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Abstract— The Cell Broadband Engine (BE) is a heterogeneous 

multicore processor, combining a general-purpose POWER 

architecture core with eight independent single-instruction-

multiple-data (SIMD) cores.  Each core is capable of very high 

performance; however, users must explicitly manage data 

movement, scheduling, and synchronization.  While these 

attributes provide some of the Cell processor’s greatest 

performance strengths, they also form its greatest weaknesses in 

terms of developer productivity, code portability, and initial 

performance efficiencies.  In this paper, we evaluate productivity 

and relative performance improvements of a Cell BE system for 

a diverse set of kernels and applications.  Our experimental 

workload includes algorithms from scientific, cognitive, and 

imaging problem domains.  Our results demonstrate that the Cell 

processor could be several times faster than a SSE-enabled, 

contemporary dual-core processor, and could sustain a high 

performance-to-productivity ratio.  We outline strategies for 

transforming applications to exploit the Cell’s architectural 

features, and measure productivity by comparing programming 

effort in terms of lines of code and performance.  For instance, 

our measurements revealed that a covariance matrix creation 

routine – a common routine in hyperspectral imaging – ran over 

eight times faster than a 2.66 GHz Intel Woodcrest processor 

while sustaining a productivity metric of over two by 

parallelizing across the heterogeneous cores, unrolling loops, and 

improving instruction level parallelism with SIMD instructions 

in a high-level language. 

I. INTRODUCTION 

The move by major microprocessor vendors toward 

processors with multiple processor cores per socket is 

arguably the most important trend in contemporary computer 

architecture. Given the ability to produce chips with an ever-

increasing number of transistors, this approach of duplicating 

existing cores on a single chip is a straightforward technique 

to address problems related to physical constraints (e.g., 

power, thermal, and signaling) and limited instruction-level 

parallelism. Presently, both homogeneous and heterogeneous 

core designs exist, and even within the homogeneous design 

realm, there are variations in levels of sharing in the memory 

hierarchy, and in levels of support for multithreading.  

The early multi-core offerings from processor vendors Intel 

and AMD for their general purpose markets are dual/quad-

core, homogeneous processors. Other vendors have more 

aggressive designs. For instance, the Cell Broadband Engine 

(BE) processor from Sony-Toshiba-IBM (STI) is a 

heterogeneous multicore design on a single chip. The STI Cell 

processor was initially designed to be the heart of Sony‘s 

PlayStation3 video gaming system [1-4]. Rather than having 

homogeneous cores transparently sharing a common level of 

memory, Cell has a conventional PowerPC core (PPE) that 

manages eight simpler Single Instruction Multiple Data 

(SIMD) cores called synergistic processing elements (SPEs). 

Each SPE contains a synergistic processing unit (SPU), a local 

memory, and a memory flow controller. Unlike conventional 

designs from Intel and AMD that use coherent caches to 

implicitly manage data movement among cores, the Cell 

processor requires that the application and/or runtime system 

explicitly manage data movement. Consequently, the precise 

orchestration of data movement and synchronization is a 

fundamental challenge for achieving high performance on the 

Cell processor.  

Meanwhile, the HPC community is beginning to recognize 

the importance of productivity when using unconventional 

architectures, like multicore. In particular, the DARPA High 

Productivity Computing Systems (HPCS) program is driving 

the notion of improving not only computer system 

performance by orders of magnitude, but also the productivity 

as experienced by the system‘s end users [5-9]. It is clear that 

as computing systems grow more architecturally diverse, 

software systems and programming models must improve to 

enable high user productivity. 

In this paper, we empirically measure both performance 

and productivity. For productivity, we compare source lines of 

code (SLOC) for the microprocessor against the Cell BE 

implementation using a tool called sloccount
1

, and for 

performance we measure algorithm runtimes.  We recognize 

that the SLOC does not fully capture the level of effort 

involved in porting and optimizing an algorithm on a new 

system; however, it does provide a quantitative metric to 

compare and contrast different implementations in a high-

level language—C for all platforms in this study.  Addressing 

issues of both topics, we evaluate and optimize a diverse set of 

algorithms that represents a wide range of workload 

characteristics, without resorting to assembly-level 

programming. These algorithms not only represent different 

application domains, but also enable us to highlight how novel 

                                                 
1
 http://www.dwheeler.com/sloccount/ 

http://www.dwheeler.com/sloccount/


features of the Cell system can be exploited to maximize 

achievable performance. Our suite includes floating-point 

intensive calculations (Molecular Dynamics), inherently scalar 

calculations with dynamic loop count (Monte Carlo), logic 

intensive cognitive calculations (Satisfiability Solver), and 

regular 2D array-based signal processing calculations 

(Covariance Matrix).  

In the process of porting and optimizing our representative 

calculations, we identified mappings of architectural features 

onto specific workload characteristics. Our experiences enable 

us to conclude that performance and productivity of the Cell 

processor depends on how amenable an algorithm is to the use 

of vector data types, SIMD instructions for instruction-level 

parallelism, and task-level thread-parallelism for loop level 

optimization. Furthermore, the maturity of the software stack 

contributes significantly to the achievable performance. We 

observed that in some cases, the XLC compiler can 

outperform the GNU suite by an order of magnitude.  We 

demonstrate that substantial porting and optimization efforts 

on the Cell system results in overall performance gain over a 

SSE-enabled single-core implementation. Despite an 

immature software stack for Cell for general-purpose 

programming, the Cell system sustains performance-to-

productivity ratios for two of the five targeted applications. 

