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Abstract 

 
Parallel IO over Cray XT is supported by a vendor-supplied MPI-IO package. This package contains 

a proprietary ADIO implementation built on top of the sysio library. While it is reasonable to maintain a 
stable code base for users’ convenience, it is also very important to the system developers and researchers 
to analyze and assess the effectiveness of parallel IO software, and accordingly, tune and optimize the 
MPI-IO implementation. A proprietary parallel IO code base relinquishes such flexibilities. On the other 
hand, a generic UFS-based MPI-IO implementation is typically used on many Linux-based platforms, 
which lacks of the capability of utilizing Lustre specific features. We have developed an open-source 
MPI-IO package over Lustre, referred to as OPAL (OPportunistic and Adaptive MPI-IO Library over 
Lustre). OPAL provides a single source-code base for MPI-IO over Lustre on Cray XT and Linux 
platforms. It provides a number of good features, including arbitrary specification of striping patterns and 
Lustre-stripe aligned file domain partitioning. This paper presents the performance comparisons between 
OPAL and Cray’s proprietary implementation. Our evaluation demonstrates that OPAL achieves the 
performance comparable to the Cray implementation. We also exemplify the benefits of OPAL in 
profiling the internal time breakdown of the collective IO protocol over Cray XT. 
 

1 Introduction 

Today’s Massively Parallel Processing (MPP) platforms are deployed with 100s of TeraFlops 
(1015) [3]. To meet the needs of data-intensive scientific applications, these MPP systems, such 
as BlueGene/L [4] and Cray XT [13], are often deployed with a scalable IO subsystem. For 
example, Tera-10 at CEA in Europe has reported aggregated IO throughput reaching 
100GigaByptes per second [6]. For the reasons of portability and convenient data representation, 
these HPC systems are often deployed with a varying depth of software stacks such as MPI-IO 
[11], Parallel NetCDF [8] and HDF5 [12]. Collectively, these layers provide portable 
abstractions for IO accesses. Among them MPI-IO [11], as the IO interface for the popular 
message passing parallel programming model, forms the fundamental library, offering the basic 
building component for other libraries. 

Cray XT is a line of products that represent generations of MPP systems from Cray. The 
basic building block of the Cray XT systems is a Processing Element (PE), as shown in Figure 1. 
Each PE is comprised of one AMD processor (single, dual or quad core), along with its own 
memory, integrated memory controller, HyperTransport links, and a dedicated communication 
chip SeaStar. There are two types of processing elements: compute PEs and service PEs. 
Compute PEs run a lightweight operating system called Catamount. The Catamount kernel runs 
only one single-threaded process and does not support demand-paged virtual memory. Service 



 

 

PEs (i.e., login, IO, network, and system PEs) run Linux to provide a user-familiar environment 
for application development and for hosting system and performance tools. The Portals [5] data 
movement layer is used for flexible, low-overhead inter-node communication.  It delivers data 
from a sending process’ user space to the receiving process’ user space without kernel buffering. 

 
Figure 1 Cray XT4 System Architecture (Courtesy of Cray) 

The IO subsystem of Cray XT is provided through Lustre file system [7]. Lustre is a 
distributed parallel file system and presents a POSIX interface to its clients with parallel access 
capabilities to the shared objects. It is composed of four main components, namely, Metadata 
Servers (MDSs) that provide metadata services; Object Storage Targets (OSTs) that control and 
provide access to the actual physical block devices and data; Object Storage Servers (OSSs) that 
manage and provide access to underlying OSTs; and client(s) that access and use the data. Cray 
provides a proprietary MPI-IO implementation over Lustre on Cray XT. This package contains a 
proprietary ADIO implementation built on top of the SYSIO [10] library, while supports system 
calls from catamount clients for accessing Lustre file system servers.  

While it is reasonable to maintain a stable code base for application scientists’ convenience, 
it is also important to the system developer and researchers to analyze and assess the 
effectiveness of parallel IO software, thereby tuning and optimizing the MPI-IO implementation 
accordingly. A proprietary parallel IO code base relinquishes such flexibilities, which is a key 
disadvantage of its proprietary nature. This is because the proprietary MPI-IO code base remains 
stagnant, while the underlying Lustre file system keeps evolving and new features are being 
provided from the file system vendor. Cray XT users must wait for a prolonged period for the 
low level file system features to percolate up into the run-time parallel IO libraries. They are also 
rid of flexibilities for experimenting with different parallel IO algorithms. This situation is 
particularly problematic because the scheduled periodic routines for updating Cray XT operating 
system and run-time systems need to be infrequently. A corollary of this lack of flexibility is that 
the discouragement for system developers in experimenting with new customization and 
optimizations that can keep closely integrated with the evolving needs of scientific applications. 

