
L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 185–194, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Virtual Cluster Management with Xen

Nikhil Bhatia and Jeffrey S. Vetter

Future Technologies Group
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA 37831

{bhatia,vetter}@ornl.gov

Abstract. Recently, virtualization of hardware resources to run multiple
instances of independent virtual machines over physical hosts has gained
popularity due to an industry-wide focus on the need to reduce the cost of
operation of an enterprise computing infrastructure. Xen is an open source
hypervisor that provides a virtual machine abstraction layer which is very
similar to the underlying physical machine. Using multiple physical hosts, each
hosting multiple virtual machines over a VMM like Xen, system administrators
can setup a high-availability virtual cluster to meet the ever-increasing demands
of their data centers. In such an environment, the Xen hypervisor enables live
migration of individual virtual machine instances from one physical node to
another without significantly affecting the performance of the applications
running on a target virtual machine. This paper describes a scalable Virtual
Cluster Manager that provides such application agnostic cluster management
capabilities to the system administrators maintaining virtual clusters over Xen
powered virtual nodes.

1 Introduction

Recently, virtualization of hardware resources to run multiple instances of independent
virtual machines over physical hosts has gained popularity as a potential solution to an
industry-wide focus on the need to reduce the cost of operations of enterprise and
scientific computing infrastructures [1]. Industrial and academic installations of these
clusters can contain thousands of physical nodes. Such clusters are prone to changes in
the availability of physical resources due to unfortunate conditions like node failure
due to overheating, or system administrative tasks like dynamic load balancing and
preventative maintenance. Meanwhile, applications and users on these infrastructures
expect highly available, reliable, and transparent operation.

Accordingly, there has been a prolific rise in the research and development of
Virtual Machine Monitors (VMMs) that employ virtualization at different levels in the
system software stack (e.g., Xen [2], QEMU [3], VMWare [4], User Mode Linux [5]).
One such system exemplifying this trend is Xen: an open source hypervisor that
provides a virtual machine abstraction layer which is very similar to the underlying
physical machine. Xen’s type of virtualization, often termed as para-virtualization,

186 N. Bhatia and J.S. Vetter

overcomes the typical performance loss due to virtualization by maintaining hardware
information per individual VM inside the VMM interface. On the other hand, this para-
virtualization requires substantial modification to the hardware dependent code in the
target operating systems running over the virtual machine. This virtualization provides
many benefits including the ability to save the entire VM to persistent storage, and then
restart it later on the same, or on a different, physical host [6]. When using large pools
of physical hosts, with each physical host containing multiple virtual machines, system
administrators can easily construct a high-availability virtual cluster to meet the ever-
increasing demands of their data centers and scientific computing clusters. With these
virtualization capabilities, system administrators can handle various management
tasks, such as dynamic load balancing of virtual nodes, and eviction of applications
from a physical nodes to prepare for maintenance or to preempt a expected failure,
transparently to the individual applications running in the virtual machines.

This paper describes a Virtual Cluster Manager that provides such application-
agnostic cluster management capabilities to the system administrators maintaining
these virtual clusters. We demonstrate its capabilities that include remote migration
and dynamic load balancing of VMs across a pool of physical nodes. This framework
manages a virtual cluster powered by the Xen virtual machines across multiple
physical nodes. Our prototype-- the Xen Virtual Cluster Manager, henceforth referred
to as XCM -- provides several of these features. First, it provides an overview of the
performance of virtual machines to the system administrators on a per physical node
basis. Second, it provides capabilities to initiate administrative tasks like automatic
load balancing of VMs across physical resources based on their utilization and
eviction of VMs from physical nodes in preparation for maintenance at arbitrary
intervals.

Following is the organization of this paper. Section 2 describes the Virtual cluster
organization. Section 3 describes the related work in this area. Section 4 describes the
XCM framework which is divided into two parts: the XCM client and the XCM
Daemon. Section 5 describes the implementation decisions we made during the
course of this project. Section 6 provides the reader with an overview of our
framework in action. Finally, we discuss out future research goals in this area in
section 7 and conclude in section 8.

