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Intel recently began shipping its Xeon 5100 series processors, formerly known 
by their “Woodcrest” code name. To evaluate the suitability of the Woodcrest 
processor for high-end scientific computing, we obtained access to a Wood-
crest-based system at Intel and measured its performance first using computa-
tion and memory micro-benchmarks, followed by full applications from the ar-
eas of climate modeling and molecular dynamics. For computational 
benchmarks, the Woodcrest showed excellent performance compared to a test 
system that uses Opteron processors from Advanced Micro Devices (AMD), 
though its performance advantage for full applications was less definitive. Nev-
ertheless, our evaluation suggests the Woodcrest to be a compelling foundation 
for future leadership class systems for scientific computing. 

Introduction 

In late June 2006, Intel began shipping its Xeon 5100 series processors. These proces-
sors, code-named “Woodcrest,” are dual-core processors using the company’s Core 
architecture. To evaluate the suitability of the Woodcrest processor for scientific 
computing, we obtained access to a system at Intel with two Woodcrest processors 
through an early access program. We benchmarked the system following the method-
ology used in past early evaluations of high performance computing (HPC) systems at 
Oak Ridge National Laboratory (ORNL) [1, 2], adapted slightly to reflect differences 
in the scales of the systems under consideration. In our evaluation, we used not only 
computation and memory micro-benchmarks, but also three full scientific applications 
from the areas of climate modeling and molecular dynamics. Because the AMD Op-
teron processor features prominently in current systems from HPC vendors like Cray 
Inc., we compared the Woodcrest system’s performance with that of an Opteron-
based system with a similar socket organization. Our evaluation suggests the Wood-
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crest to be a compelling foundation for building leadership class systems for scientific 
computing. 

The Woodcrest Processor 

The Intel Woodcrest processor contains two processor cores and a cache hierarchy. 
Each processor core employs Intel’s next generation Core microarchitecture [3]. 
Cores using this microarchitecture can sustain execution of four instructions per clock 
cycle, compared to three instructions per cycle with previous Intel microarchitectures. 
Also, cores with this microarchitecture can execute 128-bit SIMD instructions at a 
rate of one per cycle; the previous generation microarchitecture could produce one 
128-bit SIMD result every two cycles. Furthermore, the microarchitecture includes 
both a floating-point multiply unit and a floating-point add unit, each of which can 
operate on two packed double-precision values each cycle using 128-bit SIMD in-
structions. Thus, each Woodcrest core is capable of producing four double-precision 
floating-point results per clock cycle. In contrast, current generation AMD Opteron 
processors can produce at most two double-precision floating point results per clock 
cycle [4]. 

The Woodcrest processor memory hierarchy is implemented with a combination of 
on-chip memory caches, an off-chip memory controller, and Fully Buffered Dual 
Inline Memory Modules (FB-DIMMs). Each processor core has its own L1 caches 
(16KB for instructions and 16KB for data), but a 4MB unified L2 cache is shared by 
both cores. Memory accesses that are not satisfied in the processor caches are trans-
ferred via front-side bus (FSB) to a memory controller. The Woodcrest processor line 
uses FB-DIMM memory that provides better bandwidth than DDR and DDR2 mem-
ory technology. The Intel memory hierarchy design, especially for Woodcrest, differs 
substantially from the AMD approach. In current AMD dual-core processors, cache is 
not shared between cores. Furthermore, a memory controller is located on the proces-
sor chip with some system memory being local to each processor socket, a design that 
AMD argues will scale better than one with an off-chip memory controller as the 
number of processors increases. However, the AMD approach results in a Non-
Uniform Memory Access (NUMA) architecture, where the time required to access a 
memory location differs depending on whether the location is local to the processor 
performing the access. On such architectures, good process placement can be critical 
for achieving good performance. In contrast, the Intel design results in a Uniform 
Memory Access (UMA) architecture that may be more forgiving to bad process 
placement than a NUMA design. However, process placement cannot be ignored on 
systems with Woodcrest processors because the Woodcrest cores share an L2 cache. 

The Woodcrest processor line includes parts clocked from 1.6 GHz (Xeon 5110) to 
3.0 GHz (Xeon 5160). The Thermal Design Point (TDP) for the entire line except the 
5160 model is 65W; the TDP for that part is 80W. 
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Test System Configurations 

We used two systems for most of this evaluation: one with Intel Woodcrest processors 
and one with AMD Opteron processors. At the time our evaluation, both systems had 
two dual-core processors for a total of four cores per system. 