Furthermore, a generic UFS-based MPI-IO implementation, so-called AD_UFS, is 
commonly used on many Linux-based platforms that are equipped with Lustre file system, such 
as Tera-10 at Europe and Thunder from Lawrence Livermore National Laboratory. This generic 
implementation works correctly for Lustre because it supports POSIX-compliant, UNIX-style 
file systems, and Lustre is one of the POSIX compliant file systems [7]. However, as AD_UFS is 
a generic implementation, it does not take advantage of Lustre specific features. For example, the 



 

 

users over Cray XT have to manually set stripe patterns (by way of “lfs setstripe/getstripe”) for 
the parent directory when new files need to be created with an intended striping pattern. To the 
least, this parent directory non-distinguishably forces all the files to inherit a single striping 
pattern. 

It is desirable if an open source MPI-IO implementation is available over Cray XT. It would 
also be beneficial if such a code base can provide additional support to increase the users’ 
convenience over Lustre file system. Such a code base can offer a good catalyst for research and 
development of experimental algorithms for improving the performance of parallel IO over Cray 
XT. It can also povide an experimental code base for cultivating new parallel IO algorithms 
before they are integrated into the proprietary code base. In addition, the current tracing tools 
over Cray XT, such as CrayPat, can only support the profiling of MPI communications and 
POSIX IO calls such as reads/writes. An open source code base can be leveraged to provide 
tracing, profiling and debugging support for revealing the internal time breakdown ofMPI-IO 
protocols.  

To these aims, we have developed a dual-platform, open-source MPI-IO library over Lustre. 
We referred to this library as an OPportunistic and Adaptive MPI-IO Library over Lustre 
(OPAL) to reflect its intended purpose of taking advantage of specific opportunities from the 
underlying Lustre file system, and adapting the high layer MPI-IO library accordingly. A 
prerequisite to such an open source package is the need of comparable performance to the 
proprietary code base. This paper presents the performance comparisons between OPAL and 
Cray’s proprietary implementation. Our evaluation results show that the resulting open-source 
MPI-IO library achieves the performance comparable to the original package from Cray.  

The rest of the paper is organized as follows. In the next section, we describe the theoretical 
background for the feasibility of leveraging an open source MPI-IO over Cray XT.  Following 
that, we present the performance of OPAL. In Section 4, we conclude the paper. 

2 OPAL: An MPI-IO Library for Dual Platforms (Cray XT and Linux) 

There are two types of IO clients over Cray XT: regular Linux clients from service PEs and 
Catamount clients from compute PEs. Clients from the service PEs, including the login PEs, 
network and system PEs, obtain their IO services through regular Linux Lustre clients. In 
contrast, on the compute PEs, IO is only available through an interface called liblustre, which 
transfers IO requests through Portals communication library to the IO PEs. The parallel 
processes from compute PEs can perform IO either by directly invoking POSIX read/write, or by 
calling through a MPI-IO library. With Catamount on Compute PEs, the IO system calls from 
applications such as read/write are converted to liblustre routines through a preloaded SYSIO 
[10] library at compile time or run-time. 

We designed OPAL as an alternative MPI-IO package over Cray XT based on the following 
theoretical observations:  

1. The default MPI-IO implementation AD_UFS provides a generic code base that works 
for any POSIX compliant, UNIX-style file systems.  

2. Lustre is a POSIX compliant file system [7], that is, it offers IO services through POSIX 
system calls. POSIX-style IO system calls on Cray XT compute PEs are converted to 
appropriate liblustre routines through the SYSIO library. So system reads/writes calls as 
invoked from AD_UFS would work. 



 

 

These facts together suggest that the generic AD_UFS implementation should work correctly 
over XT. Furthermore, we intend to augment this generic implementation it with Lustre specific 
features to address its shortcomings. Based on these notions and our objective, we have designed 
a dual-platform open-source MPI-IO library over Lustre. It is referred to as OPAL 
(OPportunistic and Adaptive MPI-IO Library over Lustre) as we intend to take advantage of 
opportunities from Lustre file system and adapt this MPI-IO library accordingly. Figure 2 shows 
the architecture of our library. AD_Lustre represents the Lustre specific component of OPAL, at 
the same level as the other file system specific implementations of MPI-IO (AD_UFS and 
AD_Sysio). Applications over Cray XT can still perform IO through any of its interfaces 
underneath, such as POSIX system calls, netCDF (or Parallel netCDF), HDF5 and/or MPI-IO. 
Besides being open-source, OPAL provides additional features, such as (a) the support of 
arbitrary specification of per-file striping pattern over Lustre from within the MPI-IO library and 
(b) stripe-aligned file domain partitioning in collective IO. Feature (b) is to partition a file among 
different processors with boundaries aligned on Lustre stripe sizes - a similar feature has been 
enabled for BlueGene/L over GPFS [15].  

