

OPAL: An Open-Source MPI-IO Library over Cray XT

Weikuan Yu+,*, Jeffrey S. Vetter+, R. Shane Canon*
+Computer Science and Mathematics

*National Center for Computational Sciences
Oak Ridge National Laboratory

Oak Ridge, TN 37831
{wyu,vetter, canonrs}@ornl.gov

Abstract

Parallel IO over Cray XT is supported by a vendor-supplied MPI-IO package. This package contains

a proprietary ADIO implementation built on top of the sysio library. While it is reasonable to maintain a
stable code base for users’ convenience, it is also very important to the system developers and researchers
to analyze and assess the effectiveness of parallel IO software, and accordingly, tune and optimize the
MPI-IO implementation. A proprietary parallel IO code base relinquishes such flexibilities. On the other
hand, a generic UFS-based MPI-IO implementation is typically used on many Linux-based platforms,
which lacks of the capability of utilizing Lustre specific features. We have developed an open-source
MPI-IO package over Lustre, referred to as OPAL (OPportunistic and Adaptive MPI-IO Library over
Lustre). OPAL provides a single source-code base for MPI-IO over Lustre on Cray XT and Linux
platforms. It provides a number of good features, including arbitrary specification of striping patterns and
Lustre-stripe aligned file domain partitioning. This paper presents the performance comparisons between
OPAL and Cray’s proprietary implementation. Our evaluation demonstrates that OPAL achieves the
performance comparable to the Cray implementation. We also exemplify the benefits of OPAL in
profiling the internal time breakdown of the collective IO protocol over Cray XT.

1 Introduction

Today’s Massively Parallel Processing (MPP) platforms are deployed with 100s of TeraFlops
(1015) [3]. To meet the needs of data-intensive scientific applications, these MPP systems, such
as BlueGene/L [4] and Cray XT [13], are often deployed with a scalable IO subsystem. For
example, Tera-10 at CEA in Europe has reported aggregated IO throughput reaching
100GigaByptes per second [6]. For the reasons of portability and convenient data representation,
these HPC systems are often deployed with a varying depth of software stacks such as MPI-IO
[11], Parallel NetCDF [8] and HDF5 [12]. Collectively, these layers provide portable
abstractions for IO accesses. Among them MPI-IO [11], as the IO interface for the popular
message passing parallel programming model, forms the fundamental library, offering the basic
building component for other libraries.

Cray XT is a line of products that represent generations of MPP systems from Cray. The
basic building block of the Cray XT systems is a Processing Element (PE), as shown in Figure 1.
Each PE is comprised of one AMD processor (single, dual or quad core), along with its own
memory, integrated memory controller, HyperTransport links, and a dedicated communication
chip SeaStar. There are two types of processing elements: compute PEs and service PEs.
Compute PEs run a lightweight operating system called Catamount. The Catamount kernel runs
only one single-threaded process and does not support demand-paged virtual memory. Service

PEs (i.e., login, IO, network, and system PEs) run Linux to provide a user-familiar environment
for application development and for hosting system and performance tools. The Portals [5] data
movement layer is used for flexible, low-overhead inter-node communication. It delivers data
from a sending process’ user space to the receiving process’ user space without kernel buffering.

Figure 1 Cray XT4 System Architecture (Courtesy of Cray)

The IO subsystem of Cray XT is provided through Lustre file system [7]. Lustre is a
distributed parallel file system and presents a POSIX interface to its clients with parallel access
capabilities to the shared objects. It is composed of four main components, namely, Metadata
Servers (MDSs) that provide metadata services; Object Storage Targets (OSTs) that control and
provide access to the actual physical block devices and data; Object Storage Servers (OSSs) that
manage and provide access to underlying OSTs; and client(s) that access and use the data. Cray
provides a proprietary MPI-IO implementation over Lustre on Cray XT. This package contains a
proprietary ADIO implementation built on top of the SYSIO [10] library, while supports system
calls from catamount clients for accessing Lustre file system servers.