The paper outline is as follows. In Section II we provide a 

brief description of the Cell architecture and programming 

environment, and an overview of our scientific case studies. 

Section III outlines related research activities. Programming 

strategies for achieving high performance on the Cell 

processor are explained using different case studies in Section 

IV. An evaluation of performance and productivity of the Cell 

BE system is presented in Section V. Section VI summarizes 

key findings and presents future research plans. 

II. BACKGROUND 

A. Overview of the Cell Broadband Engine Processor 

The Cell Broadband Engine is a heterogeneous multicore 

processor, with one 64-bit Power Processing Element (PPE) 

and eight independent Synergistic Processing Elements (SPEs) 

as shown in Figure 1. The PPE is a dual-threaded Power 

Architecture core, but the SPEs are very lightweight 

processors with a simple, heavily SIMD-enabled instruction 

set, a dual-issue pipeline, no branch prediction, and a uniform 

128-bit 128 entry register file. The SPEs can access only a 

small (256KB) fixed-latency local store (LS), but they do have 

an extremely high bandwidth DMA engine for transferring 

data between this LS and main memory. Unfortunately, in this 

first version of the Cell processor, the SPEs are not optimized 

for double-precision floating point calculations, making the 

Cell less attractive for many HPC scientific applications. 

1)  Programming Environment 

Our Cell blade servers run a PowerPC Linux operating 

system with a 2.6 series kernel modified to be aware of the 

SPEs. By virtue of the PPE in the Cell processor, most 

applications will run without changes to the source code, 

similar to porting to Linux on other 64-bit Power Architecture 

processors. The standard GNU development tool chain is 

available, and IBM has also recently begun offering an Alpha 

Edition of its XL C/C++ compilers. However, simply using 

these compilers will not automatically exploit the unique 

features of the Cell processor; to create code that can execute 

on an SPE, one must use a specialized compiler. A SPE-

specific port of the GNU and IBM compilers can both 

generate the requisite object code and link against SPE-

specific libraries to produce code that can be loaded and run 

on the SPEs. 

 

Figure 1: Design components of the Cell Broadband Engine 

[http://www.research.ibm.com/cell/heterogeneousCMP.html] 

In the default Cell environment, an operating system runs 

on the PPE but not the SPEs, and the operating system can not 

directly execute SPE code.  However, there is a POSIX 

thread-like API available where applications executing on the 

PPE can launch ―SPE threads‖, and these SPE threads can 

access main memory via DMA in order to read parameters 

and data from the PPE. While the PPE can load SPE 

executables from disk at runtime through this SPE 

management library, the more convenient path is to embed the 

SPE ELF code into a normal PPE object file, link this into the 

PPE executable, and refer to it using an external symbol 

defined by the embedding tool. Approaches using advanced 

compilers that can potentially hide the complexities of 

developing and maintaining separate PPE and SPE code are in 

early stages of development [10]. 

2)  Programming Models 

Since each SPE‘s local memory is not automatically kept 

coherent with main memory, the SPEs within a single chip 

might look like a distributed memory. This view of the 

architecture suggests task parallel programming models, with 

each SPE operating independently, possibly orchestrated by a 

master thread running on the PPE. Because of the high 

performance of the Element Interconnect Bus (EIB) that 

connects the SPEs, and because SPE DMA transfers are cache 

coherent [11], data parallel programming models like 

OpenMP [12] are also an attractive approach for programming 

the Cell processor. In a processor programming tutorial [11], 



IBM suggests several other programming models, including 

streaming data through SPEs organized in a pipeline, 

offloading computation functions in libraries like the Basic 

Linear Algebra Subprograms (BLAS) API [13], and 

accelerating kernel level code like device drivers. For our 

application case studies, we used what IBM calls the 

Asynchronous Thread Runtime programming model, where 

we create SPE threads as needed, starting the new threads at 

the address of a performance critical application function that 

has been ported to the SPE. 

B. Case Studies 

Our case studies are composed of a diverse-set of 

calculations that represent a subset of critical domains in 

scientific, cognitive, and imaging application areas. A brief 

description of these calculations is as follows: 

 Genetic algorithms (GA) attempt to solve 

optimization problems in a highly parallel manner. 

Typically, the process is initiated with a large 

population of individuals, where each individual 

represents some parameterization of the objective 

function. For our tests, we use Ackley‘s function and 

the traveling salesman problem, which are two of the 

standard set of functions from the GENEsYs genetic 

algorithm package [14].  

 A covariance matrix is created in a number of 

imaging applications, such as hyperspectral imaging 

(HSI). HSI, or image spectroscopy, can be described 

either as the capture of imagery with a large number 

of wavelengths, or spectroscopy across a large 

number of pixels. Whereas black and white images 

are captured at one wavelength, and color images at 

three (red, green, and blue), hyperspectral images are 

captured in hundreds of wavelengths simultaneously. 

