
Balancing Productivity and Performance on the Cell

Broadband Engine
Sadaf R Alam

1
, Jeremy S Meredith

2
, Jeffrey S Vetter

3

Oak Ridge National Laboratory

Oak Ridge, TN 37830
1
alamsr@ornl.gov

2
jsmeredith@ornl.gov

3
vetter@ornl.gov

Abstract— The Cell Broadband Engine (BE) is a heterogeneous

multicore processor, combining a general-purpose POWER

architecture core with eight independent single-instruction-

multiple-data (SIMD) cores. Each core is capable of very high

performance; however, users must explicitly manage data

movement, scheduling, and synchronization. While these

attributes provide some of the Cell processor’s greatest

performance strengths, they also form its greatest weaknesses in

terms of developer productivity, code portability, and initial

performance efficiencies. In this paper, we evaluate productivity

and relative performance improvements of a Cell BE system for

a diverse set of kernels and applications. Our experimental

workload includes algorithms from scientific, cognitive, and

imaging problem domains. Our results demonstrate that the Cell

processor could be several times faster than a SSE-enabled,

contemporary dual-core processor, and could sustain a high

performance-to-productivity ratio. We outline strategies for

transforming applications to exploit the Cell’s architectural

features, and measure productivity by comparing programming

effort in terms of lines of code and performance. For instance,

our measurements revealed that a covariance matrix creation

routine – a common routine in hyperspectral imaging – ran over

eight times faster than a 2.66 GHz Intel Woodcrest processor

while sustaining a productivity metric of over two by

parallelizing across the heterogeneous cores, unrolling loops, and

improving instruction level parallelism with SIMD instructions

in a high-level language.

I. INTRODUCTION

The move by major microprocessor vendors toward

processors with multiple processor cores per socket is

arguably the most important trend in contemporary computer

architecture. Given the ability to produce chips with an ever-

increasing number of transistors, this approach of duplicating

existing cores on a single chip is a straightforward technique

to address problems related to physical constraints (e.g.,

power, thermal, and signaling) and limited instruction-level

parallelism. Presently, both homogeneous and heterogeneous

core designs exist, and even within the homogeneous design

realm, there are variations in levels of sharing in the memory

hierarchy, and in levels of support for multithreading.

The early multi-core offerings from processor vendors Intel

and AMD for their general purpose markets are dual/quad-

core, homogeneous processors. Other vendors have more

aggressive designs. For instance, the Cell Broadband Engine

(BE) processor from Sony-Toshiba-IBM (STI) is a

heterogeneous multicore design on a single chip. The STI Cell

processor was initially designed to be the heart of Sony‘s

PlayStation3 video gaming system [1-4]. Rather than having

homogeneous cores transparently sharing a common level of

memory, Cell has a conventional PowerPC core (PPE) that

manages eight simpler Single Instruction Multiple Data

(SIMD) cores called synergistic processing elements (SPEs).

Each SPE contains a synergistic processing unit (SPU), a local

memory, and a memory flow controller. Unlike conventional

designs from Intel and AMD that use coherent caches to

implicitly manage data movement among cores, the Cell

processor requires that the application and/or runtime system

explicitly manage data movement. Consequently, the precise

orchestration of data movement and synchronization is a

fundamental challenge for achieving high performance on the

Cell processor.

Meanwhile, the HPC community is beginning to recognize

the importance of productivity when using unconventional

architectures, like multicore. In particular, the DARPA High

Productivity Computing Systems (HPCS) program is driving

the notion of improving not only computer system

performance by orders of magnitude, but also the productivity

as experienced by the system‘s end users [5-9]. It is clear that

as computing systems grow more architecturally diverse,

software systems and programming models must improve to

enable high user productivity.

In this paper, we empirically measure both performance

and productivity. For productivity, we compare source lines of

code (SLOC) for the microprocessor against the Cell BE

implementation using a tool called sloccount
1

, and for

performance we measure algorithm runtimes. We recognize

that the SLOC does not fully capture the level of effort

involved in porting and optimizing an algorithm on a new

system; however, it does provide a quantitative metric to

compare and contrast different implementations in a high-

level language—C for all platforms in this study. Addressing

issues of both topics, we evaluate and optimize a diverse set of

algorithms that represents a wide range of workload

characteristics, without resorting to assembly-level

programming. These algorithms not only represent different

application domains, but also enable us to highlight how novel

1
 http://www.dwheeler.com/sloccount/

http://www.dwheeler.com/sloccount/

features of the Cell system can be exploited to maximize

achievable performance. Our suite includes floating-point

intensive calculations (Molecular Dynamics), inherently scalar

calculations with dynamic loop count (Monte Carlo), logic

intensive cognitive calculations (Satisfiability Solver), and

regular 2D array-based signal processing calculations

(Covariance Matrix).

In the process of porting and optimizing our representative

calculations, we identified mappings of architectural features

onto specific workload characteristics. Our experiences enable

us to conclude that performance and productivity of the Cell

processor depends on how amenable an algorithm is to the use

of vector data types, SIMD instructions for instruction-level

parallelism, and task-level thread-parallelism for loop level

optimization. Furthermore, the maturity of the software stack

contributes significantly to the achievable performance. We

observed that in some cases, the XLC compiler can

outperform the GNU suite by an order of magnitude. We

demonstrate that substantial porting and optimization efforts

on the Cell system results in overall performance gain over a

SSE-enabled single-core implementation. Despite an

immature software stack for Cell for general-purpose

programming, the Cell system sustains performance-to-

productivity ratios for two of the five targeted applications.

The paper outline is as follows. In Section II we provide a

brief description of the Cell architecture and programming

environment, and an overview of our scientific case studies.

Section III outlines related research activities. Programming

strategies for achieving high performance on the Cell

processor are explained using different case studies in Section

IV. An evaluation of performance and productivity of the Cell

BE system is presented in Section V. Section VI summarizes

key findings and presents future research plans.