While it is reasonable to maintain a stable code base for application scientists’ convenience,
it is also important to the system developer and researchers to analyze and assess the
effectiveness of parallel IO software, thereby tuning and optimizing the MPI-IO implementation
accordingly. A proprietary parallel IO code base relinquishes such flexibilities, which is a key
disadvantage of its proprietary nature. This is because the proprietary MPI-IO code base remains
stagnant, while the underlying Lustre file system keeps evolving and new features are being
provided from the file system vendor. Cray XT users must wait for a prolonged period for the
low level file system features to percolate up into the run-time parallel IO libraries. They are also
rid of flexibilities for experimenting with different parallel IO algorithms. This situation is
particularly problematic because the scheduled periodic routines for updating Cray XT operating
system and run-time systems need to be infrequently. A corollary of this lack of flexibility is that
the discouragement for system developers in experimenting with new customization and
optimizations that can keep closely integrated with the evolving needs of scientific applications.

Furthermore, a generic UFS-based MPI-IO implementation, so-called AD_UFS, is
commonly used on many Linux-based platforms that are equipped with Lustre file system, such
as Tera-10 at Europe and Thunder from Lawrence Livermore National Laboratory. This generic
implementation works correctly for Lustre because it supports POSIX-compliant, UNIX-style
file systems, and Lustre is one of the POSIX compliant file systems [7]. However, as AD_UFS is
a generic implementation, it does not take advantage of Lustre specific features. For example, the

users over Cray XT have to manually set stripe patterns (by way of “lfs setstripe/getstripe”) for
the parent directory when new files need to be created with an intended striping pattern. To the
least, this parent directory non-distinguishably forces all the files to inherit a single striping
pattern.

It is desirable if an open source MPI-IO implementation is available over Cray XT. It would
also be beneficial if such a code base can provide additional support to increase the users’
convenience over Lustre file system. Such a code base can offer a good catalyst for research and
development of experimental algorithms for improving the performance of parallel IO over Cray
XT. It can also povide an experimental code base for cultivating new parallel IO algorithms
before they are integrated into the proprietary code base. In addition, the current tracing tools
over Cray XT, such as CrayPat, can only support the profiling of MPI communications and
POSIX IO calls such as reads/writes. An open source code base can be leveraged to provide
tracing, profiling and debugging support for revealing the internal time breakdown ofMPI-IO
protocols.

To these aims, we have developed a dual-platform, open-source MPI-IO library over Lustre.
We referred to this library as an OPportunistic and Adaptive MPI-IO Library over Lustre
(OPAL) to reflect its intended purpose of taking advantage of specific opportunities from the
underlying Lustre file system, and adapting the high layer MPI-IO library accordingly. A
prerequisite to such an open source package is the need of comparable performance to the
proprietary code base. This paper presents the performance comparisons between OPAL and
Cray’s proprietary implementation. Our evaluation results show that the resulting open-source
MPI-IO library achieves the performance comparable to the original package from Cray.

The rest of the paper is organized as follows. In the next section, we describe the theoretical
background for the feasibility of leveraging an open source MPI-IO over Cray XT. Following
that, we present the performance of OPAL. In Section 4, we conclude the paper.

2 OPAL: An MPI-IO Library for Dual Platforms (Cray XT and Linux)

There are two types of IO clients over Cray XT: regular Linux clients from service PEs and
Catamount clients from compute PEs. Clients from the service PEs, including the login PEs,
network and system PEs, obtain their IO services through regular Linux Lustre clients. In
contrast, on the compute PEs, IO is only available through an interface called liblustre, which
transfers IO requests through Portals communication library to the IO PEs. The parallel
processes from compute PEs can perform IO either by directly invoking POSIX read/write, or by
calling through a MPI-IO library. With Catamount on Compute PEs, the IO system calls from
applications such as read/write are converted to liblustre routines through a preloaded SYSIO
[10] library at compile time or run-time.

We designed OPAL as an alternative MPI-IO package over Cray XT based on the following
theoretical observations:

1. The default MPI-IO implementation AD_UFS provides a generic code base that works
for any POSIX compliant, UNIX-style file systems.

2. Lustre is a POSIX compliant file system [7], that is, it offers IO services through POSIX
system calls. POSIX-style IO system calls on Cray XT compute PEs are converted to
appropriate liblustre routines through the SYSIO library. So system reads/writes calls as
invoked from AD_UFS would work.