The Woodcrest system contained two Xeon 5160 dual-core processors. The proc-
essor clock rate was 3.0 GHz and the front-side bus rate was 1333 MHz. The system 
contained 8 GB of FB-DIMM memory. We obtained access to the evaluation Wood-
crest system through the Intel Remote Access Service. This service provides access to 
the latest Intel technologies and tools via the Internet for evaluation, validation, and 
optimization activities. For one benchmark, we also used results obtained from an In-
tel Woodcrest system containing two Xeon 5150 dual-core processors, with clock rate 
2.66 GHz and 8 GB memory. 

The Opteron system contained two Opteron 2220 SE dual-core processors, running 
at 2.8 GHz. This test system contained 8 GB DDR-400 memory. We obtained access 
to the evaluation Opteron system through the AMD Developer Center remote access 
service. Like Intel’s service, the AMD Developer Center provides access to the latest 
AMD technologies and tools for remote evaluation, validation, and optimization ef-
forts.  

Both systems used a Linux 2.6 kernel. On the Woodcrest system, we used the Intel 
Fortran and C/C++ compilers (version 9.1), the Intel Math Kernel Library (version 
8.1), and Intel Message Passing Interface (MPI) library (version 2.0). Unlike Intel, 
AMD does not develop its own compiler, relying on products from companies like 
Portland Group, Pathscale, and even Intel for commercial compiler support. On our 
Opteron test system, we used the Portland Group Fortran and C compilers (version 
6.2-5), the AMD Core Math Library (version 3.6), and the OpenMPI MPI implemen-
tation (version 1.1.4). We chose to use the Portland Group compiler on our Opteron 
test system because of its position as the preferred compiler on Opteron-based sys-
tems from Cray Inc. 

Clearly, there are substantial differences in both hardware and software between 
the systems we considered. For example, AMD has traditionally downplayed differ-
ences in processor clock speed, a position recently adopted by Intel, so we struggle to 
isolate the performance differences in our benchmarking observations from both the 
perspective of raw performance and the relative to differences in test system hard-
ware. Likewise, we felt it best to use the software suite (compilers and math libraries) 
that were likely to be used for scientific computing on each test system rather than ar-
bitrarily choosing commercial compiler for all tests or using a free alternative like the 
GNU Compiler Collection. Whenever possible, we tried to use comparable optimiza-
tion flags between compilers, but we cannot guarantee that we found the best plat-
form- and compiler-specific optimization flags or that we spent exactly the same 
amount of time optimizing for each platform. 
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Fig. 1. Double precision matrix-matrix multiply (DGEMM) performance 

Computation Performance 

To evaluate Woodcrest’s floating point capabilities, we measured the performance of 
the Woodcrest system when executing three important floating point operations: dou-
ble-precision matrix-matrix multiply (DGEMM), computing the LU factorization of a 
matrix (DGETRF), and forming the Fast Fourier Transform (FFT) of a vector. We 
measured the performance of these operations as implemented by the Intel Math Ker-
nel Library (MKL) and the AMD Core Math Library (ACML) on the Woodcrest and 
Opteron, respectively. We used OpenMP-enabled versions of both libraries. 

Matrix-Matrix Multiply 

DGEMM, the double-precision matrix-matrix multiply routine from the Linear Alge-
bra Package (LAPACK), is often used as a measure of a system’s maximum computa-
tional capability for scientific computing. To evaluate DGEMM performance of our 
test systems, we measured the elapsed time (i.e., wall clock time) required to com-
plete a DGEMM operation on square matrices with order ranging from 100 to 2000 
using one, two, and four OpenMP threads. We converted these elapsed times into 
throughput values and charted them in Fig. 1. Each data point represents the average 
of three runs. 
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In absolute terms, the Woodcrest DGEMM performance is exceptional. On one 
core, the Woodcrest system achieved just over 8.9 GFlop/s; with four OpenMP 
threads on all four cores, we observed 30.8 GFlop/s. In comparison, the Opteron sys-
tem achieved a maximum of just over 19 GFlop/s with four OpenMP threads. That 
each Woodcrest core is theoretically capable of producing twice as many floating 
point results per clock tick as the Opteron is a significant factor in this performance 
difference. However, based on the clock speeds of the two systems and the theoretical 
computational rate, we observed the Opteron to run at higher floating-point efficiency 
than the Woodcrest (85% versus 64% with four threads). Although the Woodcrest’s 
microarchitecture is capable of producing four floating point results per cycle per 
core, achieving this throughput requires careful scheduling of floating point opera-
tions to keep the available functional units busy. The observed DGEMM efficiency 
results show that the MKL DGEMM implementation does not (perhaps cannot, due to 
the constraints of implementing a DGEMM operation) keep the functional units avail-
able in the Woodcrest core as busy as the Opteron’s fewer functional units with the 
ACML implementation. At least with the current processor hardware and math library 
implementations, those deploying a system must make a trade-off depending on what 
is most important to them: higher absolute performance or higher computational effi-
ciency. 

