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ABSTRACT

This paper presents the challenges encountered in and po-
tential solutions to designing scalable Software Transactional
Memory (STM) for large-scale distributed memory systems
with thousands of nodes. We introduce Global Transactional
Memory (GTM), a generalized and scalable STM design
supporting a dynamic programming model based on thread-
level parallelism, Single Process Multiple Data (SPMD) par-
allelism, and remote procedure call invocation. In addition
to this, GTM is the first STM design to support the non-
blocking abstraction, i.e. the control returns immediately
from the STM procedure call instead of waiting on its en-
tire operation to finish. This allows remote STM operations
to execute asynchronously with respect to the caller, thus
tolerating remote communication latency and exposing new
opportunities for parallelism within the context of software
transactions.

Our experimental results for Red-Black Tree, Priority Queue,
and Bank Transaction workloads exhibit good strong and
weak scaling attributes on a wide range of node counts (up
to 1024 quad-code nodes) and problem sizes (up to one bil-
lion transaction commits). The results also demonstrate the
benefits of leveraging asynchronous protocols for tolerating
latency, providing additional speedups of 1.8X, 1.75X, and
1.27X or greater over their synchronous counterparts for
these workloads.

1. INTRODUCTION

Transactional Memory (TM) [20, 24] extends the idea of
database transactions to provide a generic concurrency con-
trol mechanism for simplifying the task of parallel program-
ming and reasoning about correctness. Using TM, program-
mers identify sequences of operations that need to execute
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atomically, namely transactions, and delegate the choice of
implementation mechanism to the compiler and/or hard-
ware. Current research has successfully demonstrated nu-
merous productivity benefits (performance, programmabil-
ity, portability, and robustness) for using TM over lock-
based approaches. However, much of this early TM work
focussed on applications with processing and memory re-
quirements that fit within the capabilities of a single node.

In contrast, a large number of legacy and emerging appli-
cations, such as those targeted by the DARPA High Pro-
ductivity Computing Systems (HPCS) program [13], require
that applications scale to thousands of processors in order
to benefit from large aggregate memory and computational
capabilities. Unlike most legacy applications, most emerg-
ing applications tend to be tightly coupled, data-intensive,
and cannot be easily partitioned using Message Passing In-
terface (MPI). For example, graph [22] and combinatorial
applications tend to have dynamic communication patterns
predominantly with small messages and do not exploit lo-
cality as efficiently as some of the legacy codes.

These requirements have spurred a considerable amount of
related work in programming languages and models: Unified
Parallel C (UPC) [16], Co-Array Fortran (CAF) [28], Tita-
nium [33], and the DARPA HPCS languages (Chapel [11],
X10 [10], and Fortress [4]). Further, the research commu-
nity now believes TM may provide additional productivity
benefits for these large-scale applications. Not surprisingly,
recent languages have proposed syntatic extensions for spec-
ifying transactions, such as Chapel’s atomic construct, that
maps directly to an underlying TM runtime system.

This work tackles some of the challenges encountered in
designing scalable Software-based TM (STM) mechanisms
for distributed memory systems with thousands of nodes.
Early work in this area relied on software-based global cache-
coherence protocols and did not scale beyond tens of nodes
[21, 25]. More recently, researchers have proposed a STM
design targeting Partitioned Global Address Space (PGAS)
systems [5]. In general, these investigations have proposed a
number of novel techniques for data/metadata distribution,
communication aggregation, and locality management.

Yet, these designs tend to fall short in the following two as-
pects. First, current designs are not suitable for the newer
HPCS languages since they cannot handle the dynamic multi-
core multi-node parallelism supported by these languages.



In other words, STM designs for HPCS languages must be
able to exploit multicore processors as well as scale to thou-
sands of nodes. Second, current designs enforce a block-
ing STM abstraction. This implies, a process/thread issu-
ing a STM request (e.g. transactional load/store) waits for
the underlying runtime system to synchronously complete
the data/metadata operations necessary to satisfy the re-
quest. Thus, the performance of STM applications target-
ing SMP /multicore systems is dominated by STM algorith-
mic overheads [9]. Rigorous compiler optimizations along
with novel algorithmic and implementation strategies have
helped improve the overall performance [1, 9]. Nevertheless,
the baseline overheads of individual operations is still too
large, mainly due to the synchronous execution behavior im-
posed by the blocking abstraction, for applications to benefit
from STM-based approaches. On the other hand, in large-
scale distributed memory systems, the cost of single-node
STM metadata management becomes insignificant and per-
formance is limited by the overheads of remote communica-
tion [5]. As a matter of fact, optimizing for single-node STM
performance helps reduce the scalar overheads and does not
improve the overall scalability in these systems.

We believe that to effectively support the TM paradigm on
large-scale systems (e.g., Cray XT [3], BlueGene/P [2]), the
underlying STM runtime must support multiple levels of
parallelism and allow transactions to tolerate the long la-
tency of remote data/metadata operations. The first goal
can be achieved by supporting a flexible programming model
based on a combination of multithreading, SPMD style par-
allelism, and Remote Procedure Call (RPC) invocation. The
second goal can be achieved, for example, through a non-
blocking STM abstraction. Using such an interface, commu-
nication latency can be efficiently tolerated by having simul-
taneous data/metadata requests in-flight across the system
and allowing each of these to execute asynchronously with
respect to the process/thread issuing these requests. Com-
munication overheads will thus be overlapped either with
useful computation or other independent communication re-
quests.