 
Figure 2 Diagram of OPAL Software Architecture 

Our implementation over Cray is based on MPICH2-1.0.3, the same base package from 
which the Cray XT MPI-IO implementation is derived. By using the same version of MPI code 
base, we intend to avoid any interface mismatches between the proprietary MPI-IO code base 
and OPAL. However, the default MPI-IO library is included as the part of the Cray XT MPI 
library. To avoid the symbol conflicts and multiple implementations of identical functions, we 
have also customized the compilation and build tools for easy usage of OPAL. Eventually, we 
obtained a working parallel IO code base using OPAL. In the rest of this paper, we prepare the 
performance comparisons between OPAL and the Cray implementation.  

3 Performance of OPAL over Cray XT 

In this section, we describe our performance evaluation of OPAL over Jaguar at ORNL, the 
second largest supercomputer as of June 2007 [3]. We carried out many tests of OPAL on Linux-
based clusters first before we validate OPAL over Jaguar. Here we only provide the performance 
results of OPAL on Jaguar. Jaguar is equipped with three Lustre file systems; two with the 



 

 

capacity of 150 TB and one 300 TB. Each file system has its own dedicated MDS service node. 
Jaguar currently has 8 available MDS service nodes. In total 72 service nodes are assigned as 
OSSs for these 3 file systems. Each OSS node is configured with 4 OSTs. Two of these OSTs are 
serving LUNs for the 300 TB file system, while remaining two OSTs serve LUNs for two 150 
TB file systems. DDN 9550s LUNs are configured such that, each LUN spans two tiers of disks 
as suggested by CFS for the optimal performance. Each LUN has a capacity of 2TBs and 4kB 
block size. The write-back cache is set to 1MB on each controller. 

3.1 IOR 
The IOR benchmark [2] is a benchmark that measures the performance of different parallel 

IO patterns. IOR can test the performance of parallel IO with different IO interfaces, including 
POSIX read/write, MPI-IO independent or collective read/write, as well as IO through higher 
level libraries such as HDF5[12]. Figure 3 shows performance comparisons of between OPAL 
and Cray on Jaguar when parallel processes are performing independent read/write operations. 
Each process independently reads from (or writes into) a shared file striped across 64 Lustre 
object storage targets (OSTs), in transfer units of 1MB. The second Y-axis shows the relative 
improvement ratio compared to the Cray implementation. The performance of parallel reads is 
about equivalent between the two. In contrast, for parallel writes, OPAL appears beneficial 
across a small number of processes. But with the increasing number of processes, OPAL and 
Cray also becomes comparable in terms of the performance of parallel writes. Therefore, these 
results suggest that OPAL provides comparable independent read/write performance. 
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Parallel Write to 64 Stripes
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Figure 3 Performance Comparisons of Independent Read (L) and Write (R) in MPI-IO 

Figure 3 shows performance comparisons of IOR collective writes between OPAL and Cray. 
Each process writes out the same amount of data to the file with 64 stripes. However, they do so 
through collective IO operations. The second Y-axis shows the relative improvement ratio with 
OPAL compared to Cray. As shown in Figure 4, the performance of OPAL is generally 
comparable to or better than that of the Cray implementation. 

Internal MPI-IO Profiling Through OPAL over Cray XT – One of the benefits of OPAL 
is its open access to internal implementation of MPI-IO. This enables convenience in profiling 
the internal time breakdown of MPI-IO implementation. We have carried an example profile 
with the current IO protocol. Currently, collective IO implementation uses a two-phase protocol, 
consisting of a sequence of stages including gathering the pairs of offset/length about data 



 