LU Factorization 

Factorization of a matrix into lower and upper triangular matrices is another common 
operation, useful when solving linear systems. We measured the system throughput 
when executing DGETRF, the double precision LU factorization routine for general 
matrices from the LAPACK implementations of the MKL and ACML libraries. Our 
measurements are charted in Fig. 2. The performance difference between the Wood-
crest and Opteron is not as pronounced as it was for DGEMM, but the Woodcrest 
does show a performance advantage at each thread count. 

Fast Fourier Transform 

Fast Fourier Transform is the third computational micro-benchmark we considered in 
our Woodcrest evaluation. As with DGEMM and LU, we timed the implementation 
provided in the vendor’s processor-specific math library, and converted them to float-
ing point throughput values. Our one- and two-dimensional complex FFT measure-
ments are shown in Fig. 3 and Fig. 4, respectively. Note that due to problems with the 
results collection from the 3.0 GHz Intel remote access system, our Woodcrest FFT 
results were collected from a system with 2.66 GHz Woodcrest processors in our 
group’s Experimental Computing Laboratory at ORNL. 

The performance profiles for the FFT operation are dramatically different between 
the one-dimensional and two-dimensional FFTs. For the one-dimensional FFTs, the 
Opteron system showed good scalability to slightly longer vector lengths than the 
Woodcrest system, but the Woodcrest system dramatically outperformed the Opteron 
system at all vector lengths despite its lower clock rate. OpenMP threading provided 
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no benefit for either FFT implementation. In contrast, threading showed a substantial 
benefit for the two-dimensional complex FFTs on both systems, and when there are 
enough threads to saturate the cores the Opteron outperforms the Woodcrest system at 
all but the smaller problem sizes. 

Memory Hierarchy Performance 

In contrast to the Opteron dual-core processors that do not share cache between cores, 
Woodcrest processors have a 4MB shared L2 cache. Also, Woodcrest systems use 
FB-DIMM memory, whereas the Opteron uses DDR memory. These differences in 
memory hierarchy contribute to different memory access profiles for the two systems. 

Fig. 5, Fig. 6, and Fig. 7 show the bandwidth observed when accessing vectors of 
increasing length, as measured by the CacheBench memory benchmark [5]. Cache-
Bench supports measurement of memory hierarchy bandwidth under three memory 
access patterns: sequential reads to the elements of a single vector, sequential writes 
to the elements of a single vector, and sequential increments to the elements of a sin-
gle vector (a pattern called “read-modify-write” in the CacheBench literature). Al-
though CacheBench is not multi-threaded, measurements were taken when one, two, 
and four copies of the CacheBench program were running to try to capture the effect 
of memory contention. For Woodcrest, an error in the script that ran the experiment 
overwrote the two-thread results, hence Woodcrest results are shown only for one and 
four threads. 

 
Fig. 2. Double precision LU factorization (DGETRF) performance 
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Fig. 3. One dimensional complex Fast Fourier Transform performance 

 
Fig. 4. Two dimensional complex Fast Fourier Transform performance 
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Fig. 5. CacheBench read performance 

 
Fig. 6. CacheBench write performance 
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Fig. 7. CacheBench read-modify-write performance 

Table 1.  STREAM memory bandwidth benchmark performance 
(All measurements in MB/s.) 