These facts together suggest that the generic AD_UFS implementation should work correctly
over XT. Furthermore, we intend to augment this generic implementation it with Lustre specific
features to address its shortcomings. Based on these notions and our objective, we have designed
a dual-platform open-source MPI-IO library over Lustre. It is referred to as OPAL
(OPportunistic and Adaptive MPI-IO Library over Lustre) as we intend to take advantage of
opportunities from Lustre file system and adapt this MPI-IO library accordingly. Figure 2 shows
the architecture of our library. AD_Lustre represents the Lustre specific component of OPAL, at
the same level as the other file system specific implementations of MPI-IO (AD_UFS and
AD_Sysio). Applications over Cray XT can still perform IO through any of its interfaces
underneath, such as POSIX system calls, netCDF (or Parallel netCDF), HDF5 and/or MPI-IO.
Besides being open-source, OPAL provides additional features, such as (a) the support of
arbitrary specification of per-file striping pattern over Lustre from within the MPI-IO library and
(b) stripe-aligned file domain partitioning in collective IO. Feature (b) is to partition a file among
different processors with boundaries aligned on Lustre stripe sizes - a similar feature has been
enabled for BlueGene/L over GPFS [15].

Figure 2 Diagram of OPAL Software Architecture

Our implementation over Cray is based on MPICH2-1.0.3, the same base package from
which the Cray XT MPI-IO implementation is derived. By using the same version of MPI code
base, we intend to avoid any interface mismatches between the proprietary MPI-IO code base
and OPAL. However, the default MPI-IO library is included as the part of the Cray XT MPI
library. To avoid the symbol conflicts and multiple implementations of identical functions, we
have also customized the compilation and build tools for easy usage of OPAL. Eventually, we
obtained a working parallel IO code base using OPAL. In the rest of this paper, we prepare the
performance comparisons between OPAL and the Cray implementation.

3 Performance of OPAL over Cray XT

In this section, we describe our performance evaluation of OPAL over Jaguar at ORNL, the
second largest supercomputer as of June 2007 [3]. We carried out many tests of OPAL on Linux-
based clusters first before we validate OPAL over Jaguar. Here we only provide the performance
results of OPAL on Jaguar. Jaguar is equipped with three Lustre file systems; two with the

capacity of 150 TB and one 300 TB. Each file system has its own dedicated MDS service node.
Jaguar currently has 8 available MDS service nodes. In total 72 service nodes are assigned as
OSSs for these 3 file systems. Each OSS node is configured with 4 OSTs. Two of these OSTs are
serving LUNs for the 300 TB file system, while remaining two OSTs serve LUNs for two 150
TB file systems. DDN 9550s LUNs are configured such that, each LUN spans two tiers of disks
as suggested by CFS for the optimal performance. Each LUN has a capacity of 2TBs and 4kB
block size. The write-back cache is set to 1MB on each controller.

3.1 IOR
The IOR benchmark [2] is a benchmark that measures the performance of different parallel

IO patterns. IOR can test the performance of parallel IO with different IO interfaces, including
POSIX read/write, MPI-IO independent or collective read/write, as well as IO through higher
level libraries such as HDF5[12]. Figure 3 shows performance comparisons of between OPAL
and Cray on Jaguar when parallel processes are performing independent read/write operations.
Each process independently reads from (or writes into) a shared file striped across 64 Lustre
object storage targets (OSTs), in transfer units of 1MB. The second Y-axis shows the relative
improvement ratio compared to the Cray implementation. The performance of parallel reads is
about equivalent between the two. In contrast, for parallel writes, OPAL appears beneficial
across a small number of processes. But with the increasing number of processes, OPAL and
Cray also becomes comparable in terms of the performance of parallel writes. Therefore, these
results suggest that OPAL provides comparable independent read/write performance.

Parallel Read from 64 Stripes

0

2000

4000

6000

8000

10000

12000

8 48 88 128 168 208 248

No. of Processes

B
an

dw
id

th
 (M

B/
se

c)

0

20

40

60

80

100

120

140

Pe
rc

en
ta

ge

OPAL Cray Improvement

Parallel Write to 64 Stripes

0

2000

4000

6000

8000

10000

12000

8 48 88 128 168 208 248

No. of Processes

B
an

dw
id

th
 (M

B/
se

c)

0

50

100

150

200

P
er

ce
nt

ag
e

OPAL Cray Improvement

Figure 3 Performance Comparisons of Independent Read (L) and Write (R) in MPI-IO

Figure 3 shows performance comparisons of IOR collective writes between OPAL and Cray.
Each process writes out the same amount of data to the file with 64 stripes. However, they do so
through collective IO operations. The second Y-axis shows the relative improvement ratio with
OPAL compared to Cray. As shown in Figure 4, the performance of OPAL is generally
comparable to or better than that of the Cray implementation.