II. BACKGROUND

A. Overview of the Cell Broadband Engine Processor

The Cell Broadband Engine is a heterogeneous multicore

processor, with one 64-bit Power Processing Element (PPE)

and eight independent Synergistic Processing Elements (SPEs)

as shown in Figure 1. The PPE is a dual-threaded Power

Architecture core, but the SPEs are very lightweight

processors with a simple, heavily SIMD-enabled instruction

set, a dual-issue pipeline, no branch prediction, and a uniform

128-bit 128 entry register file. The SPEs can access only a

small (256KB) fixed-latency local store (LS), but they do have

an extremely high bandwidth DMA engine for transferring

data between this LS and main memory. Unfortunately, in this

first version of the Cell processor, the SPEs are not optimized

for double-precision floating point calculations, making the

Cell less attractive for many HPC scientific applications.

1) Programming Environment

Our Cell blade servers run a PowerPC Linux operating

system with a 2.6 series kernel modified to be aware of the

SPEs. By virtue of the PPE in the Cell processor, most

applications will run without changes to the source code,

similar to porting to Linux on other 64-bit Power Architecture

processors. The standard GNU development tool chain is

available, and IBM has also recently begun offering an Alpha

Edition of its XL C/C++ compilers. However, simply using

these compilers will not automatically exploit the unique

features of the Cell processor; to create code that can execute

on an SPE, one must use a specialized compiler. A SPE-

specific port of the GNU and IBM compilers can both

generate the requisite object code and link against SPE-

specific libraries to produce code that can be loaded and run

on the SPEs.

Figure 1: Design components of the Cell Broadband Engine

[http://www.research.ibm.com/cell/heterogeneousCMP.html]

In the default Cell environment, an operating system runs

on the PPE but not the SPEs, and the operating system can not

directly execute SPE code. However, there is a POSIX

thread-like API available where applications executing on the

PPE can launch ―SPE threads‖, and these SPE threads can

access main memory via DMA in order to read parameters

and data from the PPE. While the PPE can load SPE

executables from disk at runtime through this SPE

management library, the more convenient path is to embed the

SPE ELF code into a normal PPE object file, link this into the

PPE executable, and refer to it using an external symbol

defined by the embedding tool. Approaches using advanced

compilers that can potentially hide the complexities of

developing and maintaining separate PPE and SPE code are in

early stages of development [10].

2) Programming Models

Since each SPE‘s local memory is not automatically kept

coherent with main memory, the SPEs within a single chip

might look like a distributed memory. This view of the

architecture suggests task parallel programming models, with

each SPE operating independently, possibly orchestrated by a

master thread running on the PPE. Because of the high

performance of the Element Interconnect Bus (EIB) that

connects the SPEs, and because SPE DMA transfers are cache

coherent [11], data parallel programming models like

OpenMP [12] are also an attractive approach for programming

the Cell processor. In a processor programming tutorial [11],

IBM suggests several other programming models, including

streaming data through SPEs organized in a pipeline,

offloading computation functions in libraries like the Basic

Linear Algebra Subprograms (BLAS) API [13], and

accelerating kernel level code like device drivers. For our

application case studies, we used what IBM calls the

Asynchronous Thread Runtime programming model, where

we create SPE threads as needed, starting the new threads at

the address of a performance critical application function that

has been ported to the SPE.

B. Case Studies

Our case studies are composed of a diverse-set of

calculations that represent a subset of critical domains in

scientific, cognitive, and imaging application areas. A brief

description of these calculations is as follows:

 Genetic algorithms (GA) attempt to solve

optimization problems in a highly parallel manner.

Typically, the process is initiated with a large

population of individuals, where each individual

represents some parameterization of the objective

function. For our tests, we use Ackley‘s function and

the traveling salesman problem, which are two of the

standard set of functions from the GENEsYs genetic

algorithm package [14].

 A covariance matrix is created in a number of

imaging applications, such as hyperspectral imaging

(HSI). HSI, or image spectroscopy, can be described

either as the capture of imagery with a large number

of wavelengths, or spectroscopy across a large

number of pixels. Whereas black and white images

are captured at one wavelength, and color images at

three (red, green, and blue), hyperspectral images are

captured in hundreds of wavelengths simultaneously.

If an HSI data cube is N by M pixels, with L

wavelengths, the covariance matrix is an L×L matrix

where the entry Cova,b at row a and column b in the

covariance matrix can be represented as Cova,b

=

 


N

i

M

j

bjiaji inputinput
1 1

,,,,

 Monte Carlo techniques are widely used in the field

of biological and biomedical simulations, for

instance, laser-tissue interactions. The method is

statistical in nature and relies on calculating the

propagation of a large number of photons (order of

tens to hundreds of thousands). These Monte Carlo

simulations are based on macroscopic optical

properties that are assumed to extend uniformly over

small units of tissue volume [15]. We ported a test

case developed by Oregon Medical Laser Center.
2

 Molecular Dynamics (MD) is a computer simulation

technique where the time evolution of a set of

interacting atoms is followed by integrating the

equations of motion. The motion and the applied

2
 Available at http://omlc.ogi.edu/software/

force are explicitly related through Newton‘s second

law. MD techniques are extensively used in many

areas of scientific simulations including biology,

chemistry, and materials. The computational cost of

MD simulations increases with the number of atoms

in a system. Our MD calculation is composed of

force evaluation (Lennard-Jones potential model) and

integration (velocity Verlet algorithm) to calculates

atom trajectories from the forces [16].

 A Satisfiability (SAT) solver attempts to find an

assignment to variables in a Boolean expression

which makes the entire expression true. In general,

SAT is NP-complete. There are essentially two

categories of SAT solvers: deterministic and

stochastic. For stochastic solvers, picking a good

variable to flip is often based on some variant of a

―score‖ for that variable. For example, in GSAT [17]

this is the number of clauses that become true if the

variable is flipped, and for WalkSAT [18], it is the

number that would become false. This process of

flipping variables and updating the scores can take a

significant portion of the time in a stochastic solver.

