existing joined
file.

In the future, we intend to investigate how different
striping policy can reshape the communication pattern
between IO clients and storage devices, particularly in

an ultra-scale environment. We also plan to further
exploit potential benefits of the two proposed
techniques by applying a dynamic striping policy in
Lustre, possibly with hints from applications.

Acknowledgment

This manuscript has been authored by a contractor of
the U.S. Government under Contract No. DE-AC05-
00OR22725. Accordingly, the U.S. Government
retains a non-exclusive, royalty-free license to publish
or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes.

We are very thankful to Dr. Philip Roth and Dr. Sarp
Oral from Oak Ridge National Laboratory for their
valuable technical comments and suggestions.

References

[1] IOzone Filesystem Benchmark. http://www.iozone.org/
[2] The Parallel Virtual File System, version 2.

http://www.pvfs.org/pvfs2.
[3] TOP 500 Supercomputers. http://www.top500.org/.
[4] Argonne National Laboratory. ROMIO: A High-

Performance, Portable MPI-IO Implementation.
http://www-unix.mcs.anl.gov/romio/.

[5] A. Ching, A. Choudhary, W. Liao, R. Ross, and W.
Gropp. Noncontiguous I/O through PVFS. In Proceedings
of the IEEE International Conference on Cluster
Computing, Chicago, IL, September 2002.

[6] Cluster File System, Inc. Lustre: A Scalable, High
Performance File System.
http://www.Lustre.org/docs.html.

[7] A. M. David Nagle, Denis Serenyi. The Panasas
ActiveScale Storage Cluster . Delivering Scalable High
Bandwidth Storage. In Proceedings of Supercomputing
’04, November 2004.

[8] R. Latham, R. Ross, and R. Thakur. The Impact of File
Systems on MPI-IO Scalability. In Proceedings of the
11th European PVM/MPI Users’ Group Meeting (Euro
PVM/MPI 2004), pages 87.96, September 2004.

[9] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W.
Gropp, and R. Latham. Parallel netCDF: A High
Performance Scientific I/O Interface. In Proceedings of
the Supercomputing ’03, November 2003.

[10] W. Liao, A. Ching, K. Coloma, A. Choudhary and L.
Ward. Implementation and Evaluation of Client-side File
Caching for MPI-IO. In Proceedings of the IEEE
International Parallel & Distributed Processing
Symposium ’07, March 2007.

[11] W. Liao, K. Coloma, A. Choudhary, L. Ward, E.
Russell, and S. Tideman. In Proceedings of the

Symposium on High Performance Distributed Computing
2005.

[12] Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang. Size
scaling of turbulent transport in magnetically confined
plasmas. Phys. Rev. Lett., 88(19):195004, Apr 2002.

[13] J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and A.
Koniges. MPI-IO/GPFS, an Optimized Implementation of
MPI-IO on Top of GPFS. In Proceedings of
Supercomputing ’01, November 2001.

[14] R. Ross. Parallel I/O Benchmarking Consortium.
http://www-unix.mcs.anl.gov/rross/pio-benchmark/html/.

[15] R. Ross, J. Moreira, K. Cupps and W. Pfeiffer. Parallel
I/O on the IBM BlueGene/L System.

[16] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In FAST ’02,
pages 231.244. USENIX, Jan. 2002.

[17] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, S.
Sekiguchi, "Grid Datafarm Architecture for Petascale
Data Intensive Computing," Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2002),

[18] O. Tatebe, N. Soda, Y. Morita, S. Matsuoka, S.
Sekiguchi, "Gfarm v2: A Grid file system that supports
high-performance distributed and parallel data
computing," Proceedings of the 2004 Computing in High
Energy and Nuclear Physics (CHEP04), Interlaken,
Switzerland, September 2004.

[19] R. Thakur and A. Choudhary. An Extended Two-Phase
Method for Accessing Sections of Out-of-Core Arrays.
Scientific Programming, 5(4):301.317, Winter 1996.

[20] R. Thakur, W. Gropp, and E. Lusk. An Abstract-Device
Interface for Implementing Portable Parallel-I/O
Interfaces. In Proceedings of Frontiers ’96: The Sixth
Symposium on the Frontiers of Massively Parallel
Computation. IEEE Computer Society, Oct 1996.

[21] R. Thakur, W. Gropp, and E. Lusk. Data sieving and
collective I/O in ROMIO. In Proceedings of the Seventh
Symposium on the Frontiers of Massively Parallel
Computation, pages 182.189. IEEE Computer Society
Press, 1999.

[22] R. Thakur, W. Gropp, and E. Lusk. On Implementing
MPI-IO Portably and with High Performance. In
Proceedings of the 6th Workshop on I/O in Parallel and
Distributed Systems, pages 23.32. ACM Press, May 1999.

[23] The National Center for SuperComputing. HDF Home
Page. http://hdf.ncsa.uiuc.com/hdf4.html.

[24] The National Center for SuperComputing. HDF5 Home
Page. http://hdf.ncsa.uiuc.com/HPD5/.

[25] P. Wong and R. F. Van der Wijngaart. NAS Parallel
Benchmarks I/O Version 2.4. Technical Report NAS-03-
002, Computer Sciences Corporation, NASA Advanced
Supercomputing (NAS) Division.

[26] W. Yu, Q. Gao, and D. K. Panda. Adaptive Connection
Management for Scalable MPI over InfiniBand. In
International Parallel and Distributed Processing
Symposium, Rhodes Island, Greece, April 2006.