Internal MPI-IO Profiling Through OPAL over Cray XT – One of the benefits of OPAL
is its open access to internal implementation of MPI-IO. This enables convenience in profiling
the internal time breakdown of MPI-IO implementation. We have carried an example profile
with the current IO protocol. Currently, collective IO implementation uses a two-phase protocol,
consisting of a sequence of stages including gathering the pairs of offset/length about data

fragments, file domain partitioning, and interleaved phases of data exchange and file IO.
Synchronization is also needed between phases of data exchange and file IO. Figure 5 shows an
example of the internal profiling of collective IO over Cray XT. Notably, across 128 processes,
the time spent in synchronization is about 42% of the total time for collective IO. The impact of
synchronization is to be addressed in more detail elsewhere, as it is more than the scope of this
paper. This example demonstrates that OPAL is very useful in facilitating examination of
internal timing of MPI-IO library.

345
350
355
360
365
370
375
380
385
390
395

32 64 128 256 512

No. of Processes

B
an

dw
di

th
 (M

B
/s

ec
)

Cray
OPAL

0

20

40

60

80

100

120

IOR Collective IO -- 128 processes
P

er
ce

nt
ag

e

file IO
synchronization
data-exchange
file domain partition
offset/len gathering

Figure 4 Collective IO Performance

Comparisons of OPAL and Cray
Figure 5 Timing breakdown of Collective IO
over Cray XT

3.2 Scientific Benchmarks

The majority of applications running on systems such as Jaguar are scientific simulations
programs. It is important to validate that OPAL also supports good IO throughput and scalability
for various different scientific benchmarks. We have compared the performance of OPAL to the
Cray implementation using the following three scientific benchmarks.

MPI-Tile-IO -- MPI-Tile-IO [9] is a MPI-IO benchmark that tests the performance of tiled
data accesses. In this application, data IO is non-contiguous and issued in a single step using
collective IO. It tests the performance of tiled access to a two-dimensional dense dataset,
simulating the type of workload that exists in some visualization and scientific applications. In
our experiments, each process renders a 1x1 tile with 1024x768 pixels. The size of each element
is 64 bytes, leading to a file size of 48*N MB, where N is the number of processes.

BT-IO -- NAS BT-IO [14] is an IO benchmark that tests the output capability of NAS BT
(Block-Tridiagonal) parallel benchmark. It is developed at NASA Ames Research Center. Its
data set undergoes diagonal multi-partitioning and is distributed among MPI-processes. The data
structures are represented as structured MPI datatypes and written to a file periodically. There
are several different BT-IO implementations, which vary on how its file IO is carried out among
all the processes. In the full mode BT-IO, BT-IO performs collective IO for file output; in the
simple mode, all processes write out their small IO requests.

Flash-IO -- Flash is an application that simulates astrophysical thermonuclear flashes. It is
developed in part at the University of Chicago by the DOE-supported ASC Alliance Center for
Astrophysical Thermonuclear. The Flash IO [1] benchmark is the separated IO portion of the
Flash program and measures the performance of its parallel HDF5 [12] output. The MPI-IO

interface is used internally in the HDF5 library. Three different output files are produced in Flash
IO: a checkpoint file, a plotfile with centered data, and a plotfile with corner data. These files are
written through the HDF5 [12] data format. We evaluated Flash IO with its memory structure
being a 3D array of size 32x32x32. This results in a checkpoint file of 60.8GB for 128 processes,
and 486GB for 1024 processes.

MPI-Tile-IO

0

500

1000

1500

2000

2500

3000

64 128 256 512 1024

No. of Processes

B
an

dw
di

th
 (M

B
/s

ec
)

Cray
OPAL

0

1000

2000

3000

4000

5000

64 256 576

No. of Processes

B
an

dw
di

th
 (M

B
/s

ec
)

Cray
OPAL

Figure 6: MPI-Tile-IO Performance

Comparisons of Cray and OPAL
Figure 7: BT-IO Performance Comparisons

of Cray and OPAL

0

2000

4000

6000

8000

10000

12000

B
an

dw
id

th
 (M

B
/s

ec
)