III. RELATED WORK

Due to the raw processing power of the Cell system, on the

order of 256 GFLOPS for single-precision floating-point

calculations using all available SIMD units, it has been

evaluated for scientific applications [19-22] and embedded

calculations [23]. [20-22] outline porting of scientific

calculations and algorithm designs for the Cell BE system.

These research efforts highlight the multi-level parallelism

that is offered by the Cell BE system as well as the

architectural restrictions and outline the strategies for

exploiting performance enhancing features of the system.

Williams et al. [19], on the other hand, present a performance

model for the Cell system and validation results from a Cell

simulator for four scientific kernels. The authors identify

different programming environments for the Cell system, and

present performance using only the data-parallel programming

model, which is widely used for parallel scientific calculations.

Similarly, Sacco et al. [23] discuss programming and

performance issues of the Cell system for an embedded kernel,

FIR. The kernel is implemented in C, using SIMD intrinsics

and assembly code. While these studies compare and contrast

performance of Cell implementations with microprocessor

based implementations, another dimension to complexity, that

is, the level of effort in designing and implementing

algorithms on the Cell system has not been discussed.

Although several productivity metrics have been proposed

[5-9], research in productivity measurement and analysis for

scientific applications has primarily been conducted for

multiprocessor and multi-threaded implementation including

message-passing (MPI) and OpenMP implementation. The

unique contribution of our paper is that it highlights a number

of Cell features for both productivity and performance for

calculations in scientific, imaging, and cognitive computing

domains. Unlike the earlier work, we identify architectural

http://omlc.ogi.edu/software/

attributes and code development features of the Cell BE

system that not only improve performance but also introduce

potential performance bottlenecks.

IV. OPTIMIZATION STRATEGIES

A. Thread Launch Overhead and Mailboxes

We initiate code execution on the SPEs using the SPE

thread library. As this library uses a virtual file system to

access the SPEs, there is a high cost associated with launching

an SPE thread. In the case of the older Linux kernel version

2.6.15-bsc3.0 for the Cell processor, this thread launch

exceeds 15 ms. In the more recent Linux kernel (2.6.16-bsc4.2)

thread launch overhead is approximately 6 ms for each launch.

Nevertheless, this overhead can easily dominate small

computations.

In the molecular dynamics benchmark, the bottleneck is the

function to compute acceleration, which is executed once

every time step. Thus, it is this function which we offloaded

to the SPEs. Figure 2 shows the total runtime, and the

percentage which is devoted to launching SPE threads. In the

first case, we see that when a single SPE is tasked to compute

all acceleration functions, it takes enough time to execute that

the thread launch overhead is a small fraction of the runtime.

However, when we parallelize over eight SPE threads, the

thread launch overhead grows by a similar factor and the

runtime in each SPE drops almost by the same amount. This

has two effects: first, the thread launch overhead surpasses

90% of the total runtime of the program, and second, the

eight-SPE version run significantly slower than the one-SPE

version.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 SPE 8 SPEs 1 SPE 8 SPEs

R
u

n
ti

m
e

 (
s

e
c

)

Total Runtime

SPE Launch Overhead

Respawn every time step Launch only first time step

Figure 2: SPE launch overhead on MD using older Linux kernel.

In this case, however, there is a simple solution. The

communication between the PPE and SPEs is not limited to

large asynchronous DMA transfers; there are other channels

(―mailboxes‖) that can be used for blocking sends and

receives of information of small size – on the order of bytes.

Since we are offloading only a single function, we can simply

launch the SPE threads once on the first time step, and signal

them using mailboxes when there is more data to consume.

Thus, the thread launch overhead is amortized across all time

steps. This helps the scaling greatly – this eight-SPE version is

3.1 times faster than this single-SPE version on the older

Linux kernel, and under the newer Linux kernel with

optimized launch times, the eight-SPE version runs 4.5 times

faster than with one SPE.

B. SIMD Intrinsics

Most SPE instructions, including memory operations, are

SIMD instructions operating on 128-bits of data at a time.

Hence, the scalar code execution (if not generated correctly) is

expensive because of the penalties for misaligned accesses. To

address this issue the Cell SDK provides C/C++ language

extensions in the form of vector intrinsics to exploit SIMD

capabilities in the SPEs. There is support for loading and

storing individual character or integers, and for extracting or

merging individual values from or into a 128-bit register.

Balancing the use of intrinsics is a compromise between

productivity and performance. Writing assembly code is much

more time consuming, but we found that through intrinsics we

could often exploit the Cell SIMD features beyond a high-

level C/C++ language level.

The molecular dynamics application kernel deals with three

dimensional positions, velocities, accelerations, and other

vectors. While optimization might show greater performance

by unrolling loops and SIMDizing across successive loops

rather than across the spatial components [11], this is neither a

productive nor a natural way for developers to program.

Hence, we examine the benefits of successive optimization

through making use of the SIMD intrinsics for these three-

dimensional quantities in the SPEs, as shown in Figure 3.

0.00

0.05

0.10

0.15

0.20

original replace "if"

with

"copysign"

SIMD

unit cell

reflection

SIMD

direction

vector

SIMD

length

calculation

SIMD

acceleration

R
u

n
ti

m
e

 (
s

e
c

)

Figure 3: SIMD optimization for the MD application kernel.

Since the unit cell for the MD calculation has periodic

boundary conditions, each atom pair must be compared not

only in the unit cell itself, but in each of the 26 neighboring

cells. The existing comparison used "if" tests in a loop across

each of the three axes, but as a first step in the optimization,

these were replaced with a version using the "copysign" call in

the Cell SDK's optimized math library. This provided only a

small improvement in runtime (2%). However, once this "if"

test was converted to extra arithmetic, these boundary

condition calculations could be vectorized to occur across all

three components simultaneously. This resulted in a dramatic

improvement, running over 1.5 times faster. Similarly, the

calculation for the direction vector was converted from a loop

over the components to use the SIMD intrinsics, resulting in a

further 21% improvement in runtime. Furthermore, to find the

distance, we calculate the dot product by multiplying the

vector with itself, and then add the extracted components.