The specific contributions of this paper are as follows:

1. We introduce GTM, a high-performance, library-based

STM for large-scale systems. GTM exploits asynchronous

protocols to tolerate latency and supports a dynamic
programming model based on thread-level parallelism,
SPMD parallelism, and RPC invocation.

2. We describe a prototype implementation of GTM based
on the GASNet 7] communication interface. Our im-
plementation is thread-safe and allows multiple threads
of control within a given SPMD process to perform
both synchronous and asynchronous transactional op-
erations across the entire system using the GTM in-
terface.

3. We evaluate our prototype for a variety of workloads
(Priority Queue, Red-Black Tree, and Bank Transac-
tion). In addition to exhibiting good strong and weak
scaling attributes, our experimental results illustrate
the need for leveraging asynchronous mechanisms for
tolerating latency. We observe best-case speedups as
high as 2.2X.

4. Finally, we show a clear mapping to language-level con-
structs in new languages that will benefit from the en-
hanced performance and scalability provided by GTM.
In this paper, we focus on Cray’s Chapel language and
its atomic block construct as an illustration of how
GTM will be used by future languages.

The rest of the paper is organized as follows. Section 2
provides a brief introduction to the topic. Section 3 uses
a simple example to amplify the need for leveraging asyn-
chronous mechanisms in STMs. Section 4 presents the exe-
cution model, memory model, and interface design of GTM.
This is followed by a description of our prototype implemen-
tation in Section 4.4. Section 5 presents the experimental
results, followed by a brief conclusion in Section 6.

2. BACKGROUND WORK

This section provides a brief description of the relevant back-
ground work on PGAS programming models and Transac-
tional Memory.

2.1 PGAS Models and GASnet

The Partitioned Global Address Space (PGAS) model pro-
vides the benefits of both shared memory and message-passing
style of parallel programming. Various implementations of
the PGAS model is already being supported in languages
such as UPC, CAF, and Titanium. Also, the HPCS lan-
guages have adopted the PGAS model as the underlying
memory model to tackle various productivity, portability,
and scalability challenges in future large-scale systems.

The PGAS model treats the distributed memory address
space as a single globally-addressable memory space. A
global memory location is identified using a pair of argu-
ments: rank or process identifier that uniquely identifies a
specific target process and a virtual memory address within
that process’s address space. This ordered pair logically rep-
resents a global pointer for a given address within the mem-
ory partition of the specified process and is valid throughout
the system.

The programmer is required to ensure memory consistency
when accessing or updating local/remote memory. For ex-
ample, UPC provides barriers, fences, and upc_locks for
this purpose. As mentioned earlier, the benefits of using
TM over locks has inspired the HPCS languages to provide
language support, such as the atomic construct, for specify-
ing transactions.’

GASNET is a highly-portable low-level communications li-
brary providing an scalable infrastructure based on the SPMD
model for implementing PGAS languages; it has been used
to implement almost all of the above languages.? The GAS-
Net programming interface (or API) consists of two parts:
the core API and the extended API. The core API is based

!The atomic construct in X10, unlike Chapel or Fortress, is
not optimistic and does not require STM support.
2GASNet’s SPMD execution model does not enforce the ex-
ecution model high-level language to also be SPMD. For ex-
ample, Chapel is implemented using GASNet but provides
a global-view paradigm.



on the Active Messages (AM) [32] paradigm and formu-
lates support for asynchronous RPC operations in terms
of request-reply handler mechanisms. The extended API
provides the remote data access functionality as one-sided
get/put operations.

2.2 Transactional Memory

A lot of attention has been recently focused on leveraging
Transactional Memory (TM) [20, 24] to simplify parallel
programming. TM has been shown to provide performance
advantages over locks by eliminating the unnecessary se-
rialization and allowing concurrent access to disjoint data
objects. Prior work in TM can be classified into Software
Transactional Memory (STM) [31, 29, 12, 15], Hardware
Transactional Memory (HTM) [20, 26], or Hybrid Transac-
tional Memory (HyTM) [27, 30] based on the underlying
implementation being a software-only solution, a hardware-
only solution, or a combination of both software and hard-
ware functionality, respectively.

We are not the first explore the benefits of extending TM
across nodes of a distributed memory system. Herlihy et al.
[21], Manassiev et al. [25], and Kotselidis et al. [23] proposed
STM designs based on a shared memory view of the globally
distributed memory. Adopting such a view allows porta-
bility of applications developed for cache-coherent, shared-

memory architectures. However, the reliance on global software-

based cache coherence fundamentally limits the overall scal-
ability of these implementations to tens of nodes.

Recently, Bocchino et al. proposed Cluster-STM [5], the
only other STM design (to our knowledge) to target PGAS
systems. Cluster-STM provides a strict programming model
based on SPMD-style parallelism with purely synchronous
STM interface and no support for thread-level parallelism.
At startup, Cluster-STM processes dedicate a portion of
their heap address space for use as a globally accessible
Transactional Store (TS). The interface provides transac-
tional semantics only for these T'S memory segments of the
global address space. This in turn restricts where a com-
piler/programmer using Cluster-STM procedures can allo-
cate the data accessed from within a transaction. Similar
to distributed database designs, Cluster-STM stores all the
metadata pertaining to a given transactional memory ad-
dress on the same SPMD address space as the TS segment
to which the memory location belongs. This reduces the
number of messages required to perform STM book-keeping
operations by combining them with data requests. Finally,
Cluster-STM was the first to extend the idea of leveraging
RPC mechanisms to exploit locality in distributed STM ap-
plications.