2 Virtual Clusters

Virtual clusters [7] [8] are comprised of several physical nodes running a virtual
machine monitor (e.g. Xen) and hosting multiple virtual machines (often referred to
as DOM Us) which in turn are running several user-level applications. Such an
infrastructure can easily run into managing hundreds (or even thousands) of virtual
machine instances running over tens (or hundreds) of physical nodes. These
configurations are beneficial for large scale computing facilities because it reduces
the cost of operation of these data centers by replacing the need for hundreds of
physical servers by having hundreds of virtual machine over tens of physical servers.

 Virtual Cluster Management with Xen 187

Also, this infrastructure can also be useful in managing distributed memory cluster
environments where each physical node can host multiple virtual machines, with each
hosting several distributed memory application processes (e.g., MPI tasks), depending
on the application level topology.

Due to increased need of to improve the performance of virtualized servers, many
microprocessor vendors like Intel and AMD are providing hardware support (Intel-
VT and AMD Pacifica) for maintaining several hardware states for several virtual
machines in the microprocessor itself. This would reduce the changes made to the
guest operating system servicing a virtual machine to and at the same time reap the
benefits of para-virtualization. A physical node hosts a fully loaded operating system
which consists of device drivers for I/O devices and network interfaces. Such a fully
loaded host operating system is often referred to as the Host Operating System or
DOM 0. As described earlier, the VMM creates an abstraction of the hardware
resources (like the CPU, the memory, the Network Card and the I/O devices)
per virtual machine instance. Such a virtual machine instance is serviced by an
Operating System which is often referred to as a Guest Operating System or a DOM
U. The DOM U uses the device driver interface provided by DOM 0 to access the
hardware abstraction provided by the VMM. The VMM is responsible for translating
the per-domain system call to access the actual hardware through the hypercall
interface.

3 Related Work

The Virt-manager [9] Project from Redhat has provided an infrastructure to build a
Virtual Node Manager which provides the system administrator with a GUI to display
the performance information of the virtual machines along with all of its domains
running on a physical node under a VMM. It also provides a Virtual Machine
configuration window through which the system administrator can configure and
create new Virtual machines on a physical node. Their goal is to provide a per
physical node administration tool which can help the system administrators to
monitor the exiting virtual machines and create new ones depending on a certain
configuration. In contrast, our efforts are concerned with the managing of a cluster of
physical nodes, each hosting multiple virtual machines and providing an infrastructure
that encapsulates VMM level details in the system management tasks like dynamic
load balancing, node maintenance, and preemptive node failure from the system
administrator. It also provides a framework for designing new load balancing
algorithms and resilience policies for handling node failures based on a cluster’s
telemetry data.

The libvirt API [10] project is a step forward in unifying the interface to gather the
performance metrics of a virtual machine running over the hypervisor layer of a
VMM. It provides an API in C which hides the hypervisor layer abstraction from the
tool builders who want to develop performance analysis tools and cluster managers
over many hypervisor layers. Our work, in contrast, can be built on top of the libvirt
API and target multiple VMMs like Xen, qemu, VMWARE etc. Currently, our
framework works only with Xen powered clusters.

188 N. Bhatia and J.S. Vetter

4 Overview of Xen Virtual Cluster Manager

XCM is a Virtual cluster wide resource manager for managing Guest Domains
running as Virtual machines over physical nodes. The XCM is built using a client-
server model where it runs as a client on a remote node called as the Monitoring
Station. Each physical node runs a XCM daemon which gathers performance
metrics for the virtual machines running on that physical node. The XCM daemon
uses the hypervisor interface to gather the performance metrics. The XCM
daemons connect to the XCM client on the Monitoring Station. Then, the XCM
client gathers the performance metrics from physical nodes using this daemon and
aggregates the cluster-wide information in its internal data structures. The XCM
client is built using C++ over the wx-Widgets GUI toolkit. The XCM daemons are
built using C over the virtual machine monitoring libraries built over the Xen
hypercall interface.

4.1 XCM Client

The XCM client runs on the monitoring station. The XCM client connects with the
XCM daemons running on the physical nodes. The XCM client gathers the
performance metrics from the XCM daemons at regular intervals and arranges them
into a per-physical node per virtual-machine information. The time intervals at which
the client gathers the results from the daemons can be configured by the user. The
internal data structures of the client are used to display the performance of virtual
machines on a per-physical node granularity in two views: the summary view and the
detailed view.