If an HSI data cube is N by M pixels, with L 

wavelengths, the covariance matrix is an L×L matrix 

where the entry Cova,b at row a and column b in the 

covariance matrix can be represented as Cova,b 

=
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 Monte Carlo techniques are widely used in the field 

of biological and biomedical simulations, for 

instance, laser-tissue interactions. The method is 

statistical in nature and relies on calculating the 

propagation of a large number of photons (order of 

tens to hundreds of thousands). These Monte Carlo 

simulations are based on macroscopic optical 

properties that are assumed to extend uniformly over 

small units of tissue volume [15]. We ported a test 

case developed by Oregon Medical Laser Center.
2
  

 Molecular Dynamics (MD) is a computer simulation 

technique where the time evolution of a set of 

interacting atoms is followed by integrating the 

equations of motion. The motion and the applied 
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force are explicitly related through Newton‘s second 

law. MD techniques are extensively used in many 

areas of scientific simulations including biology, 

chemistry, and materials. The computational cost of 

MD simulations increases with the number of atoms 

in a system. Our MD calculation is composed of 

force evaluation (Lennard-Jones potential model) and 

integration (velocity Verlet algorithm) to calculates 

atom trajectories from the forces [16].  

 A Satisfiability (SAT) solver attempts to find an 

assignment to variables in a Boolean expression 

which makes the entire expression true.  In general, 

SAT is NP-complete. There are essentially two 

categories of SAT solvers: deterministic and 

stochastic. For stochastic solvers, picking a good 

variable to flip is often based on some variant of a 

―score‖ for that variable. For example, in GSAT [17] 

this is the number of clauses that become true if the 

variable is flipped, and for WalkSAT [18], it is the 

number that would become false. This process of 

flipping variables and updating the scores can take a 

significant portion of the time in a stochastic solver. 

III. RELATED WORK 

Due to the raw processing power of the Cell system, on the 

order of 256 GFLOPS for single-precision floating-point 

calculations using all available SIMD units, it has been 

evaluated for scientific applications [19-22] and embedded 

calculations [23].  [20-22]  outline porting of scientific 

calculations and algorithm designs for the Cell BE system. 

These research efforts highlight the multi-level parallelism 

that is offered by the Cell BE system as well as the 

architectural restrictions and outline the strategies for 

exploiting performance enhancing features of the system. 

Williams et al. [19], on the other hand, present a performance 

model for the Cell system and validation results from a Cell 

simulator for four scientific kernels. The authors identify 

different programming environments for the Cell system, and 

present performance using only the data-parallel programming 

model, which is widely used for parallel scientific calculations. 

Similarly, Sacco et al. [23] discuss programming and 

performance issues of the Cell system for an embedded kernel, 

FIR. The kernel is implemented in C, using SIMD intrinsics 

and assembly code. While these studies compare and contrast 

performance of Cell implementations with microprocessor 

based implementations, another dimension to complexity, that 

is, the level of effort in designing and implementing 

algorithms on the Cell system has not been discussed. 

Although several productivity metrics have been proposed 

[5-9], research in productivity measurement and analysis for 

scientific applications has primarily been conducted for 

multiprocessor and multi-threaded implementation including 

message-passing (MPI) and OpenMP implementation. The 

unique contribution of our paper is that it highlights a number 

of Cell features for both productivity and performance for 

calculations in scientific, imaging, and cognitive computing 

domains. Unlike the earlier work, we identify architectural 

http://omlc.ogi.edu/software/


attributes and code development features of the Cell BE 

system that not only improve performance but also introduce 

potential performance bottlenecks. 

IV. OPTIMIZATION STRATEGIES 

A. Thread Launch Overhead and Mailboxes 

We initiate code execution on the SPEs using the SPE 

thread library. As this library uses a virtual file system to 

access the SPEs, there is a high cost associated with launching 

an SPE thread. In the case of the older Linux kernel version 

2.6.15-bsc3.0 for the Cell processor, this thread launch 

exceeds 15 ms. In the more recent Linux kernel (2.6.16-bsc4.2) 

thread launch overhead is approximately 6 ms for each launch. 

Nevertheless, this overhead can easily dominate small 

computations. 

In the molecular dynamics benchmark, the bottleneck is the 

function to compute acceleration, which is executed once 

every time step.  Thus, it is this function which we offloaded 

to the SPEs. Figure 2 shows the total runtime, and the 

percentage which is devoted to launching SPE threads. In the 

first case, we see that when a single SPE is tasked to compute 

all acceleration functions, it takes enough time to execute that 

the thread launch overhead is a small fraction of the runtime. 

However, when we parallelize over eight SPE threads, the 

thread launch overhead grows by a similar factor and the 

runtime in each SPE drops almost by the same amount. This 

has two effects: first, the thread launch overhead surpasses 

90% of the total runtime of the program, and second, the 

eight-SPE version run significantly slower than the one-SPE 

version. 
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Figure 2: SPE launch overhead on MD using older Linux kernel. 

In this case, however, there is a simple solution.  The 

communication between the PPE and SPEs is not limited to 

large asynchronous DMA transfers; there are other channels 

(―mailboxes‖) that can be used for blocking sends and 

receives of information of small size – on the order of bytes.  

Since we are offloading only a single function, we can simply 

launch the SPE threads once on the first time step, and signal 

them using mailboxes when there is more data to consume. 