In contrast to Cluster-STM, GTM provides better scalabil-
ity and performance by providing a specific technique — an
asynchronous non-blocking protocol — to allow the runtime
to hide the high latency of remote communication opera-
tions. In addition to this, GTM also provides a more gener-
alized programming model for large-scale systems by com-
bining SPMD, multithreading, and RPC mechanisms. Fi-
nally, GTM guarantees transactional semantics for the en-
tire global address space as long as such accesses use the
appropriate GTM procedures. At the time of writing this
paper, Cluster-STM software was not readily available for a

(a) BANK TRANSCTION IN CHAPEL CODE

1 : atomic {

2 accl.balance -= amount;
3 acc2.balance += amount;
4 :}

(b) SYNCHRONOUS BLOCKING ABSTRACTION
5 : IX_BEGIN; /* Start Transaction */
6 : templ = TX_LOAD_B(tgtNodel, &accl->balance);
7
8

: templ = templ - amount;

: TX_STORE_B(tgtNodel, &accl->balance, templ);
9 : temp2 = TX_LOAD_B(tgtNode2, &acc2->balance);
10: temp2 = temp2 + amount;
11: TX_STORE_B(tgtNode2, &acc2->balance, temp2);
12: TX_COMMIT; /* Commit Transaction */

(c) ASYNCHRONOUS NON-BLOCKING ABSTRACTION
13: TX_BEGIN; /* Start Transaction */
14: TX_LOAD_NB(templ, tgtNodel, &accl->balance);
15: TX_LOAD_NB(temp2, tgtNode2, &acc2->balance);
16: TX_WAIT(templ);
17: templ = templ - amount;
18: TX_STORE_NB(tgtNodel, &accl->balance, templ);
19: TX_WAIT(temp2);
20: temp2 = temp2 + amount;
21: TX_STORE_NB(tgtNode2, &acc2->balance, temp2);
22: /* ...wait for both TX_STORE_NBs to finish */
23: TX_COMMIT; /* Commit Transaction */

Figure 1: Bank Transaction.

direct performance comparison.

Given the lack of hardware support, STM designs, including
GTM (Section 4.4), use locks to manage shared STM meta-
data [12, 15]. On the other hand, few STM designs have used
non-blocking algorithms [17, 19], enabling concurrently exe-
cuting transactions to manipulate shared metadata without
acquiring locks. These algorithms help provide obstruction-
free, lock-free, or wait-free progress guarantees at the cost
of increased implementation complexity and lower perfor-
mance. These algorithms are different from the non-blocking
STM abstractions presented in this paper. A comparative
study of these approaches is beyond the scope of this paper
and will be investigated as part of future work.

3. EXAMPLE: BANK TRANSACTION

To motivate our ideas for non-blocking mechanisms for dis-
tributed STM transactions, we use the widely-used, concise
example of a bank transfer operation. A simple bank trans-
action involves the transfer of an amount from one bank ac-
count to another, say from accl to acc2. The top-most
part of Figure 1 (lines 1-4) implements this operation using
Chapel-like language concepts.® Consider the data-structures
representing the two bank accounts is allocated on two dif-
ferent nodes, say tgtNodel and tgtNode2 respectively. Fig-
ure 1 also illustrates the use of synchronous blocking (lines
5-12) and asynchronous non-blocking (lines 13-23) abstrac-
tions for implementing the bank transaction.

The STM procedures TX_START (line 5/13) and TX_COMMIT
(line 12/23) are used to start and commit a transaction re-
spectively. TX_START allocates a read set/write set and saves
the execution state at the point right before the TX_START

3We are actively collaborating with the Chapel team to im-
plement the atomic functionality using GTM transparently.



GTM Procedures and Arguments

Description

gtm_init
gtm_exit

Initialize data-structures.
Clean-up and exit.

TDesc *tx = gtm_tx_create ()
gtm_tx_destroy (tx)
gtm_tx_begin (tx)
gtm_tx_commit (tx)
gtm_tx_abort (tx)

Returns a new transaction descriptor (tx).

Destroys a transaction descriptor identified by tx on srcProc.
Begin executing transaction identified by descriptor tx.
Attempt to commit transaction identified by tx.

Abort transaction identified by tx.

gtm_tx_load (tx, op, tgtNode, destAddr,
srcAddr, size)

gtm_tx_store (tx, op, tgtNode, srcAddr,
size, destAddr)

gtm_tx_malloc (tx, op, tgtNode, size,
addr)

gtm_tx_free (tx, op, tgtNode, addr, size)

Transactional load of size bytes starting at srcAddr on tgtNode to
address destAddr on calling node.

Transactional store of size bytes starting at srcAddr on calling node
to address destAddr on tgtNode.

Transactional allocation of size bytes on tgtNode.

Transactional free of size bytes starting at addr on workProc.

gtm_fn (op, tgtNode, fnName, inBuf, in-
Size, outBuf, outSize)

gtm_tx_fn (tx, op, tgtNode, fnName, inBuf,
inSize, outBuf, outSize)

Execute fnName on tgtNode, with input arguments passed via inBuf
(size inSize) and results returned via outBuf (size outSize).
Similar in functionality to gtm_fn but must always be called inside
transaction (identified by tx).

HDesc *op = gtm_op_create()

Returns a new handle (op) to be used for tracking asynchronous

gtm_op_destroy (op)
gtm_op_test (op)
gtm_tx_wait (tx, op)

gtm_fn_wait (op)

operations.