 

fragments, file domain partitioning, and interleaved phases of data exchange and file IO. 
Synchronization is also needed between phases of data exchange and file IO. Figure 5 shows an 
example of the internal profiling of collective IO over Cray XT. Notably, across 128 processes, 
the time spent in synchronization is about 42% of the total time for collective IO. The impact of 
synchronization is to be addressed in more detail elsewhere, as it is more than the scope of this 
paper. This example demonstrates that OPAL is very useful in facilitating examination of 
internal timing of MPI-IO library. 
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Figure 4 Collective IO Performance 

Comparisons of OPAL and Cray 
Figure 5 Timing breakdown of Collective IO 
over Cray XT 

 
3.2 Scientific Benchmarks 

The majority of applications running on systems such as Jaguar are scientific simulations 
programs. It is important to validate that OPAL also supports good IO throughput and scalability 
for various different scientific benchmarks. We have compared the performance of OPAL to the 
Cray implementation using the following three scientific benchmarks. 

MPI-Tile-IO -- MPI-Tile-IO [9] is a MPI-IO benchmark that tests the performance of tiled 
data accesses. In this application, data IO is non-contiguous and issued in a single step using 
collective IO. It tests the performance of tiled access to a two-dimensional dense dataset, 
simulating the type of workload that exists in some visualization and scientific applications. In 
our experiments, each process renders a 1x1 tile with 1024x768 pixels. The size of each element 
is 64 bytes, leading to a file size of 48*N MB, where N is the number of processes. 

BT-IO -- NAS BT-IO [14] is an IO benchmark that tests the output capability of NAS BT 
(Block-Tridiagonal) parallel benchmark. It is developed at NASA Ames Research Center. Its 
data set undergoes diagonal multi-partitioning and is distributed among MPI-processes. The data 
structures are represented as structured MPI datatypes and written to a file periodically. There 
are several different BT-IO implementations, which vary on how its file IO is carried out among 
all the processes. In the full mode BT-IO, BT-IO performs collective IO for file output; in the 
simple mode, all processes write out their small IO requests. 

Flash-IO -- Flash is an application that simulates astrophysical thermonuclear flashes. It is 
developed in part at the University of Chicago by the DOE-supported ASC Alliance Center for 
Astrophysical Thermonuclear. The Flash IO [1] benchmark is the separated IO portion of the 
Flash program and measures the performance of its parallel HDF5 [12] output. The MPI-IO 



 

 

interface is used internally in the HDF5 library. Three different output files are produced in Flash 
IO: a checkpoint file, a plotfile with centered data, and a plotfile with corner data. These files are 
written through the HDF5 [12] data format. We evaluated Flash IO with its memory structure 
being a 3D array of size 32x32x32. This results in a checkpoint file of 60.8GB for 128 processes, 
and 486GB for 1024 processes. 
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Figure 6: MPI-Tile-IO Performance 

Comparisons of Cray and OPAL 
Figure 7: BT-IO Performance Comparisons 
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Figure 8: Flash IO Performance Comparisons of Cray and OPAL 

Figures 6, 7 and 8 show the performance of MPI-Tile-IO, BT-IO and Flash IO with OPAL, 
compared to the Cray implementation. As shown in Figure 6, for visualization benchmarks such 
as MPI-Tile-IO, the Cray implementation has a small marginal advantage over OPAL, but still 
the two are very comparable to each other. For BT-IO, the performance results between OPAL 
and Cray are nearly identical. In the case of Flash IO, OPAL provides consistently better IO 
bandwidth compared to the default Cray MPI-IO implementation. In summary, these results 
validate that OPAL also provides comparable IO performance for scientific benchmarks. 

4 Conclusions 

In this paper, to gain internal insights and latitudes in tuning and optimizing the parallel IO 
behaviors over Cray XT, we have examined its parallel IO software stack and concluded that it is 
feasible and beneficial to have an open source MPI-IO alternative. Accordingly, we have 
developed an open-source MPI-IO library referred to as OPAL. Using IOR benchmark program, 



 

 

we have demonstrated that OPAL provides comparable performance compared to the Cray’s 
proprietary implementation. Moreover, with a set of scientific parallel IO benchmarks, we have 
demonstrated that OPAL performs comparably for various IO patterns that existed in scientific 
applications. Furthermore, we have exemplified the benefits of OPAL in profiling the programs’ 
time breakdown inside MPI-IO over Cray XT. In summary, OPAL offers a viable open-source 
MPI-IO library that enables further research and development for system researchers and 
developers using Cray XT platforms such as Jaguar at ORNL, the second largest supercomputer 
as of June 2007 [3]. 

Source-Code Download 
For related work and the latest source code of OPAL, please visit our website at 

http://ft.ornl.gov/projects/io/ 
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