Thus, the thread launch overhead is amortized across all time 

steps. This helps the scaling greatly – this eight-SPE version is 

3.1 times faster than this single-SPE version on the older 

Linux kernel, and under the newer Linux kernel with 

optimized launch times, the eight-SPE version runs 4.5 times 

faster than with one SPE. 

B. SIMD Intrinsics 

Most SPE instructions, including memory operations, are 

SIMD instructions operating on 128-bits of data at a time. 

Hence, the scalar code execution (if not generated correctly) is 

expensive because of the penalties for misaligned accesses. To 

address this issue the Cell SDK provides C/C++ language 

extensions in the form of vector intrinsics to exploit SIMD 

capabilities in the SPEs. There is support for loading and 

storing individual character or integers, and for extracting or 

merging individual values from or into a 128-bit register. 

Balancing the use of intrinsics is a compromise between 

productivity and performance. Writing assembly code is much 

more time consuming, but we found that through intrinsics we 

could often exploit the Cell SIMD features beyond a high-

level C/C++ language level.  

The molecular dynamics application kernel deals with three 

dimensional positions, velocities, accelerations, and other 

vectors. While optimization might show greater performance 

by unrolling loops and SIMDizing across successive loops 

rather than across the spatial components [11], this is neither a 

productive nor a natural way for developers to program. 

Hence, we examine the benefits of successive optimization 

through making use of the SIMD intrinsics for these three-

dimensional quantities in the SPEs, as shown in Figure 3. 
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Figure 3: SIMD optimization for the MD application kernel. 

Since the unit cell for the MD calculation has periodic 

boundary conditions, each atom pair must be compared not 

only in the unit cell itself, but in each of the 26 neighboring 

cells. The existing comparison used "if" tests in a loop across 

each of the three axes, but as a first step in the optimization, 

these were replaced with a version using the "copysign" call in 

the Cell SDK's optimized math library. This provided only a 

small improvement in runtime (2%).  However, once this "if" 

test was converted to extra arithmetic, these boundary 

condition calculations could be vectorized to occur across all 

three components simultaneously. This resulted in a dramatic 

improvement, running over 1.5 times faster. Similarly, the 

calculation for the direction vector was converted from a loop 



over the components to use the SIMD intrinsics, resulting in a 

further 21% improvement in runtime. Furthermore, to find the 

distance, we calculate the dot product by multiplying the 

vector with itself, and then add the extracted components. 

This optimization improved the total runtime by 15%. 

Once an interacting atom pair is found, the force between 

them must be converted into a 3D acceleration vector. The last 

step in optimization replaces a loop over the three components 

with its equivalent using the 4-component SPU intrinsics. 

Unfortunately, since so few of the tested atoms interact, very 

little runtime is actually spent in this loop, and so the total 

improvement in runtime was only 3%. 

These SIMD optimizations resulted in a speedup of 2.4x 

over the original SPE implementation with no hand tuning. 

C. (Task) Thread-level Parallelism 

In order to achieve high performance on the Cell system, a 

code developer must decompose and run multiple tasks or 

threads on PPEs and the eight SPEs simultaneously. In some 

of our target applications, like light propagation using Monte 

Carlo techniques, this is relatively straightforward due to the 

inherent concurrency in the problem. Nevertheless, there are 

initialization and data aggregation overheads for running 

applications on multiple SPEs. We further improved 

utilization and performance by overlapping PPE and SPE 

calculations in our Monte Carlo implementation. We 

implement an initialization routine that determines whether or 

not there are sufficient photons in a calculation to distribute 

them to the PPE and among eight SPEs. Note that same 

number of photons does not necessarily mean the same 

amount of computation, as loop bounds are dynamic. 

Figure 4 shows results of our implementation when using 

only the PPE, when using one or more SPEs, and when 

overlapping calculation on both the PPE and SPEs for a 

simulation run with 100K photons using the GNU tool chain. 

As shown in the figure, this Monte Carlo calculation hugely 

benefits from the eight SPEs. However, we observe only a 

very small performance improvement by overlapping PPE and 

SPE execution since 1 SPE is almost as efficient as the PPE 

for the fully SIMDized Monte Carlo implementation. We 

anticipate that significant performance gains can be achieved 

by overlapping non-SIMDized computation onto the PPE core. 
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Figure 4: Performance improvements in the Monte Carlo light propagation 

calculation on the Cell System. 

D. Loop Unrolling and Latency Hiding 

The instructions within an SPE are executed in order (no 

prefetching or out-of-order execution). An SPE can dispatch 

up to two instructions per cycle to seven execution units that 

are organized into even and odd instruction pipes. The first 

instruction must come from an even word address and use the 

even pipe.  The second instruction must come from an odd 

word address and use the odd pipe. Because of these features, 

the SPE can be sensitive to latencies and instruction ordering 

in codes.  

The SAT solver benchmark has very little computation and 

is capable of very little instruction-level parallelism. It 

essentially performs read-modify-write (RMW) actions on a 

short (up to 24 for this data set) sequence of random memory 

locations for each ―flip‖, where the ―modify‖ action is limited 

to an increment or decrement operation. For this reason, it is 

very illustrative of this category of manual optimizations. 

Comparing the SPE performance with the PPE performance, 

as shown over a sequence of cumulative hand tuning steps in 

Figure 5, helps distinguish which aspects are unique to the 

SPEs. 
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Figure 5: Optimizations in the SAT solver benchmark. 