This optimization improved the total runtime by 15%.

Once an interacting atom pair is found, the force between

them must be converted into a 3D acceleration vector. The last

step in optimization replaces a loop over the three components

with its equivalent using the 4-component SPU intrinsics.

Unfortunately, since so few of the tested atoms interact, very

little runtime is actually spent in this loop, and so the total

improvement in runtime was only 3%.

These SIMD optimizations resulted in a speedup of 2.4x

over the original SPE implementation with no hand tuning.

C. (Task) Thread-level Parallelism

In order to achieve high performance on the Cell system, a

code developer must decompose and run multiple tasks or

threads on PPEs and the eight SPEs simultaneously. In some

of our target applications, like light propagation using Monte

Carlo techniques, this is relatively straightforward due to the

inherent concurrency in the problem. Nevertheless, there are

initialization and data aggregation overheads for running

applications on multiple SPEs. We further improved

utilization and performance by overlapping PPE and SPE

calculations in our Monte Carlo implementation. We

implement an initialization routine that determines whether or

not there are sufficient photons in a calculation to distribute

them to the PPE and among eight SPEs. Note that same

number of photons does not necessarily mean the same

amount of computation, as loop bounds are dynamic.

Figure 4 shows results of our implementation when using

only the PPE, when using one or more SPEs, and when

overlapping calculation on both the PPE and SPEs for a

simulation run with 100K photons using the GNU tool chain.

As shown in the figure, this Monte Carlo calculation hugely

benefits from the eight SPEs. However, we observe only a

very small performance improvement by overlapping PPE and

SPE execution since 1 SPE is almost as efficient as the PPE

for the fully SIMDized Monte Carlo implementation. We

anticipate that significant performance gains can be achieved

by overlapping non-SIMDized computation onto the PPE core.

0

5000

10000

15000

20000

25000

30000

35000

40000

PPE 1SPE 2SPE 4SPE 8SPE Overlap

R
u

n
ti

m
e

 (
m

s
e

c
)

Figure 4: Performance improvements in the Monte Carlo light propagation

calculation on the Cell System.

D. Loop Unrolling and Latency Hiding

The instructions within an SPE are executed in order (no

prefetching or out-of-order execution). An SPE can dispatch

up to two instructions per cycle to seven execution units that

are organized into even and odd instruction pipes. The first

instruction must come from an even word address and use the

even pipe. The second instruction must come from an odd

word address and use the odd pipe. Because of these features,

the SPE can be sensitive to latencies and instruction ordering

in codes.

The SAT solver benchmark has very little computation and

is capable of very little instruction-level parallelism. It

essentially performs read-modify-write (RMW) actions on a

short (up to 24 for this data set) sequence of random memory

locations for each ―flip‖, where the ―modify‖ action is limited

to an increment or decrement operation. For this reason, it is

very illustrative of this category of manual optimizations.

Comparing the SPE performance with the PPE performance,

as shown over a sequence of cumulative hand tuning steps in

Figure 5, helps distinguish which aspects are unique to the

SPEs.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

original -O3 simplify

array

indexing

loop

unrolling

instruction

reordering

R
u

n
 t

im
e

 (
s

e
c

)
PPE

SPE

Figure 5: Optimizations in the SAT solver benchmark.

The first result is the baseline version of the SAT solver

benchmark. The second shows the result of hand optimization

to avoid the latency of unnecessary calculation when

generating some array indices. Note that the SPE responds

quite well to this optimization. There are two reads in each

iteration of the loop over the scores – one to read the locations

for the scores to modify, the second to read the scores

themselves. By unrolling the loop four times, the first reads

are grouped together to use a single vector load operation.

Reordering these instructions also groups both the modify

commands together and the write commands together to hide

the latency in the computation. In the PPE, unrolling the loop

alone results in slower performance – only by also reordering

the instructions do these hand optimizations achieve the same

performance as compiler optimization alone. In contrast, each

of these last two hand optimizations individually help the SPE

code significantly. The final column in this figure shows the

most optimized implementation.

E. SDK Optimized Math Libraries

The compilers available for the Cell contain the expected

level of inherent support for the languages. For example, the

IBM XLC and GNU GCC compilers for the SPEs contain the

standard C library and related include files. However, the IBM

Cell BE Software Development Kit extends this support by

providing libraries with a wide variety of optimized routines.

This Cell BE SDK includes optimized high level routines

such as FFTs and matrix math. However, it also provides

versions of many lower-lever routines – most importantly, it

includes many routines found in the standard math library,

such as cos, sqrt, and pow. These are not only highly

optimized for the Cell processor, but often include SIMD

versions that can operate on the multiple-component ―vector‖

operands supported by the compilers. Additionally, inlined

versions of these functions sometimes exist and can further

improve performance. Note that the SIMD versions require

more significant code changes, as the operands are vector

types.

Ackley‘s function from the Genetic Algorithm benchmarks

makes use of several transcendental functions, such as cosine,

square root, and the exponential function. It uses the cosine in

an inner loop across the dimensions of the individual, the

square root once, and the exponential function twice for each

individual.

SPE Optimizations

0.681 s

0.248 s

0.064 s

0.047 s

0.01

0.1

1

Original Fast cosine Fast exp/sqrt SIMD

R
u

n
ti

m
e
 (

s
e
c
)

[l

o
g

 s
c
a
le

]

Figure 6: Optimization of Genetic Algorithm Ackely‘s function.

Figure 6 shows the results on the total runtime using a

single SPE after applying a sequence of these optimizations.