OpenMP Threads Woodcrest 5160 
(3.0 GHz, 

1333 MHz FSB) 

Opteron 2220 SE 
(2.8 GHz) 

1 4217 5782 
2 7355 11183 
4 7494 12222 

The observed memory bandwidth for the Woodcrest processors is superior com-
pared to the Opteron test system in most cases, with the notable exception for large 
vectors accessed from memory when all processor cores were used (i.e., with four 
threads). We believe this result shows the benefit of the use of FB-DIMM memory in 
the Woodcrest system when there is little contention for the system’s front side bus, 
and the advantage of the AMD approach when contention for the links to memory is 
expected in the workload. For both Opteron and Woodcrest, the effects of contention 
are apparent in our CacheBench results, but note that the Woodcrest shows the effects 
of contention in accesses to the L2 cache with writes, whereas the Opteron results 
show no sign of contention until vector lengths cause accesses to be satisfied from 
main memory. 

The STREAM benchmark [6] provides another perspective on the memory per-
formance of the Woodcrest processor. The STREAM micro-benchmark measures 
memory bandwidth when performing simple operations (copy, add, multiply, and a 
combination of the three called ‘Triad’) on long vectors. The vectors must be long 
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enough that the benchmark measures bandwidth to main memory instead of to any 
level of data cache. Unlike the CacheBench benchmark, each STREAM operation in-
volves elements from at least two vectors and the vectors’ relative location in memory 
can affect observed memory bandwidth. In particular, poorly placed vectors can result 
in cache conflicts when accessing corresponding elements of the vector, dramatically 
decreasing the observed memory hierarchy bandwidth. 

Our observed STREAM Triad results for one, two, and four OpenMP threads on 
the Woodcrest are shown in Table 1. We suspect that slightly higher bandwidths may 
be possible with further optimization; we performed a minimal amount of tuning of 
vector lengths and used a collection of compiler flags that had proven to give good 
performance in our other experiments. For comparison, we also include STREAM 
Triad results from our 2.8 GHz Opteron system. As expected, the Opteron system 
memory bandwidth is quite high compared to that of our test Woodcrest system, due 
to the AMD memory design including its on-chip memory controllers and memory 
local to a processor socket. 

Our memory micro-benchmarks measure performance of memory accesses satis-
fied at all levels of the memory hierarchy. We emphasize that neither CacheBench nor 
STREAM gives a complete picture regarding memory hierarchy performance, espe-
cially since both use synthetic memory access patterns that are rarely encountered in 
full applications. Nevertheless, they provide valuable information regarding the 
maximum achievable performance to each level of the memory hierarchy. 

Application Performance 
Our micro-benchmark results suggest the Woodcrest is well suited for systems de-
signed for computational science. To further evaluate its suitability, we ran three full 
scientific applications on the Woodcrest system: the Large-scale Atomic/Molecular 
Massively Parallel Simulator (LAMMPS) [7], the Climate Atmosphere Model (CAM) 
[8], and the Parallel Ocean Program (POP) [9]. LAMMPS and POP use MPI for 
communication between parallel tasks, whereas CAM was built to use only OpenMP. 
Although the test systems were not distributed memory systems, we considered MPI-
only applications because of the likelihood that MPI performance will remain impor-
tant in the near future, due to portability concerns and development team inertia. 

LAMMPS 

LAMMPS is a C++ program that uses MPI for communication. We used the 
“12Apr06” version of LAMMPS for our timings. The LAMMPS distribution includes 
several benchmark problems; we chose three for our timings. We ran each in weak 
scaling mode. We used the Intel MPI library on the Woodcrest system, and used the 
OpenMPI library version 1.1.4 built using the PGI compilers on our test Opteron sys-
tem. The timings from our LAMMPS experiments with one, two, and four MPI tasks 
are shown in Fig. 8, Fig. 9, and Fig. 10 (Eam benchmark, Lj benchmark, and Rhodo 
benchmark, respectively). Each chart plots the elapsed time required to compute 100 
LAMMPS timesteps, so lower values are better than higher values. The Eam and Lj 
problems were run with 1,024,000 atoms, whereas the Rhodo problem was run with 
128,000 atoms. 
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Fig. 8. LAMMPS Eam benchmark problem performance 

 
Fig. 9. LAMMPS Lj benchmark problem performance 
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Fig. 10. LAMMPS Rhodo benchmark problem performance 

For all LAMMPS problems we considered, the Woodcrest showed better perform-
ance than the Opteron, although the performance gap narrowed as the number of MPI 
tasks was increased. Furthermore, the performance gap was more pronounced for the 
Rhodo problem than the other problems. 