Destroy handle identified by op.

Return execution status of request associated with op.

Wait for an earlier non-blocking request associated with op to return
finish successfully or enclosing abort transaction.

Wait for an earlier non-blocking gtm_fn request associated with op
to finish successfully.

Table 1: List of GTM Procedures

call. The read set and write set keeps track of locations read
and written by a transaction respectively. The TX_COMMIT
attempts to commit the transaction by ensuring that the
transaction does not conflict with other concurrently ex-
ecuting transactions and then releases the read/write set.
A conflict occurs when the read/write set of a transaction
overlaps with the write set of another transaction. In case of
a conflict, only one transaction can commit, while the rest
have to restart their execution beginning at TX_START.

The STM procedure TX_LOAD_B (line 6) performs a transac-
tional load operation from the global memory (accl->balance)
on a remote node (tgtNodel) to the transaction’s private
memory (templ) synchronously with respect to the caller.
The procedure TX_STORE_B (line 8) attempts a transactional
store operation from the transaction’s private memory (temp1)
to the global memory (accl->balance) on a remote node
(tgtNodel), again in a synchronous manner. In both these
cases, the process/thread executing the transaction blocks
for the remote side to satisfy the corresponding data/metadata
request and to send an appropriate acknowledgment to the
source. Since no remote latency is overlapped, the transac-
tion spends thousands of cycles waiting for these operations
to complete.

On the other hand, the procedures TX_LOAD_NB (line 14/15)
and TX_STORE_NB (line 18/21) are non-blocking in nature,
and transfer data between the global memory space and the
temporary private storage asynchronously with respect to
the caller. This implies, the caller issues remote operations
and continues executing the rest of the code instead of wait-

ing for those requests to complete immediately. For exam-
ple, TX_LOAD_NB to tgtNodel (line 14) is overlapped with
TX_LOAD_NB to tgtNode2 (line 15). The TX_WAIT procedure
(line 16/19) ensures the remote request completes before the
relevant data is accessed. Thus, asynchronous execution of
remote requests helps tolerate long-latency communication
events by overlapping them with computation or other re-
mote communication. We intend to leverage this insight to
build scalable STM schemes for large-scale systems. We plan
to extend these concepts to reduce scalar single-node STM
overheads as part of future work.

4. GLOBAL TRANSACTIONAL MEMORY
Global Transactional Memory (GTM) is a high-performance,
library-based STM design. We describe the following as-
pects of GTM design in this section: memory/execution
model, interface functionality, and interface specification.
Note that GTM is meant as a scalable target for a com-
piler supporting language-level TM constructs, like Chapel’s
atomic construct, and not as an end-user programming model.

4.1 Memory and Execution Model

The primary execution model is based on the Single Process
Multiple Data (SPMD) model of parallelism, where a fixed
number of SPMD nodes or processes are created at startup
and no additional process creation/migration allowed later
in the execution. Unless explicitly stated, the term “node”
refers to a SPMD process and not a hardware node. Further,
source node identifies the SPMD process that initiated the
original request and target node identifies the SPMD pro-
cess on whose context the operation must be executed. The



Call semantics HDesc (op) | NDesc (tgtNode)

Local Blocking NULL Source NDesc
Local Non-Blocking Valid HDesc Source NDesc
Remote Blocking NULL Remote NDesc

Remote Non-Blocking | Valid HDesc | Remote NDesc

Table 2: GTM Call Semantics as applica-
ble to gtm_tx_load, gtm_tx_store, gtm_tx_malloc,
gtm_tx_free, gtm_tx_fn, and gtm_fn procedures. All
other GTM procedures are strictly blocking but may
implicitly generate remote messages.

request is considered local if the source node is the same as
the target node, and remote otherwise.

The memory model is based on the PGAS view of global
memory, where the global address space is partitioned among
SPMD processes as described in Section 2. Transactional se-
mantics are guaranteed across this global address space as
long as these operations occur inside the dynamic context of
a transaction and use the appropriate GTM procedure calls.

Each SPMD process may use multithreading to exploit mul-
ticore processors within a hardware node. Our prototype
implementation of the GTM library is thread-safe, and al-
lows multiple threads of control within a given SPMD pro-
cess to invoke GTM procedures across the entire system.
In general, this allows for a more dynamic execution model
than the traditional SPMD model where all processes are
expected to follow similar code execution paths.

4.2 GTM Functionality
The overall functionality of the GTM procedures (Table 1)
is listed below:

e Start, commit, and abort transactions. Transactions
must be started and committed on the same node, but
any number of the following local/remote transactional
operations can be performed within the “context” of a
transaction.

e Inside a transaction, transfer data between local /remote
transactional storage and local private memory with
transactional semantics. Further, manage transactional
storage dynamically inside a transaction by allocating
or deallocating memory locally /remotely with appro-
priate transactional semantics.

e Invoke user-level procedure calls on a target node using
transactional RPC mechanisms. This helps exploit lo-
cality by enforcing where a specific function call must
execute, and provides an alternative to fetching the
required data and executing the same function locally.

e Guarantee completion of asynchronous requests invoked
through the non-blocking equivalent of the mechanisms
listed above.