Replacing the cosine in the inner loop with the inlined

optimized version from the SDK was very effective, resulting

in a 2.75 times speedup. Replacing the square root and

exponential function with their respective inlined optimized

versions resulted in another speedup of 3.9x. Unrolling the

code and replacing these functions with their 4-component

SIMD equivalents resulted in another 1.3 times improvement.

Cumulatively, these optimizations resulted in a 14x speedup

relative to the original SPE implementation. (Discounting the

thread launch overhead included in these timings would result

in even larger proportional speedups.).

F. Double-precision Penalties

The double precision performance on the Cell processor is

approximately 10 times worse than the single precision

performance. This has obvious implications, but it also has

some subtle effects on hand optimization strategies.

0.0

0.5

1.0

1.5

2.0

2.5

1 SPE using 'if' test 1 SPE using 'copysign'

R
u

n
ti

m
e

 (
s

e
c

)

Double Precision

Single Precision

Figure 7: The effect of precision on branching in the genetic algorithm

traveling salesman problem.

Take, for example, the genetic algorithm benchmark‘s

traveling salesman problem. This example spends most of its

time in the fitness evaluation actually sorting the values

assigned to the TSP ―towns‖. For this sort, we retain the use of

the ―qsort‖ standard C library routine when porting to the

SPEs, which requires a predicate for comparison on the values

of the array which returns –1,+1, or 0 depending on if the first

argument is less than, greater than, or equal to the second,

respectively. The standard implementation performs an ―if‖

test for the first comparison, an ―if‖ test for the second

comparison, and defaults to the third. While this performs

admirably for single precision arguments, as seen in Figure 7,

the added latency of double precision arguments results in a

tremendous penalty on the branch in these ―if‖ tests.

However, this penalty can be greatly mitigated. Using the

double precision ―copysign‖ routine from the optimized SDK

math library, we can simply subtract the arguments, copy the

sign to a double precision 1.0, and cast the result to an integer.

This speeds up the double precision results by better than a

factor of two. Note, however, that the single precision

performance drops by more than a factor of two if we attempt

this same trick, making the single and double precision results

almost equal. This implies that it is not simply the extra

calculation time required for double precision, but instead its

more pronounced effect on the branching in the ―if‖ test,

causing the poor performance.

G. Concurrent Bandwidth

The Element Interconnect Bus (EIB) in the Cell processor

has a theoretical unidirectional bandwidth of 25.6GB/sec per

port, and with four ports, the maximum concurrent sustained

bandwidth exceeds 200GB/sec. As such, having multiple

SPEs performing DMA transactions simultaneously can

greatly decrease the total runtime spent in performing

communication.

For the covariance matrix creation example, the data set

and tiling sizes used resulted in a total of 16 chunks to process.

This implementation streams the entire data set through a SPE

to create each of the output chunks. In this benchmark, we

launch one or more threads to process their chunks, and then

launch one new thread as each existing one terminates. Thus,

there are a total of 16 thread launches during the execution of

the benchmark no matter how many simultaneous threads are

running.

The timings here were generated in one of three modes: 1)

launch threads which perform no action, 2) launch threads

which transfer their needed data, or 3) launch threads which

transfer all data and perform all work. Total runtimes are

reported in Figure 8. As expected, total thread launch

overhead stays constant no matter how many threads run

concurrently. Most importantly, total DMA transfer times

improve dramatically as more threads perform simultaneous

transfers, showing the strength of the high bandwidth

provided by the EIB. In fact, transfer times improve super-

linearly with the increase in threads; no doubt helped by

caching as each thread reads the entire input dataset.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 4 8

Number of SPE Threads

R
u

n
ti

m
e

 (
s

e
c

)

Full Execution

Launch+DMA

Thread Launch

Figure 8: Thread launch, DMA overhead in the covariance matrix calculation.

H. DMA Communication Overhead

The DMA transfers on the SPEs across the EIB can be

asynchronous, meaning that developers can initiate data

transfers and perform other tasks while waiting for the DMA

to finish. For very large quantities of data that must be

streamed through the SPE, this can be effectively utilized by

having two input buffers and streaming data into one while

performing computation using the other.

For the covariance matrix creation benchmark, we timed

the runtime of the application when the SPE used synchronous

DMA (i.e. wait for each DMA to finish before starting another)

versus overlapping DMA with computation (i.e. initiate

transfer into the empty buffer while computing using the full

buffer). As shown in Figure 9, when we performed only the

DMA transfers but no computation, the strategy to alternate

buffers took about 10% longer, showing that having two

DMA transfers active at once incurs some overhead costs.

However, when we performed a small amount of

computation in the asynchronous mode while the DMA was

filling the empty buffer, the runtime increased by only 6%; in

contrast, if we waiting for DMA transfers to finish before

performing the computation (i.e. synchronous mode) runtime

increased by 94%. Thus, this particular task showed a 0.33

second, or 65% improvement by overlapping DMA. When the

amount of computation was increased to perform the full

covariance matrix calculation, the absolute improvement from

overlapping DMA transfers increased slightly to 0.43 seconds,

but as the total runtime was greatly increased, this was only a

9%aadvantage.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

No

Computation

Some

Computation

All

Computation

R
u

n
ti

m
e

 u
s

in
g

 1
 S

P
E

 (
s

e
c

o
n

d
s

)

Synchronous DMA

Overlapping DMA

Figure 9: Synchronous and overlapping DMA in the covariance matrix

calculation

I. XLC versus GCC

The most recent release of the IBM Cell BE SDK includes

a native XLC 8.1 compiler. We evaluated it on two different

kernels at different stages of hand optimization to investigate

its performance advantages relative to GCC, version 4.1.1.

The runtimes were gathered using only one SPE so the raw

impact of the compiler would be more easily assessed.