The first result is the baseline version of the SAT solver 

benchmark.  The second shows the result of hand optimization 

to avoid the latency of unnecessary calculation when 

generating some array indices. Note that the SPE responds 

quite well to this optimization. There are two reads in each 

iteration of the loop over the scores – one to read the locations 

for the scores to modify, the second to read the scores 

themselves. By unrolling the loop four times, the first reads 

are grouped together to use a single vector load operation. 

Reordering these instructions also groups both the modify 

commands together and the write commands together to hide 

the latency in the computation.  In the PPE, unrolling the loop 

alone results in slower performance – only by also reordering 

the instructions do these hand optimizations achieve the same 

performance as compiler optimization alone. In contrast, each 

of these last two hand optimizations individually help the SPE 

code significantly.  The final column in this figure shows the 

most optimized implementation. 

E. SDK Optimized Math Libraries 

The compilers available for the Cell contain the expected 

level of inherent support for the languages. For example, the 



IBM XLC and GNU GCC compilers for the SPEs contain the 

standard C library and related include files. However, the IBM 

Cell BE Software Development Kit extends this support by 

providing libraries with a wide variety of optimized routines. 

This Cell BE SDK includes optimized high level routines 

such as FFTs and matrix math. However, it also provides 

versions of many lower-lever routines – most importantly, it 

includes many routines found in the standard math library, 

such as cos, sqrt, and pow. These are not only highly 

optimized for the Cell processor, but often include SIMD 

versions that can operate on the multiple-component ―vector‖ 

operands supported by the compilers.  Additionally, inlined 

versions of these functions sometimes exist and can further 

improve performance. Note that the SIMD versions require 

more significant code changes, as the operands are vector 

types. 

Ackley‘s function from the Genetic Algorithm benchmarks 

makes use of several transcendental functions, such as cosine, 

square root, and the exponential function. It uses the cosine in 

an inner loop across the dimensions of the individual, the 

square root once, and the exponential function twice for each 

individual. 
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Figure 6: Optimization of Genetic Algorithm Ackely‘s function. 

Figure 6 shows the results on the total runtime using a 

single SPE after applying a sequence of these optimizations. 

Replacing the cosine in the inner loop with the inlined 

optimized version from the SDK was very effective, resulting 

in a 2.75 times speedup. Replacing the square root and 

exponential function with their respective inlined optimized 

versions resulted in another speedup of 3.9x. Unrolling the 

code and replacing these functions with their 4-component 

SIMD equivalents resulted in another 1.3 times improvement. 

Cumulatively, these optimizations resulted in a 14x speedup 

relative to the original SPE implementation.  (Discounting the 

thread launch overhead included in these timings would result 

in even larger proportional speedups.). 

F. Double-precision Penalties 

The double precision performance on the Cell processor is 

approximately 10 times worse than the single precision 

performance. This has obvious implications, but it also has 

some subtle effects on hand optimization strategies. 
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Figure 7: The effect of precision on branching in the genetic algorithm 

traveling salesman problem. 

Take, for example, the genetic algorithm benchmark‘s 

traveling salesman problem. This example spends most of its 

time in the fitness evaluation actually sorting the values 

assigned to the TSP ―towns‖. For this sort, we retain the use of 

the ―qsort‖ standard C library routine when porting to the 

SPEs, which requires a predicate for comparison on the values 

of the array which returns –1,+1, or 0 depending on if the first 

argument is less than, greater than, or equal to the second, 

respectively. The standard implementation performs an ―if‖ 

test for the first comparison, an ―if‖ test for the second 

comparison, and defaults to the third.  While this performs 

admirably for single precision arguments, as seen in Figure 7, 

the added latency of double precision arguments results in a 

tremendous penalty on the branch in these ―if‖ tests. 

However, this penalty can be greatly mitigated. Using the 

double precision ―copysign‖ routine from the optimized SDK 

math library, we can simply subtract the arguments, copy the 

sign to a double precision 1.0, and cast the result to an integer. 

This speeds up the double precision results by better than a 

factor of two. Note, however, that the single precision 

performance drops by more than a factor of two if we attempt 

this same trick, making the single and double precision results 

almost equal. This implies that it is not simply the extra 

calculation time required for double precision, but instead its 

more pronounced effect on the branching in the ―if‖ test, 

causing the poor performance. 

G. Concurrent Bandwidth 

The Element Interconnect Bus (EIB) in the Cell processor 

has a theoretical unidirectional bandwidth of 25.6GB/sec per 

port, and with four ports, the maximum concurrent sustained 

bandwidth exceeds 200GB/sec. As such, having multiple 

SPEs performing DMA transactions simultaneously can 

greatly decrease the total runtime spent in performing 

communication. 

For the covariance matrix creation example, the data set 

and tiling sizes used resulted in a total of 16 chunks to process. 

This implementation streams the entire data set through a SPE 

to create each of the output chunks. In this benchmark, we 

launch one or more threads to process their chunks, and then 

launch one new thread as each existing one terminates. Thus, 

there are a total of 16 thread launches during the execution of 



the benchmark no matter how many simultaneous threads are 

running. 