The system administrator using the framework can study the performance metrics
to make intelligent decisions about what administrative tasks need to be performed for
optimal utilization of the physical resources. The administrator is also given an option
of performing those tasks via the framework. Currently, three types of administrative
actions can be performed by the administrator. These are dynamic load balancing,
preemptive node maintenance, and live migration of individual virtual machines
(henceforth referred to as domains) across physical nodes (henceforth referred to as
nodes).

Views. XCM client can display virtual cluster-wide information in two views. The
summary view displays coarse-grained information about the virtual machines
running on each of the virtual nodes in a cluster. The detailed view displays the fine-
grained per virtual machine/per virtual node information for all the virtual machines
in a cluster.

Actions. The XCM client provides the system administrator with three types of
actions that can be performed for managing the virtual cluster: dynamic load
balancing, preemptive node maintenance, and live migration of individual domains.
First, the XCM client can perform live migration of domains across virtual nodes. The

 Virtual Cluster Management with Xen 189

information required to perform live migration is entered through the GUI interface.
Second, the XCM client can perform automatic load balancing by migrating domains
across all available physical nodes. Currently, we are investigating the policies on
which we will determine our migratory decisions. Finally, the XCM client can also
enable the system administrator enables the clean shutdown of a physical node by
migrating all it’s domains to other physical nodes in the cluster when that node is
being taken away for maintenance.

4.2 XCM Daemon

The XCM daemon runs on the physical nodes’ host operating system. The daemon
gathers performance metrics of all the virtual machines using the hypercall interface
of the VMM. Currently, we gather per-VM performance metrics like total number of
domains hosted by the VM, the state of each domain, the memory that has been
allocated to each domain, the current CPU utilization of a VM, information about the
number of virtual CPUs allocated to a VM, the number of virtual block devices and
the information about the virtual network interface.

This information is obtained at regular intervals from the Xentop utility that is
shipped along with the Xen distribution. The Xentop utility is built over the Xenstat
library that provides an API for accessing the above mentioned performance metrics
from the hypercall interface of the Xen VMM. The daemon is invoked using the
command line interface and it connects to the monitoring station using TCP/IP
sockets. The time interval that elapses between two successive performance data
collect operations can be configured by the administrator using command line
options. The daemon communicates the local performance data to the XCM client
which organizes that data into its local data structures and displays that information
on its GUI.

5 Xen Cluster Manager in Action

The XCM client provides the System Administrator of a virtual cluster with a
capability to perform various administrative tasks like automatic load balancing,
clean shutdown of nodes while system maintenance and live migration of individual
domains from one node to the other across the virtual cluster. We have utilized
the XCM client to manage a Virtual Cluster consisting of 3 physical nodes and
hosting 8 virtual machines in all. The physical nodes are dual core AMD opteron
machines running XEN-3.0.3 as a VMM. We have performed system administration
tasks like live migration of domains across the three physical nodes, automatic load
balancing of the virtual cluster based on a simple load balancing strategy, and
clean removal of physical nodes during system maintenance. These experiments
have been done as a proof of concept of our framework and demonstrate the
scalability of our framework. The policies for various administrative actions are
discussed next.

190 N. Bhatia and J.S. Vetter

Fig. 1. XCM client in the Detailed view and also depicting administrative actions menu

5.1 Live Migration

Many times an administrator might want to remove a particular domain from a
physical node and transfer it to run on some other physical node based on a certain
performance metric. For example, a node may be hosting too many CPU intensive
domains. This might reduce the throughput of a certain critical user-level application
running on that domain. At the same time, there might be some node that might be
only hosting a less CPU-centric application (e.g., an MPI application doing ping-pong
communication). The XCM client gives the administrator a migration functionality in
which they can select a source node, a source domain, and a new destination node for
a domain. The live migration occurs transparently to the user-level application. Also,
due to para-virtualization and hardware state saving of a virtual machine the overhead
due to live migration is about 60ms.