4.3 GTM Interface

The three primary descriptor data-structures exposed by
GTM procedures in Table 1 are:

(a) SYNCHRONOUS BLOCKING GTM INTERFACE

1 : TDesc *tx = gtm_tx_create();

2 gtm_tx_begin(tx); /* Start Transaction */

3 ¢ gtm_tx_load(tx, NULL, tgtNodel, &templ, &accl->balance,...);
4 : templ = templ - amount;

5 : gtm_tx_store(tx, NULL, tgtNodel, &templ,..., &accl->balance);
6 @ gtm_tx_load(tx, NULL, tgtNode2, &temp2, &acc2->balance,...);
7 . temp2 = temp2 + amount;

8 : gtm_tx_store(tx, NULL, tgtNode2, &temp2,..., &acc2->balance);
9 : gtm_tx_commit(tx); /* Commit Transaction */

10: gtm_tx_destroy(tx);

(b) ASYNCHRONOUS NON-BLOCKING GTM INTERFACE
11: TDesc *tx = gtm_tx_create();
12: HDesc *opl = gtm_op_create();
13: HDesc *op2 = gtm_op_create();
14: gtm_tx_begin(tx); /* Start Transaction */
15: gtm_tx_load(tx, , tgtNodel, &templ, &accl->balance,...);
16: gtm_tx_load(tx, , tgtNode2, &temp2, &acc2->balance,...);
17: gtm_tx_wait(tx, s
18: templ = templ - amount;

19: gtm_tx_store(tx, , tgtNodel, &templ,..., &accl->balance) A
20: gtm_tx_wait(tx, s

21: temp2 = temp2 + amount;

22: gtm_tx_store(tx, , tgtNode2, &temp2,..., &acc2->balance);
23: gtm_tx_wait(tx, s

24: gtm_tx_wait(tx, s

25: gtm_tx_commit(tx); /* Commit Transaction */
26: gtm_tx_destroy(tx);

(c) ASYNCHRONOUS NON-BLOCKING GTM RPC INTERFACE
27: TDesc *tx = gtm_tx_create();
28: HDesc *opl = gtm_op_create();
29: HDesc *op2 = gtm_op_create();
30: inBufl.acc = accl; inBufl.amount
31: inBuf2.acc = acc2; inBuf2.amount
32: gtm_tx_begin(tx);
33: gtm_tx_fn(tx, opl, tgtNodel, transfer_fn, inBufl,...);

34: gtm_tx_fn(tx, tgtNode2, transfer_fn, inBuf2,...); ——1
35: gtm_tx_wait(tx, D;

36: gtm_tx_wait(tx, s
37: gtm_tx_commit(tx);
38: gtm_tx_destroy(tx);

-amount;
amount;

39: void transfer_fn(account acc, int amount) {
40:  acc.balance += amount;
41: 3}

Figure 2: Bank Transfer Transaction (Figure 1) us-
ing GTM Procedures.

Transaction descriptor (TDesc): for holding all the pri-
vate metadata (read/write set, execution state for roll-
back etc.) that defines a transaction.

Handle descriptor (HDesc): for waiting on pending asyn-
chronous operations initiated through the non-blocking
interface. A given HDesc can track only one in-flight
request at any given time.

Node descriptor (NDesc): for representing the target node
on whose context the request must execute.

These descriptor arguments are represented by the literals
tx, op, and tgtNode respectively in Table 1. Table 2 sum-
marizes the legal usage combinations and semantics of the
HDesc and NDesc descriptor arguments. These descriptors
expose the local/remote and blocking/non-blocking call se-
mantics for most GTM procedures. We describe the various
GTM procedures in greater detail below. Figure 2 illustrates
the use of GTM procedures to implement the pseudo-code
in Figure 1. The use of GTM RPC procedures is also shown.



Note that the number of remote messages inside a transac-
tion is reduced from four to two in the RPC version. The
arrows indicate the separation between the issue and com-
pletion of the request.

4.3.1 Setup

The gtm_init and gtm_exit calls provide the initialization
and clean-up functionality. Each SPMD processes must call
gtm_init before all other GTM calls and gtm_exit after all
other GTM calls.

4.3.2 Transaction Management

The procedures gtm_tx_create and gtm_tx_destroy create
and destroy a transaction descriptor respectively. The pro-
cedures gtm_tx_begin, gtm_tx_commit, and gtm_tx_abort
start, commit, and abort transactions on the specified TDesc
argument (tx). All these procedures are strictly blocking
and local to the node on which they are initiated. How-
ever, the gtm_tx_commit and gtm_tx_abort calls may im-
plicitly initiate remote communication based on whether
the transaction performed remote operations or not. The
gtm_tx_abort additionally ensures all asynchronous requests
previously issued inside the transaction complete before the
transaction is retired (see Section 4.3.5).

Nested transactions created using dynamic pairs of gtm_tx_begin

and gtm_tx_commit calls must use the outermost transac-
tion’s TDesc descriptor. Nested transactions are handled
by subsuming all inner transactions into the context of the
outer-most transaction, namely flat nesting. In other words,
an abort at any nested level will abort the entire transaction.
A commit at any nested level will be made globally visible
only when the outer-most transaction commits successfully.

4.3.3 Transactional Data Management
GTM supports data transfer operations from/to transfer
data to/from local/remote transactional storage from/to lo-

cal private memory with appropriate semantics. The gtm_tx_load

call copies size bytes from the source address starting at
srcAddr on tgtNode to the destination address starting at

destAddr within the transaction’s local private address space.

The gtm_tx_store call copies size bytes from the source
address starting at srcAddr on the transaction’s private ad-
dress space to the destination address starting destAddr on
tgtNode’s memory partition.