The timings here were generated in one of three modes: 1) 

launch threads which perform no action, 2) launch threads 

which transfer their needed data, or 3) launch threads which 

transfer all data and perform all work. Total runtimes are 

reported in Figure 8. As expected, total thread launch 

overhead stays constant no matter how many threads run 

concurrently. Most importantly, total DMA transfer times 

improve dramatically as more threads perform simultaneous 

transfers, showing the strength of the high bandwidth 

provided by the EIB. In fact, transfer times improve super-

linearly with the increase in threads; no doubt helped by 

caching as each thread reads the entire input dataset. 
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Figure 8: Thread launch, DMA overhead in the covariance matrix calculation. 

H. DMA Communication Overhead 

The DMA transfers on the SPEs across the EIB can be 

asynchronous, meaning that developers can initiate data 

transfers and perform other tasks while waiting for the DMA 

to finish. For very large quantities of data that must be 

streamed through the SPE, this can be effectively utilized by 

having two input buffers and streaming data into one while 

performing computation using the other. 

For the covariance matrix creation benchmark, we timed 

the runtime of the application when the SPE used synchronous 

DMA (i.e. wait for each DMA to finish before starting another) 

versus overlapping DMA with computation (i.e. initiate 

transfer into the empty buffer while computing using the full 

buffer). As shown in Figure 9, when we performed only the 

DMA transfers but no computation, the strategy to alternate 

buffers took about 10% longer, showing that having two 

DMA transfers active at once incurs some overhead costs. 

However, when we performed a small amount of 

computation in the asynchronous mode while the DMA was 

filling the empty buffer, the runtime increased by only 6%; in 

contrast, if we waiting for DMA transfers to finish before 

performing the computation (i.e. synchronous mode) runtime 

increased by 94%. Thus, this particular task showed a 0.33 

second, or 65% improvement by overlapping DMA. When the 

amount of computation was increased to perform the full 

covariance matrix calculation, the absolute improvement from 

overlapping DMA transfers increased slightly to 0.43 seconds, 

but as the total runtime was greatly increased, this was only a 

9%aadvantage. 
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Figure 9: Synchronous and overlapping DMA in the covariance matrix 

calculation 

I. XLC versus GCC 

The most recent release of the IBM Cell BE SDK includes 

a native XLC 8.1 compiler.  We evaluated it on two different 

kernels at different stages of hand optimization to investigate 

its performance advantages relative to GCC, version 4.1.1.  

The runtimes were gathered using only one SPE so the raw 

impact of the compiler would be more easily assessed. 
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Figure 10: Runtime under GCC and XLC of covariance matrix calculation 

In Figure 10, the results when comparing the two compilers 

on the covariance matrix calculation show the total runtime 

improvement from using XLC at around 12.6% before any 

hand tuning.  The major hand optimizations to this algorithm 

involved unrolling a loop four times and making use of SIMD 

vector intrinsics to operate on multiple loop iterations 

simultaneously.  This optimization resulted in the same 

speedup under both compilers, and thus the advantage for 

XLC remained consistent at 12.1%. 

Figure 11 shows results for each time step of the molecular 

dynamics kernel.  In the first case the compilers were 

optimizing a fairly straightforward port of the original code to 

the SPEs, and the code compiled with XLC ran twice as fast 

as with GCC, at 0.100 seconds per time step (versus 0.214 for 

GCC).  In fact, this is almost as fast as the comprehensively 



hand tuned GCC version, which ran in 0.097 seconds.  This 

fully tuned version still benefited from XLC, though, running 

11% faster at 0.087 seconds.  The more interesting result 

presented here, though, is that the XLC version was slower at 

an intermediate step in the hand optimization, where only 

some SIMD vectorization was done, than when no hand 

tuning was done.  In other words, some hand tuning which 

was a natural speedup for GCC actually prevented the XLC 

compiler from optimizing effectively, so developers should be 

cautioned that incomplete hand optimization may be more 

likely to result in decreased performance under XLC.  

However, it is also worthwhile to observe that in no tested 

cases did XLC result in lower absolute performance than GCC, 

demonstrating that increasing software stack maturity can 

increase the productivity of end users. 
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Figure 11: Runtime of each time step under GCC and XLC in the MD kernel. 

V. PERFORMANCE AND PRODUCTIVITY 

In the previous section, we presented performance results 

relative to the PPE-only implementation. Here, we discuss and 

compare relative performance improvement, and 

performance-to-productivity ratios, by taking into account the 

level of effort involved in optimizing our target calculations. 

Since it is not trivial to quantify the code development effort 

as it depends on a number of factors including the level of 

experience of code developer, familiarity with programming 

model, and the target system, we measure a quantifiable value 

called Source Lines of Code (SLOC), which has been 

extensively used and reported in a large number of 

productivity studies on parallel and high performance 

computing systems. 

We recognize that SLOC does fully represent the level of 

effort; for example, one might suggest that additional 

optimization can often result in fewer lines of code, and thus 

suggest it is misleading to use SLOC as a productivity metric. 