5.2 Automatic Load Balancing

Sometimes, manual migration of virtual machines to across multiple nodes is a
cumbersome task if the virtual cluster consists of a large number of physical nodes or
virtual machines. Also, due to the arbitrary scheduling of virtual machines to host
user-level applications, there might be inefficient usage of hardware resources. To
ensure optimal hardware resource utilization, the administrator might develop some
policies and algorithms which perform the load balancing of the virtual cluster by
redistributing the cluster workload across multiple physical nodes. This typically
requires the live migration of hundreds of domains across different physical nodes in
the virtual cluster.

 Virtual Cluster Management with Xen 191

The XCM client enables the system administrator to perform automatic dynamic
load balancing. Currently, the client uses a very simple resource management policy to
define workload imbalance on a certain physical node. The initial load balancing
policy seeks to balance the number of domains across the available physical nodes. We
are currently extending our XCM framework to allow users to input specific policies,
composed of the information provided by XCM. In this way, the administrator will be
able to configure these policies based on weights given to various performance metrics
collected by the XCM daemons. The current load balancing policy is based on the total
number of domains in the cluster and the number of nodes in the cluster. Now,
consider these three administrator defined metrics: Let N be the total number of
physical nodes and D be the total number of domains in the virtual cluster. Also, let X
be the number of maximum number of domains per physical node. Now, according to
this policy, X will be evaluated by the expression: X = (D / N) + 1.

This policy limits the number of domains that can be hosted by a single physical
node. We reiterate that this simple policy has been adopted to demonstrate this
capability of our framework and may not be employed by real world installations of
our framework. Now, whenever the system administrator selects the automatic load
balancing menu item from the client’s Actions menu, the XCM client parses
through its internal data structures and makes a list of migration information (a
tuple having {source node, target domain, destination node} information). Any
node which contains more than D domains is selected as a source node and the
nodes which have less than D domains are selected as the destination node. The
target domains are randomly chosen from amongst the domains hosted on the
source nodes. The XCM client maintains a migration information dispatch queue
which stores all the pending live migration requests which have been requested by
the system administrator. The “Domain Migration Thread” as described in section
5.1 clears this dispatch queue and sends the migration requests to the XCM
daemons running on the source nodes. Hence, this dynamic load balancing strategy
is application-agnostic and helps system administrator to devise load balancing
policies in a virtual cluster.

5.3 Node Maintenance

Frequently, system administrators must service a physical node to upgrade and/or
replace its hardware or software. Also, sometimes by monitoring metrics like heat
generated per physical node, an administrator can make wise policies that can predict
node failure in advance. Both these scenarios would require the administrator to
remove a physical node from the virtual cluster. To make a clean removal of physical
nodes from virtual clusters, the virtual machines hosted by the target physical node
must be moved to a safe candidate node. Live migration can be used to evacuate a
physical node of its VMs. The XCM client provides this feature to the administrator.
The administrator chooses a particular physical node to be removed from the virtual
cluster. The XCM client then rearranges the workload on a target node to be migrated
to a safe destination node by filling out entries in the migration dispatch queue.
Currently, a very simple algorithm is used to design this policy. The XCM client

192 N. Bhatia and J.S. Vetter

chooses the physical node which is hosting the minimum number of virtual machines
as the destination node for the target node’s domains. After these domains are
migrated from the target node, the target node is proclaimed dead by the XCM client.
This information is transmitted to the XCM daemon which causes it to terminate. The
node can be safely switched off from the virtual cluster at that moment. Eventually,
the dead node collector thread in the XCM client removes all the data structures
related to the target node from its internal cluster-wide data structures.

A

B C

D

E

F

G H I J

K

Fig. 2. Activity timeline for Xen migration experimental results

6 XCM Experiment

Using the XCM framework, we conducted an experiment comprising a variety of
system administrative tasks on a virtual cluster configured to run 8 virtual machines
across 3 physical nodes. Each physical node is a dual core AMD opteron machine
running Red Hat Linux.