GTM also supports dynamic management of the global heap
storage using the gtm_tx_malloc and gtm_tx_free. Mem-
ory allocated using gtm_tx_malloc is automatically freed on
an abort and memory freed using gtm_tx_free is made vis-
ible globally only on a successful commit. In general, these
calls are valid only inside the scope of a transaction (i.e. be-
tween a dynamic pair of gtm_tx_begin and gtm_tx_commit).
A transaction can commit only if all its data movement and
memory allocation procedures execute without conflicting
with other concurrently executing transactions. The non-
blocking equivalent of these procedures must be followed
by a gtm_tx_wait with the corresponding HDesc descriptor
(Section 4.3.5).

4.3.4 Transactional Procedure Call Invocation

The procedures gtm_tx_fn and gtm_fn are used to invoke
any user-level routines. The invoked routines themselves
may start their own transactions or in turn use the gtm_fn
call to invoke other user-level routines or a combination of
both. Table 2 lists the call semantics for these procedures.

All gtm_tx_£fn procedures must be called only inside a trans-
action and like nested transactions use the TDesc of the
outer-most transaction. A transaction can commit only
if all its gtm_tx_fn procedures execute without conflicting
with other concurrently executing transactions. The non-
blocking equivalent of the gtm_tx_£fn procedure must be fol-
lowed by a gtm_tx_wait with the corresponding TDesc and
HDesc descriptor (Section 4.3.5).

The gtm_£fn procedure helps invoke user-level routines that
start and commit transactions on the tgtNode node without

maintaining any direct dependence with other transactional /non-

transactional operations issued by the same process/thread.
It is intended to be used from the non-transactional por-
tions of the code. However, if called inside the context of
another transaction, either directly or indirectly from a rou-
tine invoked via the gtm_tx_fn procedure, it executes in-
dependently and is not affected by the eventual fate of the
transaction. The non-blocking equivalent of the gtm_£n pro-
cedure must be followed by a gtm_fn_wait with the corre-
sponding HDesc handle descriptors.

4.3.5 Handle Management

The procedures gtm_op_create and gtm_op_destroy cre-
ate and destroy HDesc descriptor handles used for tracking
asynchronous requests. During its lifetime, a given HDesc
can be reused for tracking different asynchronous requests
initiated through the non-blocking equivalent of the GTM
procedures for data transfer, memory allocation, and func-
tion call invocation. However, at any given instant each
HDesc can track only one asynchronous request in-flight and
by design each asynchronous request has a single HDesc as-
sociated with it when it is invoked.

The gtm_op_test procedure queries the execution status of
the asynchronous request associated with the op HDesc han-
dle. The call returns immediately with the one of the follow-
ing: the request executed without any conflicts, the request
conflicted with another transaction, or the request hasn’t
completed. This status information can be used to decide
if the transaction must abort, attempt to commit, or keep
executing the rest of the transaction.

The gtm_tx_wait procedure is always used inside a transac-
tion to block for the asynchronous request associated with
op to complete. If the request executed without conflicts,
then gtm_tx_wait frees the HDesc (op) for reuse in future
non-blocking GTM procedures and makes the data payload
(e.g. at destAddr in the case of gtm_tx_load) available for
usage. If the request failed due to conflicts, the gtm_tx_wait
procedure implicitly aborts the enclosing transaction. The
gtm_tx_wait also ensures that all other asynchronous re-
quests issued inside the transaction complete before the trans-
action is aborted and retried.

The gtm_fn_wait procedure is used for waiting on non-
blocking equivalent of the gtm_fn procedure and must al-



ways be called outside a transaction. If the invoked routine
(fnName) started its own transactions and committed with-
out conflicting with any other transactions, then gtm_fn_wait
frees the HDesc op for reuse in future non-blocking GTM
procedures and makes the data payload (i.e. outBuf) avail-
able for consumption.

4.4 GTM Implementation

This section describes the prototype implementation of GTM
based on the GASNet communication interface [7]. The im-
plementation is thread-safe and allows multiple threads of
control within a given SPMD process to perform transac-
tional operations across the entire system using GTM pro-
cedures. Furthermore, the prototype has been implemented
to coexist with GASNet on the same software stack layer,
allowing current PGAS languages already using GASNet to
seamlessly use GTM for implementing language-level TM
constructs. The prototype does not allow gtm_tx_fn and
gtm_fn procedures to invoke routines that initiate additional
remote communication. This is not a limitation for the
workloads presented in this paper. A number of implemen-
tation strategies are currently being evaluated for this pur-
pose.

The GTM prototype extends a number of existing STM al-
gorithms to guarantee the necessary transactional semantics
across the entire system. The baseline algorithmic design
parameters can be broadly described as: word-based [15,
5], weak isolation [12, 5], read versioning [29, 15|, deferred
update [19, 17], and eager acquire [14, 18]. Due to space rea-
sons, the implementation of various GTM procedures based
on these design choices and correctness arguments on why
asynchronous operations guarantee the right semantics is
not presented here.

GTM maintains a variety of metadata information for guar-
anteeing the necessary transactional semantics, including
but not limited to: globally shared metadata and private
per-transaction metadata.

Each node maintains a globally-accessible hash-table (22°
entries per node) for supporting transactional operations ini-
tiated by both the local node and any remote node in the
system, and is similar to ownership records (ORecs) used
in most word-based STM designs. Hash-table entries store
and manage metadata for some unique set of memory loca-
tions in the node’s address space (stack, heap, and global
section). The least significant bit (LSB) of each entry is
set if any of the memory addresses that maps onto it are
currently being written. Otherwise, the entry maintains a
63 — bit version number for the memory addresses it is re-
sponsible for. Transactional load/store/abort/commit oper-
ations modify these entries appropriately. The actual size of
this data-structure affects runtime performance only if the
rate of conflicts between concurrently executing transactions
in a given node is very high and does not limit the overall
scalability of the implementation.