CAM 

CAM consists mainly of Fortran code, and can be built to use MPI, OpenMP, or 
both for expressing parallelism. To ensure that we considered one example of a 
“pure” OpenMP application, we built CAM to use OpenMP only. We used CAM ver-
sion 3.0p1 for our timings. After determining that CAM is extremely sensitive to the 
OpenMP per-thread stack size, we were able to run it on both the Woodcrest and Op-
teron test systems and measured the time required to complete two simulation days of 
the T42 benchmark problem (144 timesteps plus one partial timestep). The results of 
our CAM timings are shown in Fig. 11. The trend shown in the chart is similar to that 
shown by the LAMMPS timings: the Woodcrest system provided superior perform-
ance for the CAM code over the Opteron system, but the differences were not as pro-
nounced as for the LAMMPS benchmark problems. 

POP 

POP is a Fortran 90 code that, like CAM, can be built using MPI, OpenMP, or both. 
Because we used the MPI-only mode for previous evaluations, and because we used 
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CAM in OpenMP-only mode, we built and ran the MPI-only version of POP for this 
evaluation. We used POP version 1.4.3 for our timings. On the Woodcrest system, we 
used the Intel MPI library, and on the Opteron system we used OpenMPI 1.1.4 built 
using the PGI compilers. We collected timings for runs of ten simulation timesteps of 
the x1 (i.e., one degree) problem. The timings are shown in Fig. 12; each data point in 
the figure represents the average of three runs. Curves are shown for the total time 
spent in timesteps (labeled “Steps”) and the two main phases of POP execution (la-
beled “Baroclinic” and “Barotropic”). 

As with our other test applications, the Woodcrest system showed a clear perform-
ance advantage over the Opteron-based system for our benchmark POP problem with 
two processes (or two threads in the case of CAM), but unlike the other applications 
the Opteron outperformed the Woodcrest system with four processes. Although fur-
ther experimentation is needed to be certain, we hypothesize that the POP benchmark 
problem we used results in a memory access pattern that cannot be satisfied from 
processor caches and thus places enough pressure on the Woodcrest system’s front 
side bus with four MPI processes to fall into the regime where the Opteron’s memory 
hierarchy design provides better bandwidth (as exposed in both our CacheBench and 
STREAM Triad benchmark results). 

In our initial experiments, we observed large variability in POP run times on the 
Woodcrest system with two processes. With help from Intel performance engineers, 
we determined that with the default MPI configuration on the system it was possible 
for both POP processes to contend for the same processor. When we used process af-
finity controls provided by the Intel MPI implementation, the variability in run times 
dropped to negligible levels. These updated results were taken from a slightly differ-

 
Fig. 11. CAM performance for ten simulation timesteps 
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ent Woodcrest system than our initial experiments (with newer processor version and 
different BIOS settings) but the observed run times on the newer system were ap-
proximately the same as the minimum run times from our initial experiments on the 
original test Woodcrest system. 

Summary 

We evaluated the dual-core Xeon 5160 processor, code-named Woodcrest, by consid-
ering the suitability of a Woodcrest-based system for scientific computing. With a 
limited time window for accessing the system, we performed a preliminary evaluation 
using computational and memory micro-benchmarks and several full applications. For 
computational benchmarks, the Woodcrest showed excellent performance compared 
to a test system that uses Opteron processors. DGEMM performance of the four-core 
test system was especially striking using the Intel Math Kernel Library optimized 
specifically for the Woodcrest processor. For memory benchmarks, the Woodcrest 
showed good performance compared to the Opteron except in situations with a large 
degree of contention for the links to memory. Also, the Woodcrest’s performance ad-
vantage for full applications was less definitive than for the computational bench-
marks. We caution that there were many hardware and software differences between 
the systems, and further comparison is needed to understand the reasons for the per-
formance differences we observed. Also, the Woodcrest evaluation system was de-
scribed by Intel representatives as an “Alpha level platform” and that the expected 
performance of shipping Woodcrest-based systems may differ from the performance 

 
Fig. 12. POP x1 benchmark problem performance 
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of the evaluation system due to processor and chipset revisions in shipping systems. 
Nevertheless, our evaluation suggests the Woodcrest to be a compelling foundation 
for future leadership class systems for scientific computing. 
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