0

5

10

15

20

25

30

no hand vectorization full hand vectorization

R
u

n
ti

m
e

 (
s

e
c

)

GCC

XLC

Figure 10: Runtime under GCC and XLC of covariance matrix calculation

In Figure 10, the results when comparing the two compilers

on the covariance matrix calculation show the total runtime

improvement from using XLC at around 12.6% before any

hand tuning. The major hand optimizations to this algorithm

involved unrolling a loop four times and making use of SIMD

vector intrinsics to operate on multiple loop iterations

simultaneously. This optimization resulted in the same

speedup under both compilers, and thus the advantage for

XLC remained consistent at 12.1%.

Figure 11 shows results for each time step of the molecular

dynamics kernel. In the first case the compilers were

optimizing a fairly straightforward port of the original code to

the SPEs, and the code compiled with XLC ran twice as fast

as with GCC, at 0.100 seconds per time step (versus 0.214 for

GCC). In fact, this is almost as fast as the comprehensively

hand tuned GCC version, which ran in 0.097 seconds. This

fully tuned version still benefited from XLC, though, running

11% faster at 0.087 seconds. The more interesting result

presented here, though, is that the XLC version was slower at

an intermediate step in the hand optimization, where only

some SIMD vectorization was done, than when no hand

tuning was done. In other words, some hand tuning which

was a natural speedup for GCC actually prevented the XLC

compiler from optimizing effectively, so developers should be

cautioned that incomplete hand optimization may be more

likely to result in decreased performance under XLC.

However, it is also worthwhile to observe that in no tested

cases did XLC result in lower absolute performance than GCC,

demonstrating that increasing software stack maturity can

increase the productivity of end users.

0.00

0.05

0.10

0.15

0.20

0.25

no hand

vectorization

some hand

vectorization

full hand

vectorization

It
e

ra
ti

o
n

 t
im

e
 (

s
e

c
)

GCC

XLC

Figure 11: Runtime of each time step under GCC and XLC in the MD kernel.

V. PERFORMANCE AND PRODUCTIVITY

In the previous section, we presented performance results

relative to the PPE-only implementation. Here, we discuss and

compare relative performance improvement, and

performance-to-productivity ratios, by taking into account the

level of effort involved in optimizing our target calculations.

Since it is not trivial to quantify the code development effort

as it depends on a number of factors including the level of

experience of code developer, familiarity with programming

model, and the target system, we measure a quantifiable value

called Source Lines of Code (SLOC), which has been

extensively used and reported in a large number of

productivity studies on parallel and high performance

computing systems.

We recognize that SLOC does fully represent the level of

effort; for example, one might suggest that additional

optimization can often result in fewer lines of code, and thus

suggest it is misleading to use SLOC as a productivity metric.

While potentially true, that effect is greatly mitigated in this

study primarily because coding for the SPEs at all in the Cell

processor requires adding code, not subtracting it. As such, an

increase in lines of code, when compared to the single-

threaded CPU version, is most certainly an increase in amount

of effort. This is in dramatic contrast to other kinds of

optimizations such as within homogeneous CPU code, such as

loop reordering, which might represent a considerable effort

for no increase in SLOC. Secondly, whereas the added code

was, in fact, subject to these kinds of statement-level-

optimizations that have a nonlinear impact on SLOC, this does

not invalidate the comparison, because the original single-

threaded code was subject to these same transformations. In

other words, because we are comparing optimized code to

optimized code, SLOC remains a useful metric of effort.

We further divide the SLOC into effective SLOC and

boilerplate SLOC. The distinction is intended to quantify the

learning curve associated with the unique architectures

investigated here, as there is some amount of boilerplate code

that one must write to get any application working but which

will typically be re-used on further applications. For example,

code for SPE thread launches and DMA transfers on the Cell

is highly reusable. Hence the ‗total‘ SLOC is close to what

one might expect when presented with the architecture for the

first time, and the ‗effective‘ SLOC (with boilerplate code

discounted) approximates what someone experienced with the

platform can expect.

Our target commodity multi-core platform is dual-core

Intel Xeon 5100 series dual-core processor known as

Woodcrest, which uses Intel‘s next-generation Core 2

microarchitecture [24]. The microarchitecture supports Intel‘s

Streaming SIMD Extension (SSE) instructions that operate on

data values packed into 128-bit registers (e.g. four 32-bit

values or two 64-bit values) in parallel. The microarchitecture

includes both a floating-point multiply unit and a floating-

point add unit. Using SIMD instructions, each of these units

can operate on two packed double-precision values each cycle.

The clock frequency of our target platform is 2.66 GHz. Our

target Intel multi-core platforms use a Linux 2.6 kernel and

have Intel Fortran and C/C++ compilers (version 9.1). In

addition to explicit message-passing and shared-memory

parallelism across multiple cores, an additional level of

parallelism is available within individual Xeon cores in form

of SSE instructions. The Intel compilers are capable of

identifying this parallelism with optimized flags including

such as –fast -msse3 -parallel (-fast= -O3, -

ipo, –static). We inspected compiler reports to ensure

that the critical loops are optimized for vector units. For

instance, in the MD calculation, a number of small loops in

the initialization steps and subsequent calculations are

automatically vectorized by the compiler. The complex data

and control dependencies in the second phase of the

calculation however prevented the generation of optimized

SSE instruction by the compiler.

We measure relative performance of optimized, SSE-

enabled microprocessor (Intel Woodcrest) version and the

optimized implementation as

CellBE

Woodcrest
ratio Runtime

Runtime
ePerformanc  , and we measure

the productivity by comparing the SLOC ratio of the test suite

as

Woodcrest

CellBE
ratio

SLOC

SLOC
SLOC  . Although, no code modification

is performed in the serial version, we extensively studied the

impact of various compile-time and runtime optimization

flags offered by the Intel C compiler. These optimizations

included operations such as Inter Procedural Optimization

(IPO), auto-parallelization and SSE-enabled code

generation/vectorization. Hence, our reference runtime results

are optimal for the single-core Woodcrest platform. In order

to quantify the tradeoffs between time spent tuning a code

versus the benefit seen via shorter runtimes, we introduce

―Relative Productivity‖ in the form of the relative

development time productivity (RDTP) metric, defined as

speedup divided by relative effort, i.e., the ratio of the first

two metrics [25].