Cray OPAL Cray OPAL Cray OPAL

Checkpoint Plot-Center Plot-Corner

Nprocs=256 Nprocs=512 Nprocs=1024

Figure 8: Flash IO Performance Comparisons of Cray and OPAL

Figures 6, 7 and 8 show the performance of MPI-Tile-IO, BT-IO and Flash IO with OPAL,
compared to the Cray implementation. As shown in Figure 6, for visualization benchmarks such
as MPI-Tile-IO, the Cray implementation has a small marginal advantage over OPAL, but still
the two are very comparable to each other. For BT-IO, the performance results between OPAL
and Cray are nearly identical. In the case of Flash IO, OPAL provides consistently better IO
bandwidth compared to the default Cray MPI-IO implementation. In summary, these results
validate that OPAL also provides comparable IO performance for scientific benchmarks.

4 Conclusions

In this paper, to gain internal insights and latitudes in tuning and optimizing the parallel IO
behaviors over Cray XT, we have examined its parallel IO software stack and concluded that it is
feasible and beneficial to have an open source MPI-IO alternative. Accordingly, we have
developed an open-source MPI-IO library referred to as OPAL. Using IOR benchmark program,

we have demonstrated that OPAL provides comparable performance compared to the Cray’s
proprietary implementation. Moreover, with a set of scientific parallel IO benchmarks, we have
demonstrated that OPAL performs comparably for various IO patterns that existed in scientific
applications. Furthermore, we have exemplified the benefits of OPAL in profiling the programs’
time breakdown inside MPI-IO over Cray XT. In summary, OPAL offers a viable open-source
MPI-IO library that enables further research and development for system researchers and
developers using Cray XT platforms such as Jaguar at ORNL, the second largest supercomputer
as of June 2007 [3].

Source-Code Download
For related work and the latest source code of OPAL, please visit our website at

http://ft.ornl.gov/projects/io/

Acknowledgments
This research is sponsored by the Office of Advanced Scientific Computing Research; U.S.
Department of Energy. The work was performed at the Oak Ridge National Laboratory, which is
managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725.

References
[1] "FLASH I/O Benchmark Routine -- Parallel HDF 5," http://www.ucolick.org/~zingale/flash_benchmark_io/.
[2] "IOR Benchmark," http://www.llnl.gov/asci/purple/benchmarks/limited/ior.
[3] "TOP 500 Supercomputers," http://www.top500.org/.
[4] N. R. Adiga, G. Almasi, G. S. Almasi, et al., "An overview of the BlueGene/L Supercomputer," in Proceedings of the 2002

ACM/IEEE conference on Supercomputing Baltimore, Maryland: IEEE Computer Society Press, 2002.
[5] R. Brightwell, R. Riesen, B. Lawry, and A. B. Maccabe, "Portals 3.0: Protocol Building Blocks for Low Overhead

Communication," in Proceedings of the 2002 Workshop on Communication Architecture for Clusters (CAC), 2002.
[6] Bull Direct, "French Atomic Energy Authority (CEA) takes delivery of Tera-10," 2006.
[7] Cluster File System, "Lustre: A Scalable, High Performance File System."
[8] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, and R. Latham, "Parallel netCDF: A High Performance

Scientific I/O Interface," in Proceedings of the Supercomputing '03, 2003.
[9] R. B. Ross, "Parallel I/O Benchmarking Consortium."
[10] Sandia National Laboratories, "Scalable IO," http://www.cs.sandia.gov/capabilities/ScalableIO/.
[11] R. Thakur, W. Gropp, and E. Lusk, "On Implementing MPI-IO Portably and with High Performance," in Proceedings of the

6th Workshop on I/O in Parallel and Distributed Systems, 1999, pp. 23-32.
[12] The National Center for SuperComputing, "HDF5 Home Page."
[13] J. S. Vetter, S. R. Alam, T. H. Dunigan, Jr.,, M. R. Fahey, P. C. Roth, and P. H. Worley, "Early Evaluation of the Cray

XT3," in IEEE International Parallel & Distributed Processing Symposium (IPDPS), Rhodes Island, Greece, 2006.
[14] P. Wong and R. F. Van der Wijngaart, "NAS Parallel Benchmarks I/O Version 2.4," NASA Advanced Supercomputing

(NAS) Division NAS-03-002, 2002.
[15] H. Yu, R. K. Sahoo, C. Howson, et al., "High performance file I/O for the Blue Gene/L supercomputer," in High-

Performance Computer Architecture (HPCA-12), Austin, Texas, 2006.