Each node also maintains a dynamic pool of TDesc descrip-
tors (Section 4.3). TDesc descriptors are used in GTM pro-
cedures to identify a specific transaction and store meta-
data private to that transaction, including but not limited
to: transactionOs status, nesting level, read/write sets, and

information on completed/pending operations initiated as
part of the transaction. The read set/write set are imple-
mented as two separate list-based data-structures, and keep
track of the list of locations read/written by the transaction
along with a copy of the global metadata entry for each of
those locations. The list of pending/completed operations
help track operations initiated across the entire system and
are used to perform commit/abort sequences on those target
nodes as required.

S. RESULTS

This section presents experimental results based on three
workloads: Red-Black Tree, Priority Queue, and Bank Trans-
action. These workloads are based on benchmarks used
in prior STM work targeting multicore/SMP systems [12,
15]. Good STM benchmarks targeting large-scale systems
are required for robust performance evaluation. However,
such development efforts will not be undertaken until high-
performance STM designs are readily available in the first
place. This chicken-and-egg problem was also faced by early
TM work targeting multicore/SMP systems [24]. For exam-
ple, lock-based applications were used until recent bench-
marking efforts were undertaken to fill the gap [8]. The
results presented in this section attempts to demonstrate
the overall scalability of GTM. We are currently developing
benchmarks that exploit distributed STM designs and plan
to use GTM as an implementation platform against which
future comparisons can be made.

All experiments were performed on the Jaguar Cray XT4
system at the Oak Ridge National Laboratory. Each node
consists of a 2.1 GHz Quad-core AMD Opteron processor
with 8GB of memory and a Cray Seastar NIC. Nodes are
interconnected in a 3D torus topology, providing very low
latency messaging between nodes. All workloads were com-
piled using PGI-7.2.4 C language compiler (O3 optimiza-
tion) and GASNet Portals Conduit (version 1.12.0). Each
Jaguar XT4 quad-core node is assigned a single SPMD pro-
cess and each SPMD process is single-threaded. The prob-
lem size (S, M, L) identifies the total successful transaction
commits across the entire system. The problem is equally
distributed amongst all the nodes and each node commits
(problem size / node count) transactions. As we increase
the node count for a given problem size, each node commits
fewer transactions keeping the sum total constant. The ran-
dom number generator follows uniform distribution and is
controlled to provide comparable results across two different
runs of a given data point.

For each workload, we present two different sets of graphs.
In the Ezecution Time graphs, the X-Auzis represents the
node count and the Y-Azis represents the total execution
time for each problem size (S, L, and M). The use of block-
ing versus non-blocking GTM procedures is represented by
GTM_B and GTM_NB, respectively. On a single node,
GASNet does not differentiate asynchronous requests from
synchronous requests resulting in similar execution times
for GTM_B and GTM_NB. In the Speedup graphs, the X-
Awxis represents the node count and Y-Azis represents the
speedup (larger the better) and is calculated by the ratio of
execution time for the GTM_B case over GTM_NB case for a
given problem size and node count. For example, Speedup-S
= <GTM_B,S> | <GTM_NB,S>.



Total Execution Time in seconds (logscale)

10000 7

1000 -

100 ¢

10 4

—— <GTM_B, S> — <GTM_B, M> - <GTM_B, L> ]
—o— <GTM_NB, S> -0~ <GTM_NB, M> —A <GTM_NB, L>

Speedup (larger the better)

—o-Speedup-S -+ Speedup-M = Speedup-L

1 2 4 8

16 32 64 128 256 512 1024
Number of SPMD Nodes

2 4 8 16 32 64 128 256 512 1024
Number of SPMD Nodes
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5.1 Red-Black Tree

This workload operates on a distributed RB-tree, based on
STAMP’s version of the TL2 RB-tree code [8]. Each pro-
cess randomly picks a target node and uses the gtm_£fn pro-
cedure to invoke RB-Tree routines (insert(), delete(),
or search()) on the chosen target. These routines start
their own transactions and atomically access the local RB-
Tree on the target node using local/blocking transactional
loads/stores. Each gtm_fn results in the successful execu-
tion of a single transaction. Transactions are short running
with small read/write sets. Here, S is 22*) M is 2%%) and L
is 23° committed transactions respectively.

Figure 3 presents the execution time and speedup results for
the Red-Black Tree workload. GTM_B and GTM_NB rep-
resent the blocking and non-blocking use of the gtm_£fn pro-
cedure. The GTM_NB case allocates an array of 32 HDesc
descriptors at startup, allowing at most 32 simultaneous in-
flight asynchronous gtm_fn requests for each SPMD process.

A number of general observations can be made on the scal-
ability of the Red-Black Tree kernel based on the execution
time results. First, the execution time almost halves as the
node count is doubled, implying good strong-scaling behav-
ior. For example, the total execution time for <GTM_NB,M >
on 256 nodes (27.73 seconds) is almost half as of 128 nodes
(54.33 seconds). Second, the total execution time remains
almost the same if the node count and problems sizes are
multiplied by the same factor, implying good weak-scaling
behavior. For example, the execution time for <GTM_B,S>
on 32 nodes (29.53 seconds) is close to <GTM_B,M> on 512
nodes (28.71 seconds), given problem sizes S and M vary by
a factor of 16. It should be noted that the strong and weak
scaling trends do not hold perfectly across all the problem
and system sizes tested.