Each physical node hosts a Xen 3.0.3 VMM. On each of the 3 physical nodes, a
patched fedora core 5 image was used to run as the host domain. The guest domains
were also patched fedora core 5 images. In our experiments, the images were shared
over NFS fileserver accessible to both the nodes. The nodes were connected through a
gigabit Ethernet. The virtual machines running on these physical nodes are configured
to run Linux fedora core 5 images.

Figure 2 represents a graph showing the virtual cluster workload distribution as a
function of the number of domains on each of the three physical nodes as a function
of time. We start of out experiment by starting a physical node and launching 8 DOM
Us running on that virtual machine represented by “dmz1”. At point A in the figure,
there are total 9 domains running on dmz01. At time instance represented by pint B, a
new physical node “dmz02” is added to the cluster. This physical node has only one

 Virtual Cluster Management with Xen 193

domain (DOM 0) running on it. At point C, the administrator decides to balance the
workload of the virtual cluster which causes the migration of 4 out of the 8 DOM Us
to the newly available dmz02. The load balancing finishes at point D in time. Then at
some point in time E, a new physical node, dmz03, is added to the virtual cluster. At
point F, the administrator again decides to balance the cluster workload due to the
availability of a free physical node. At point G in time, the virtual cluster is fully load
balanced with each physical node hosting virtual machines. According to our load
balancing policy discussed in section 5.2, the resources of the virtual cluster are being
optimally utilized at this point in time. At time H, one domain is migrated from node
dmz03 to the node dmz02 based on the cluster-wide performance metrics displayed
by the XCM client. At point I in time, the administrator decides to schedule node
dmz01 for system maintenance. All the domains of dmz01 are migrated to dmz03
depending on our policy as described in section 5.3. At point J in time, the node
dmz03 is hosting 5 DOM Us. Then at point J in time, the administrator decides to
remove node dmz02 as he decides to change the RAM configuration in that node. At
point K in time, the virtual cluster only consists of one physical node, dmz03, which
is now hosting all 8 DOM Us along with its DOM 0.

7 Conclusion

By providing a user-friendly framework built on top of TCP/IP sockets and the
Xen hypercall interface for virtual cluster management we relieve the system
administrator of a virtual cluster facility of manual interaction with individual virtual
machines for performing administrative tasks like cluster performance monitoring,
cluster load balancing, node maintenance, node failure etc. We also provide the
administrator with a framework which can be used to automatically perform
administrative actions by configurable policies designed using a variety of algorithms.
This would reduce the burden of handling and maintaining a virtual cluster and would
enable rapid decision making for optimal usage of hardware resources in such an
environment.

References

[1] Bar, M.: Xen, the virtual machine monitor. Free Software Magazine, issue (June 5, 2005),
http://www.free/software/magazine/articles/focus-xen

[2] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles SOSP 2003, Bolton Landing, NY, USA,
October 19 - 22, pp. 164–177. ACM Press, New York (2003),
http://doi.acm.org/10.1145/945445.945462

[3] http://fabrice.bellard.free.fr/qemu/
[4] Devine, S., Bugnion, E., Rosenblum, M.: Virtualization system including a virtual

machine monitor for a computer with a segmented architecture (VMWARE). US Patent
Office, Ed., USA (1998)

[5] http://user-mode-linux.sourceforge.net/

194 N. Bhatia and J.S. Vetter

[6] Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.:
Live Migration of Virtual Machines. In: Proceedings of the 2nd ACM/USENIX
Symposium on Networked Systems Design and Implementation (NSDI), Boston, MA
(May 2005)

[7] Werner Fischer and Christoph Mitasch. High availability clustering of virtual machines –
possibilities and pitfalls. Paper for the talk at the 12th Linuxtag, May 3rd-6th,
Wiesbaden/Germany Version 1.01 (2006)

[8] Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Paravirtualization for HPC systems. UCSB
Computer Science Technical Report Number (2006)-10

[9] http://virt-manager.et.redhat.com/
[10] http://libvirt.org/

	Virtual Cluster Management with Xen
	Introduction
	Virtual Clusters
	Related Work
	Overview of Xen Virtual Cluster Manager
	XCM Client
	XCM Daemon

	Xen Cluster Manager in Action
	Live Migration
	Automatic Load Balancing
	Node Maintenance

	XCM Experiment
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