While potentially true, that effect is greatly mitigated in this 

study primarily because coding for the SPEs at all in the Cell 

processor requires adding code, not subtracting it.  As such, an 

increase in lines of code, when compared to the single-

threaded CPU version, is most certainly an increase in amount 

of effort. This is in dramatic contrast to other kinds of 

optimizations such as within homogeneous CPU code, such as 

loop reordering, which might represent a considerable effort 

for no increase in SLOC. Secondly, whereas the added code 

was, in fact, subject to these kinds of statement-level-

optimizations that have a nonlinear impact on SLOC, this does 

not invalidate the comparison, because the original single-

threaded code was subject to these same transformations. In 

other words, because we are comparing optimized code to 

optimized code, SLOC remains a useful metric of effort. 

We further divide the SLOC into effective SLOC and 

boilerplate SLOC.  The distinction is intended to quantify the 

learning curve associated with the unique architectures 

investigated here, as there is some amount of boilerplate code 

that one must write to get any application working but which 

will typically be re-used on further applications.  For example, 

code for SPE thread launches and DMA transfers on the Cell 

is highly reusable.  Hence the ‗total‘ SLOC is close to what 

one might expect when presented with the architecture for the 

first time, and the ‗effective‘ SLOC (with boilerplate code 

discounted) approximates what someone experienced with the 

platform can expect. 

Our target commodity multi-core platform is dual-core  

Intel Xeon 5100 series dual-core processor known as 

Woodcrest, which uses Intel‘s next-generation Core 2 

microarchitecture [24]. The microarchitecture supports Intel‘s 

Streaming SIMD Extension (SSE) instructions that operate on 

data values packed into 128-bit registers (e.g. four 32-bit 

values or two 64-bit values) in parallel.  The microarchitecture 

includes both a floating-point multiply unit and a floating-

point add unit. Using SIMD instructions, each of these units 

can operate on two packed double-precision values each cycle. 

The clock frequency of our target platform is 2.66 GHz.  Our 

target Intel multi-core platforms use a Linux 2.6 kernel and 

have Intel Fortran and C/C++ compilers (version 9.1). In 

addition to explicit message-passing and shared-memory 

parallelism across multiple cores, an additional level of 

parallelism is available within individual Xeon cores in form 

of SSE instructions. The Intel compilers are capable of 

identifying this parallelism with optimized flags including 

such as –fast -msse3 -parallel (-fast= -O3, -

ipo, –static). We inspected compiler reports to ensure 

that the critical loops are optimized for vector units. For 

instance, in the MD calculation, a number of small loops in 

the initialization steps and subsequent calculations are 

automatically vectorized by the compiler. The complex data 

and control dependencies in the second phase of the 

calculation however prevented the generation of optimized 

SSE instruction by the compiler.  

We measure relative performance of optimized, SSE-

enabled microprocessor (Intel Woodcrest) version and the 

optimized implementation as 

CellBE

Woodcrest
ratio Runtime

Runtime
ePerformanc  , and we measure 

the productivity by comparing the SLOC ratio of the test suite 

as 

Woodcrest

CellBE
ratio

SLOC

SLOC
SLOC  .  Although, no code modification 

is performed in the serial version, we extensively studied the 

impact of various compile-time and runtime optimization 

flags offered by the Intel C compiler. These optimizations 



included operations such as Inter Procedural Optimization 

(IPO), auto-parallelization and SSE-enabled code 

generation/vectorization. Hence, our reference runtime results 

are optimal for the single-core Woodcrest platform.  In order 

to quantify the tradeoffs between time spent tuning a code 

versus the benefit seen via shorter runtimes, we introduce 

―Relative Productivity‖ in the form of the relative 

development time productivity (RDTP) metric, defined as 

speedup divided by relative effort, i.e., the ratio of the first 

two metrics [25]. 

A. Performance 

Table I shows the performance on each application kernel 

relative to the reference SSE-enabled application performance.  

The PPE is fairly consistent, performing at 5% to 25% of the 

speed of the Woodcrest system, which is far more advanced 

than the PPE and operates at a higher clock frequency.  The 

results using one or more SPEs, though, are far more 

informative about the match of each algorithm to the Cell‘s 

architecture.  Though runtimes were not long, care was taken 

to ensure that overheads were discounted, maximizing the 

accuracy of the results and the applicability to larger problems. 

TABLE I: SPEEDUP RELATIVE TO THE WOODCREST. 

 PPE 1 SPE 8 SPEs 

Covariance Matrix 0.062 1.092 8.249 

Genetic Algorithm, Ackley 0.039 0.683 3.655 

Genetic Algorithm, TSP 0.146 0.328 2.508 

Monte Carlo  0.071 0.476 3.803 

Molecular Dynamics 0.204 1.132 2.531 

Satisfiability Solver 0.250 0.254 (2.037) 

 

The SIMD intrinsics provided an ideal mapping for the 

covariance matrix calculations. As a result, even one SPE ran 

faster than the Woodcrest system, even with SSE enabled on 

the Woodcrest.  Efficient parallelization and utilization of the 

element interconnect bus bandwidth led to an over 8x 

improvement over the Woodcrest when using all 8 SPEs. 

The performance of the genetic algorithms relative to the 

reference system can be attributed to their arithmetic intensity; 

Ackley‘s function took advantage of the SIMD nature of the 

SPEs and ran almost twenty times faster on one SPE than on 

the PPE alone, but the SSE units of the Woodcrest system are 

also optimal for this problem, and so one SPE ran at two-

thirds the speed of the Woodcrest processor.  In contrast, the 

more logic intensive traveling salesman problem ran three 

times slower on one SPE.   Both were straightforward to 

parallelize for the SPE SIMD units, resulting in the former 

running 3.7x faster and the latter running over 2.5x faster than 

the Woodcrest when using all eight SPEs. 