Figure 3 also illustrates the real benefits of latency toler-
ation techniques in STMs for distributed memory systems.
These techniques provide additional speedups of 2.X or more
for problem size L (Speedup-L curve), speedups of 1.83X or
more for problem size M (Speedup-M curve), and finally
speedups greater than 1.79X for problem size S (Speedup-S
curve beyond four nodes).

5.2 Priority Queue

This workload operates on a distributed priority queue im-
plemented using a sorted linked-list. The test harness is sim-
ilar to the Red-Black Tree workload. Each process randomly
picks a target node and uses the gtm_fn procedure to invoke
priority queue routines (insert(), delete(), or search())
on the chosen target. These routines start their own trans-
actions and atomically access the local priority queue on the
target node using local/blocking transactional loads/stores.
Thus, each gtm_fn results in the successful execution of a
single transaction. Transactions are long running with large
read/write sets. Here, S is 224 M is 2%, and L is 2*° com-
mitted transactions respectively. Figure 4 presents the exe-
cution time and speedup results for the Priority Queue work-
load. Here, GTM_B and GTM_NB represent the blocking
and non-blocking use of the gtm_fn procedure.

A number of general observations can be made on the scal-
ability of the Priority Queue workload based on the execu-

tion time results in Figure 4. First, good strong-scaling and
weak-scaling attributes can be observed for most problem
sizes and node counts. This implies GTM scales well on large
node counts. Second, the execution time for <GTM_B,S>
increases going from one to two nodes and is a result of
over-the-network accesses that begins to occur at two nodes.
Unlike in <GTM_NB,S>, the overhead of remote commu-
nication is fully exposed due to the lack of latency tolerance
techniques. But as we increase the node count, the work
per node decreases, resulting in better performance com-
pared to the one/two node case. Finally, <GTM_B,M> and
<GTM_NB,L> have similar execution times (on 128 nodes
it is 98.8s and 102.4s respectively). This implies leverag-
ing asynchronous protocols provide sufficient speedup to run
larger problems on smaller systems if the problem fits in the
memory of fewer nodes.

Figure 4 demonstrates the significant improvements in per-
formance that can be achieved by issuing transactional oper-
ations asynchronously. These techniques provide additional
speedups of 1.89X or more for problem size L (Speedup-
L curve), speedups of 1.75X or more for problem size M
(Speedup-M curve), and finally speedups greater than 1.76 X
for problem size S (Speedup-S curve beyond four nodes).

5.3 Bank Transaction

This workload implements the bank transfer example dis-
cussed in Section 3. Each process starts a transaction, ran-
domly picks two target nodes (one of which may be local),
and uses gtm_tx_fn to invoke the transfer_fn() routine
(Figure 2) on the chosen target nodes. Unlike the earlier
workloads, there can be at most two outstanding opera-
tions inside a transaction and one transaction per process.
In effect, these transactions are short running with small
read/write sets. Here, S is 224 M is 228 and L is 2%° com-
mitted transactions respectively.

Figure 5 presents the execution time and speedup results for
the bank transaction workload. Again good strong-scaling
and weak-scaling attributes can be observed from the exe-
cution time results. The speedup results exhibit completely
different trends compared the other workloads, with speedups
ranging between 1.27X and 1.38X. Here, a process executes
only one transaction at a time with at most two outstanding
operations inside a transaction.

5.4 Additional Discussion

Due to space reasons, this section summarizes few additional
experimental results.

Serialization Issues: Changing the number of HDesc de-
scriptors beyond 32 for the RB-Tree and Priority Queue had
no significant effect on the total execution time or speedup,
and is the result of serialization effects that occur within
the GASNet layer. For example, one source of serialization
happens at the source node where GASNet allocates a fi-
nite pool of communication buffers limiting the number of
simultaneous in-flight requests.

Multithreading: Leveraging thread-level parallelism helps in
better utilization of multicore processors by allowing mul-
tiple threads of control within a SPMD process to execute
multiple transactions concurrently. On smaller node counts,



having two threads per SPMD process resulted in better ex-
ecution times than the single thread case (presented above).
For larger node counts, the overhead of communication and
the serialization effects described earlier limited the benefits
of an additional computation thread.

Transaction Aborts: On an average, 99% of the transactions
committed successfully without aborting even a single time.
This high rate of success is due to both workload character-
istics and the serialization of AM handlers in GASNet.

6. CONCLUSIONS AND FUTURE WORK

This paper presented GTM, a high-performance, library-
based STM design for large-scale systems. GTM supports
a dynamic programming model based on thread-level paral-
lelism, SPMD parallelism, and RPC mechanisms. In addi-
tion to this, GTM leverages asynchronous protocols to tol-
erate remote communication latency. This paper also pre-
sented various details regarding semantics, interface design,
prototype implementation, and performance evaluation.

We are actively collaborating with the Chapel language group
in using GTM as the compiler target for transparently im-
plementing the atomic construct. We are also developing
large-scale STM benchmarks (e.g. unstructured adaptive
mesh, boolean satisfiability, and graph-based problems) in
Chapel to help evaluate various semantic and implementa-
tion design choices. This initial work leads us to believe
GTM is capable of providing both a scalable and generalized
solution for satisfying the needs of the Chapel language.
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