A. Performance

Table I shows the performance on each application kernel

relative to the reference SSE-enabled application performance.

The PPE is fairly consistent, performing at 5% to 25% of the

speed of the Woodcrest system, which is far more advanced

than the PPE and operates at a higher clock frequency. The

results using one or more SPEs, though, are far more

informative about the match of each algorithm to the Cell‘s

architecture. Though runtimes were not long, care was taken

to ensure that overheads were discounted, maximizing the

accuracy of the results and the applicability to larger problems.

TABLE I: SPEEDUP RELATIVE TO THE WOODCREST.

 PPE 1 SPE 8 SPEs

Covariance Matrix 0.062 1.092 8.249

Genetic Algorithm, Ackley 0.039 0.683 3.655

Genetic Algorithm, TSP 0.146 0.328 2.508

Monte Carlo 0.071 0.476 3.803

Molecular Dynamics 0.204 1.132 2.531

Satisfiability Solver 0.250 0.254 (2.037)

The SIMD intrinsics provided an ideal mapping for the

covariance matrix calculations. As a result, even one SPE ran

faster than the Woodcrest system, even with SSE enabled on

the Woodcrest. Efficient parallelization and utilization of the

element interconnect bus bandwidth led to an over 8x

improvement over the Woodcrest when using all 8 SPEs.

The performance of the genetic algorithms relative to the

reference system can be attributed to their arithmetic intensity;

Ackley‘s function took advantage of the SIMD nature of the

SPEs and ran almost twenty times faster on one SPE than on

the PPE alone, but the SSE units of the Woodcrest system are

also optimal for this problem, and so one SPE ran at two-

thirds the speed of the Woodcrest processor. In contrast, the

more logic intensive traveling salesman problem ran three

times slower on one SPE. Both were straightforward to

parallelize for the SPE SIMD units, resulting in the former

running 3.7x faster and the latter running over 2.5x faster than

the Woodcrest when using all eight SPEs.

The two scientific algorithms, Monte Carlo and molecular

dynamics, were able to make moderate use of SIMDization

and optimized math libraries. The 3D structure in the Monte

Carlo code mapped onto the 4 unit vector pipeline – however

with one SPE, it ran half as fast as the Woodcrest system, it

ran nearly 4 times faster than it with all eight SPEs due to

high-level of task parallelism. The molecular dynamics code

ran about the same speed as the Woodcrest system with one

SPE, but was 2.5x faster with all eight SPEs. Since the Monte

Carlo code depends on the random number generation

function and the loop bounds are dynamic or depend on

randomly generated values, we measured the rate of

convergence for Woodcrest and our Cell implementation. We

identified that the rate of convergence with Cell GCC and the

Woodcrest are similar, while the XLC takes a few hundred

extra iterations to converge. In other words, the performance

efficiencies for the Monte Carlo code could be relatively

higher during each iteration than the results reported in Table I.

With no computation and no opportunity to make sure of

SPE intrinsics, as anticipated, the SAT solver performed no

better on the SPE than the PPE. While this task is not

inherently parallelizable, the eight SPEs could each be

devoted to exploring independent areas of search space, and

so the 8 SPE number (in parentheses) represents an ideal 8x

speedup relative to the single SPE performance, or slightly

better than twice the speed of the SSE-enabled, dual-core

microprocessor system.

B. Productivity

In Table II, we list the Cell-to-Woodcrest ratio of source

lines of code and the relative performance increase on the Cell

processor for the largest tested data set sizes utilizing all SPEs.

(For the SAT solver we show single SPE performance, and in

parentheses the ideal performance one would achieve if eight

SPEs were searching independent portions of the problem

space.) As expected, the SLOC consistently increased when

porting to the Cell processor. It is worthwhile to note,

however, that there is some degree of boilerplate code, such as

helper functions on the SPE to simplify data transfers, that

may be more easily reused than other code written as part of

the porting effort. As such, some SLOC ratios may be

somewhat exaggerated, especially for very small kernels. The

second column shows the ―Effective‖ SLOC determined by

discounting this boilerplate code.

The final column in Table II, ―Relative Productivity‖, is the

TABLE II: PERFORMANCE AND PRODUCTIVITY OF VARIOUS ALGORITHMS ON THE CELL PROCESSOR.

 SLOC Ratio

(Total)

SLOC Ratio

(Effective)

Performance

Ratio

Relative

Productivity

Covariance Matrix 5.605 3.442 8.249 2.397

Genetic Algorithm, Ackley 3.901 2.173 3.655 1.684

Genetic Algorithm, TSP 2.081 1.845 2.508 1.360

Monte Carlo 2.352 1.958 3.803 1.942

Molecular Dynamics 2.273 1.886 2.531 1.341

Satisfiability Solver, 1 (8) SPEs 1.996 1.464 0.254 (2.037) 0.171 (1.366)

relative development time productivity (RDTP) metric defined

above, where a higher number indicates more benefit for less

effort. The scientific Monte Carlo and molecular dynamics

applications had RDTPs greater than 1, but not as high as the

math-centric covariance matrix creation. The less arithmetic

intensive cognitive algorithms had some of the lowest relative

productivities, with no more payoff than there was invested

effort. RTDP of the two scientific calculations are consistent;

both applications require similar amount of programming

effort and achieve same level of productivity.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The novel architectural features of the Cell Broadband