The two scientific algorithms, Monte Carlo and molecular 

dynamics, were able to make moderate use of SIMDization 

and optimized math libraries.  The 3D structure in the Monte 

Carlo code mapped onto the 4 unit vector pipeline – however 

with one SPE, it ran half as fast as the Woodcrest system, it 

ran nearly 4 times faster than it with all eight SPEs due to 

high-level of task parallelism.  The molecular dynamics code 

ran about the same speed as the Woodcrest system with one 

SPE, but was 2.5x faster with all eight SPEs. Since the Monte 

Carlo code depends on the random number generation 

function and the loop bounds are dynamic or depend on 

randomly generated values, we measured the rate of 

convergence for Woodcrest and our Cell implementation. We 

identified that the rate of convergence with Cell GCC and the 

Woodcrest are similar, while the XLC takes a few hundred 

extra iterations to converge. In other words, the performance 

efficiencies for the Monte Carlo code could be relatively 

higher during each iteration than the results reported in Table I. 

With no computation and no opportunity to make sure of 

SPE intrinsics, as anticipated, the SAT solver performed no 

better on the SPE than the PPE.  While this task is not 

inherently parallelizable, the eight SPEs could each be 

devoted to exploring independent areas of search space, and 

so the 8 SPE number (in parentheses) represents an ideal 8x 

speedup relative to the single SPE performance, or slightly 

better than twice the speed of the SSE-enabled, dual-core 

microprocessor system. 

B. Productivity 

In Table II, we list the Cell-to-Woodcrest ratio of source 

lines of code and the relative performance increase on the Cell 

processor for the largest tested data set sizes utilizing all SPEs.  

(For the SAT solver we show single SPE performance, and in 

parentheses the ideal performance one would achieve if eight 

SPEs were searching independent portions of the problem 

space.)  As expected, the SLOC consistently increased when 

porting to the Cell processor.  It is worthwhile to note, 

however, that there is some degree of boilerplate code, such as 

helper functions on the SPE to simplify data transfers, that 

may be more easily reused than other code written as part of 

the porting effort. As such, some SLOC ratios may be 

somewhat exaggerated, especially for very small kernels.  The 

second column shows the ―Effective‖ SLOC determined by 

discounting this boilerplate code. 

The final column in Table II, ―Relative Productivity‖, is the 

TABLE II: PERFORMANCE AND PRODUCTIVITY OF VARIOUS ALGORITHMS ON THE CELL PROCESSOR. 

 SLOC Ratio 

(Total) 

SLOC Ratio 

(Effective) 

Performance 

Ratio 

Relative 

Productivity 

Covariance Matrix 5.605 3.442 8.249 2.397 

Genetic Algorithm, Ackley 3.901 2.173 3.655 1.684 

Genetic Algorithm, TSP 2.081 1.845 2.508 1.360 

Monte Carlo 2.352 1.958 3.803 1.942 

Molecular Dynamics 2.273 1.886 2.531 1.341 

Satisfiability Solver, 1 (8) SPEs 1.996 1.464 0.254 (2.037) 0.171 (1.366) 

 



relative development time productivity (RDTP) metric defined 

above, where a higher number indicates more benefit for less 

effort.  The scientific Monte Carlo and molecular dynamics 

applications had RDTPs greater than 1, but not as high as the 

math-centric covariance matrix creation.  The less arithmetic 

intensive cognitive algorithms had some of the lowest relative 

productivities, with no more payoff than there was invested 

effort. RTDP of the two scientific calculations are consistent; 

both applications require similar amount of programming 

effort and achieve same level of productivity. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

The novel architectural features of the Cell Broadband 

Engine offer unique performance optimization opportunities 

for a range of calculations across multiple application domains; 

however, these optimization efforts must be balanced with 

user productivity. We demonstrated using a subset of 

scientific, cognitive, and imaging calculations how these 

features can be exploited to improve performance on the Cell 

architecture, and we quantified the final ‗productivity‘ costs of 

this effort. In one case, we improved performance of a 

molecular dynamics kernel by a factor of 2.5, even though at 

first, the architecture of Cell did not appear to be a 

straightforward choice. In another case, we achieved over 

eight times performance improvement for covariance matrix 

calculations, which are used in hyperspectral imaging 

algorithms. More surprisingly, these performance gains were 

achieved using a high level language – C – and a relatively 

immature software stack (compared to mainstream 

microprocessor systems). We also measured productivity of 

the Cell system as the ratio of programming effort and 

performance improvement, and we saw productivity boosts on 

the Cell system when compared to a contemporary 

homogeneous microprocessor system.  Though using a high-

level language only, for many of our applications performance 

gains were significantly greater than the relative programming 

effort under this metric. Our experience with these algorithms 

has enabled us to identify production-level applications that 

should benefit from the new architectural features of the Cell 

system. Furthermore, as Cell based massively-parallel systems 

are on the horizon [26], we plan to continue evaluating and 

optimizing large-scale scientific applications on the Cell 

system. 
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