Engine offer unique performance optimization opportunities

for a range of calculations across multiple application domains;

however, these optimization efforts must be balanced with

user productivity. We demonstrated using a subset of

scientific, cognitive, and imaging calculations how these

features can be exploited to improve performance on the Cell

architecture, and we quantified the final ‗productivity‘ costs of

this effort. In one case, we improved performance of a

molecular dynamics kernel by a factor of 2.5, even though at

first, the architecture of Cell did not appear to be a

straightforward choice. In another case, we achieved over

eight times performance improvement for covariance matrix

calculations, which are used in hyperspectral imaging

algorithms. More surprisingly, these performance gains were

achieved using a high level language – C – and a relatively

immature software stack (compared to mainstream

microprocessor systems). We also measured productivity of

the Cell system as the ratio of programming effort and

performance improvement, and we saw productivity boosts on

the Cell system when compared to a contemporary

homogeneous microprocessor system. Though using a high-

level language only, for many of our applications performance

gains were significantly greater than the relative programming

effort under this metric. Our experience with these algorithms

has enabled us to identify production-level applications that

should benefit from the new architectural features of the Cell

system. Furthermore, as Cell based massively-parallel systems

are on the horizon [26], we plan to continue evaluating and

optimizing large-scale scientific applications on the Cell

system.

ACKNOWLEDGMENTS

The submitted manuscript has been authored by a

contractor of the U.S. Government under Contract No. DE-

AC05-00OR22725. Accordingly, the U.S. Government retains

a non-exclusive, royalty-free license to publish or reproduce

the published form of this contribution, or allow others to do

so, for U.S. Government purposes.

REFERENCES

[1] Flachs, B., et al., The microarchitecture of the synergistic processor for

a cell processor. Solid-State Circuits, IEEE Journal of, 2006. 41(1): p.

63-70.

[2] Pham, D.C., et al., Overview of the architecture, circuit design, and

physical implementation of a first-generation cell processor. Solid-
State Circuits, IEEE Journal of, 2006. 41(1): p. 179-196.

[3] Hwa-Joon, O., et al., A fully pipelined single-precision floating-point

unit in the synergistic processor element of a CELL processor. Solid-
State Circuits, IEEE Journal of, 2006. 41(4): p. 759-771.

[4] Kahle, J.A., et al., Introduction to the Cell Microprocessor. IBM

Journal of Research and Development, 2005. 49(4/5): p. 589-604.
[5] Zelkowitz, M., et al., Measuring Productivity on High Performance

Computers. Software Metrics, 2005. 11th IEEE International

Symposium, 2005: p. 6-6.
[6] Sterling, T., Productivity Metrics and Models for High Performance

Computing. International Journal of High Performance Computing

Applications, 2004. 18(4): p. 433.
[7] Snir, M. and D.A. Bader, A Framework for Measuring Supercomputer

Productivity. International Journal of High Performance Computing

Applications, 2004. 18(4): p. 417.
[8] Kepner, J., HPC Productivity: An Overarching View. International

Journal of High Performance Computing Applications, 2004. 18(4): p.

393.
[9] Faulk, S., et al., Measuring HPC productivity. International Journal of

High Performance Computing Applications, 2004. 18(4): p. 459-473.

[10] Eichenberger, A.E., et al., Using advanced compiler technology to
exploit the performance of the Cell Broadband Engine™ architecture.

IBM SYSTEMS JOURNAL, 2006. 45(1): p. 60.

[11] International Business Machines Corporation, Cell Broadband Engine
Programming Tutorial Version 1.0. 2005.

[12] Chandra, R., Parallel programming in OpenMP. 2001, San Francisco,
CA: Morgan Kaufmann Publishers. xvi, 230.

[13] Blackford, L.S., et al., An updated set of basic linear algebra

subprograms(BLAS). ACM Transactions on Mathematical Software,
2002. 28(2): p. 135-151.

[14] Baeck, T., A user‘s guide to genesys 1.0. University of Dortmund,

Department of Computer Science, 1992.
[15] Wang, L., S.L. Jacques, and L. Zheng, MCML—Monte Carlo

modeling of light transport in multi-layered tissues. Computer Methods

and Programs in Biomedicine, 1995. 47(2): p. 131-146.
[16] Leach, A.R., Molecular modelling: principles and applications. 2nd ed.

2001: Prentice Hall.

[17] Selman, B., H. Levesque, and D. Mitchell, A new method for solving
hard satisfiability problems. Proceedings of the Tenth National

Conference on Artificial Intelligence, 1992: p. 440-446.

[18] Selman, B., H. Kautz, and B. Cohen, Local search strategies for
satisfiability testing. DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, 1996. 26: p. 521-532.

[19] Williams, S., et al. The Potential of the Cell Processor for Scientific
Computing. in Computing Frontiers. 2006. Italy: ACM.

[20] Bader, D.A., V. Agarwal, and K. Madduri, On the Design and Analysis

of Irregular Algorithms on the Cell Processor: a Case Study on List
Ranking. Proc. of the 21st IEEE/ACM International Parallel and

Distributed Processing Symposium, March, 2007.

[21] Blagojevic, F., et al., Dynamic Multigrain Parallelization on the Cell
Broadband Engine. 2007 ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, 2006.

[22] Petrini, F., et al., Multicore Surprises: Lesson Learned from
Optimizing Sweep3D on the Cell Broadband Engine. Proc. of the 21st

IEEE/ACM International Parallel and Distributed Processing

Symposium, March, 2007.
[23] Sacco, S., et al. Exploring the Cell with HPEC Challenge Benchmarks.

in HPEC Workshop. 2006. Lexington, MA.

[24] Ramanthan, R.M. Intel Multi-core Processors: Making the move to
Quad-core and Beyond (White Paper). 2006 [cited; Available from:

http://www.intel.com/technology/architecture/downloads/quad-core-

06.pdf.
[25] Funk, A., et al., Analysis of Parallel Software Development using the

Relative Development Time Productivity Metric. CTWatch Quarterly,

2006. 2(4A).
[26] Shankland, S., IBM to build Opteron-Cell hybrid supercomputer, in

Tech News on ZDNet. 2006.

http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf
http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf

