
Collective Prefetching for Parallel I/O Systems

Yong Chen
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA

cheny@ornl.gov

Philip C. Roth
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA

rothpc@ornl.gov

Abstract—Data prefetching can be beneficial for improving
parallel I/O system performance, but the amount of benefit
depends on how efficiently and swiftly prefetches can be done. In
this study, we propose a new prefetching strategy, called
collective prefetching. The idea is to exploit the correlation among
I/O accesses of multiple processes of a parallel application and
carry out prefetches collectively, instead of the traditional
strategy of carrying out prefetches by each process individually.
The rationale behind this new collective prefetching strategy is
that the concurrent processes of the same parallel application
have strong correlation with respect to their I/O requests. We
present the idea, initial design and implementation of the new
collective prefetching strategy in this study. The preliminary
experimental results show that this new collective prefetching
strategy holds promise for improving parallel I/O performance.

Keywords-parallel I/O; prefetching; collective prefetching;
MPI-IO; middleware; parallel file systems; storage; performance;
exascale computing; high-performance computing

I. MOTIVATION
High-performance computing (HPC) has crossed the

Petaflop mark and is reaching for the Exaflop range [17].
Although computing resources are making rapid progress, there
is a significant gap between processing capacity and data-
access performance. Due to this gap, available computing
devices often have to stay idle waiting for data to arrive, which
leads to a severe overall performance degradation. Figure 1
compares the single disk drive bandwidth improvement (left
vertical axis) and the computational capability improvement of
well-known supercomputers (right vertical axis) for the past
decades [14]. The computational performance improvement
rate is magnitudes higher than the bandwidth improvement rate
of disk drives. The rapid advance of processor architectures and
computing capability has put ever more pressure on sluggish
storage and I/O systems, especially for high-performance
computing where performance is key. In order to match the
rapid advance of processor architectures and the fast increasing
scale of computational capability, parallel I/O is essential to
address this problem. Many high-performance computing
applications and scientific simulations in critical areas of

research, such as nanotechnology, astrophysics, climate, and
high energy physics, are becoming more and more data
intensive [14]. These applications contain a large number of
I/O accesses, where large amounts of data are stored to and
retrieved from disks. They need high performance parallel I/O
systems to meet their demands. There is a great need for
research to improve the parallel I/O performance of high-
performance computing systems and in investigating novel and
intelligent solutions such as data prefetching.

Figure 1. FLOPS of Supercomputers v.s. Single Disk Drive Bandwidth

The fundamental idea of data prefetching is to observe data
access patterns, and then predict future accesses and fetch that
data from underlying storage device so it is available when it is
needed by the computation. It is recognized as a critical and
promising technique that improves parallel I/O access
performance for many applications [2][3][11][12][13]. Many
scientific applications can benefit from prefetching because
such applications have been shown that they access structured
data (such as two-dimensional/three-dimensional array of
single-precision/double-precision floating point data) with
predictable and regular patterns. The data are accessed
regularly and periodically for processing, and the processed
data are written into storage. In these applications, regular
patterns of I/O accesses can be identified and I/O prefetching is
effective in speeding up parallel I/O performance. However,
the effectiveness of parallel I/O prefetching depends on
carrying out prefetches efficiently and moving data swiftly.
The current I/O prefetching strategy uses an independent
approach, where each process of a parallel application issues
prefetches independently to move the required data in advance.
We term this form of I/O prefetching as an independent
prefetching strategy. In this study, we propose a new form of

This research is sponsored by the Office of Advanced Scientific
Computing Research; U.S. Department of Energy. The work was performed at
the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC
under Contract No. De-AC05-00OR22725. Accordingly, the U.S.
Government retains a non-exclusive, royalty-free license to publish or
reproduce the published form of this contribution, or allow others to do so, for
U.S. Government purposes.

I/O prefetching strategy, called collective prefetching. The
rationale for collective prefetching is that the processes of
many parallel applications have a strong correlation with each
other with respect to I/O accesses. This correlation has been
used to optimize parallel I/O performance in many strategies,
such as collective I/O [16], one of the most critical
performance optimization strategies for parallel I/O systems,
data sieving, etc. We argue that taking advantage of this
correlation is beneficial for I/O prefetching too: prefetching
should be done in a collective way with global awareness rather
an ad hoc individual and independent way. In the mean while,
the traditional concerns with prefetching strategies, such as
increased memory pressure, buffer cache pollution and
increased communication congestion, have been remedied well
by new technologies such as much larger memory at low cost,
dedicated memory portions for buffer cache, and higher
bandwidth and disk-level buffer cache. In this paper, we
introduce a collective prefetching framework to the parallel I/O
system. We illustrate the design of MPI-IO with collective
prefetching functionality, and present the implementation
strategy. Initial experimentation has shown the potential benefit
of the collective prefetching. The primary goal of this research
is to bring intelligent prefetching strategies to parallel I/O
systems to improve the I/O performance for high-performance
computing.

II. COLLECTIVE PREFETCHING FRAMEWORK
The fundamental idea of the proposed collective

prefetching is to take advantage of the correlation among I/O
accesses of multiple processes of the same parallel application
and to optimize prefetching in a collective and global-aware
way. The potential benefits of collective prefetching are three
fold.

• Collective prefetching can filter overlapping and
redundant prefetch requests from multiple processes. As
the system size increases, the likelihood of overlapping
and redundant prefetch requests increases, especially
when we consider petascale/exascale systems. These
overlapping and redundant requests considerably waste
limited I/O bandwidth. Filtering out redundant prefetch
requests helps alleviate the bottleneck due to limited I/O
bandwidth.

• For many parallel applications, each process accesses data
in a non-contiguous fashion in each iteration. However,
when combining the demand I/O request in one iteration
with the prefetch requests from future iterations, the
aggregated request often comprises a contiguous data
region. Furthermore, when combining the prefetch
requests from multiple processes with the collective
prefetching strategy, we can explore the possibility of
contiguous data region across the entire application,
making parallel I/O prefetching more efficient.

• As with collective I/O, the collective prefetching strategy
can reduce the number of parallel file system calls by
combining small and noncontiguous requests from the
same application iteration into large and contiguous ones.
Furthermore, with collective prefetching, we can combine
the prefetch requests with demand requests to improve the
parallel I/O prefetching efficiency. The reduced number
of system calls can decrease the system call overhead.

Many parallel applications exhibit strong correlation among
the I/O accesses of multiple processes [1][8][9][14][16], and
this correlation has been well exploited for collective I/O
design [16]. For instance, many parallel applications have
processes that access data with the same and constant stride.
Another representative example is that many parallel processes
access the border of data array/matrix in an overlapping way
and redundantly. In these scenarios, the proposed collective
prefetching can be of great potential in carrying out parallel I/O
prefetching in a better and more efficient way.

Parallel I/O Middleware/Library

Parallel File Systems
(PVFS, Lustre, GPFS, PanFS)

I/O Hardware, Storage Devices

Prefetch Delegates
Collective Prefetching

Caching

Application
Process

Application
Process

Application
Process

Collective I/O

Two-Phase I/O

Figure 2. Collective Prefetching Framework

Figure 2 illustrates the high-level structure of the proposed
collective prefetching framework. We introduce prefetch
delegates that explore correlations among prefetch requests.
The prefetch delegates find large contiguous data to prefetch by
combining multiple prefetch requests and carry out prefetches
collectively. For merging of multiple requests, we use the
correlation to identify overlapped data accesses. With the
global awareness brought by collective prefetching, we can
also detect redundant prefetches among multiple processes, and
utilize the precious bandwidth wisely. The implementation
methodology of prefetch delegates is similar to that of
aggregators in a collective I/O implementation, such as
ROMIO [16]. The collective prefetching component directly
interacts with the parallel I/O middleware/library to merge and
filter prefetch requests, and interacts with the caching
component to bring the prefetched data into the caching
component. The regular parallel I/O library, where
optimizations like collective I/O happen, interacts with the
caching component to take advantage of the prefetched data in
the cache buffer. If the requested data are not in the cache
buffer, the parallel I/O library still requests the data via the
underlying parallel file system. The caching component also
interacts with the parallel file system to fetch data into the
cache buffer. The parallel file system manages data on physical
storage devices and provides data access to upper layer parallel
I/O library and caching component via file system calls.

III. MPI-IO WITH COLLECTIVE PREFETCHING
In this section, we present the design and implementation

methodology of providing collective prefetching at MPI-IO.
We first briefly review MPI-IO, the ROMIO implementation of
MPI-IO, and collective I/O optimizations in this section since
collective prefetching at the MPI-IO layer is built upon them.
We then introduce the implementation of collective prefetching
in ROMIO at the MPI-IO layer.

A. MPI-IO, Collective I/O and ROMIO
MPI-IO defines an I/O access interface for parallel

applications and is a subset of the MPI-2 specification [7]. The
implementation of MPI-IO is usually a middleware connecting
parallel applications and underlying various parallel file
systems, providing the code-level portability across many
different machine architectures and operating systems. The
implementation of MPI-IO usually uses many features of MPI.
ROMIO is a popular MPI-IO implementation [16]. It provides
an abstract-device interface called ADIO for implementing the
portable parallel I/O API. It performs various optimizations,
including collective I/O and data sieving, for common access
patterns of parallel applications [16].

Collective I/O is one of the most important I/O access
optimizations for parallel applications. It stands in contrast to
independent I/O, in which each process of a parallel application
issues I/O requests independently of all other processes.
Although independent I/O is a straightforward form of I/O and
is widely used in many applications, this form of I/O is not
recommended for parallel applications because it does not
capture the complete data access information of a parallel
application. This shortcoming makes the MPI-IO middleware
loses the opportunity for optimizing I/O performance with the
knowledge of multiple parallel processes. With collective I/O,
requests from all processes of a parallel application can be
serviced together, allowing the middleware to take advantage
of correlations between those requests.

File domains

Aggregator 0 Aggregator 1

Interconnect

0 1 2 3

Process 2Process 1Process 0 Process 3

I/O phase

Comm. phase

File servers

Calc offsets
& exchange

Calc FDs &
requests

Reads

Exchange

 (a) (b)

Figure 3. (a) Collective I/O and Two-phase Implementation. (b) Two-phase
Read Protocol in ROMIO. The protocol consists of four steps: 1) each
aggregator calculates the I/O requests span and exchange; 2) partitions the
aggregated span into file domains; 3) each aggregator carries out I/O requests
for its own file domain; and 4) all aggregators send data to the requesting
processes, and each process receives its required data from corresponding
aggregators that fetch the data on behalf of it.

The most popular method of implementing collective I/O is
a two-phase strategy (and its extension - generalized two-phase
I/O [16]). This strategy separates the servicing of an I/O
request into an I/O phase and data exchange phase (or
communication phase). Figure 3 (a) shows the strategy of a
two-phase collective I/O read for four processes, where two
processes participate in the I/O phase (aggregators). The two-
phase I/O implementation has a first round of communication
to let each aggregator know the aggregated span of the I/O
requests of all processes. The implementation then partitions
the aggregated span of requests into multiple file domains (FD)
with each aggregator responsible for carrying out I/O requests
for its own file domain. This phase is called the I/O phase. In
the data exchange phase, each aggregator sends data to the
requesting processes, and each process receives its required

data from corresponding aggregators that fetch the data on
behalf of it. Figure 3 (b) illustrates the collective I/O two-phase
protocol in the ROMIO implementation.

B. MPI-IO with Collective Prefetching
Figure 4 illustrates the current design and prototype of

collective prefetching in MPI-IO based on the existing
collective I/O mechanism that is available in ROMIO and its
internal implementation, ADIO. To simplify the design and
implementation, we currently constrain prefetch delegates of
collective prefetching to be same as aggregators in the existing
collective I/O mechanism. Users can configure the number of
aggregators/prefetch delegates (APD) and specify which
processes to be the APD with user supplied hints. By default,
all processes are aggregators/prefetch delegates.

Calc offsets
& exchange

E. Calc FDs
& requests w/

prefs

Reads

A. Maintain
history

B. Predict

D. Check w/
cache buffer

ExchangeC. Place
pref data

Figure 4. An Extended Collective I/O Two-phase Protocol in ROMIO for
Collective Prefetching. The protocol is extended with four more steps: A.
Maintain history; B. Predict; C. Place prefetched data; D. Check requests with
cache buffer, and one revised step, E. Calculate file domains and requests
together with prefetch requests, to carry out collective prefetching.

To provide collective prefetching at the MPI-IO layer, the
two-phase protocol is extended with four more steps and
revised within one step. The four new steps are:

A) All APDs maintain the past I/O request history.
Currently, a history window of 8 is kept, which means the 8
most recent I/O requests (offset and length lists) are kept in
memory. The history window size can be tunable and can also
be made configurable with user hints.

B) All APDs generate prefetch requests based on
predictions. In theory, any prediction, machine learning and
data mining algorithm can be used here for generating
prefetches. To simplify the initial experimentation and to verify
the framework, we currently only provide a simple streaming
and strided prediction algorithm. These patterns are common
patterns observed in many scientific applications.

C) All APDs place prefetched data in cache buffer. With
collective prefetching, the extended two-phase protocol
separates the fetched data into two categories: demanded data
and prefetched data. The demanded data are used to satisfy the
demand requests; such data is moved to the user supplied
buffer space when issuing the I/O function call. The prefetched
data are kept in an internal cache buffer to satisfy future
requests. We use collective caching proposed by Liao et al. [8]
as the internal cache buffer. This code is implemented at ADIO
layer within the ROMIO and maintains a global buffer cache
among multiple processes at the client side. Each client

contributes part of its memory to construct the global cache
pool. We customize the collective caching for APDs instead of
for all client processes.

D) When calculating spanned request and exchanging data,
the request is checked against the cache buffer. The data
residing in the cache buffer are used to service I/O requests
directly.

E) The revised step is that when the file domain is
partitioned and calculated, the prefetch requests are combined
with demand requests to carry out collectively. In this step, the
overlapping and redundant prefetch requests are detected and
filtered. In addition, the prefetch requests of multiple prefetch
delegates are combined and partitioned together with demand
requests to form large contiguous accesses to improve the
prefetching efficiency.

Figure 5. Collective Prefetching Algorithm with An Extended Collective I/O
Two-phase Protocol

Figure 5 explains the algorithm and the flow of collective
prefetching at the MPI-IO layer. In the implementation, a
prefetch queue (PFQ) is maintained for each prefetch delegate.
This PFQ accommodates prefetch requests and is used to
combine them with demand requests and to carry them out
collectively. In addition, the requests are checked with the
offset and length lists, and the overlapping and redundant
requests are filtered out to improve prefetching efficiency and
use I/O bandwidth wisely. The fetched data are either placed
into the cache buffer if they are prefetched data to satisfy future
requests, or are supplied to the process’ requests directly if they
are demanded data.

IV. PRELIMINARY EXPERIMENTAL RESULTS AND ANALYSIS
The initial experiments were tested with a revised synthetic

pio-bench benchmark [15]. The revision simulates both
computation and I/O access behavior of parallel applications,
and the original only characterizes I/O behavior. The original
benchmark is usually used for measuring the peak I/O
performance with different access patterns, while the revision
is suitable for studying the sustained performance and the
impact of different optimization techniques. The experiments

were tested on MPICH2-1.0.5p3 release and PVFS 2.8.1 file
system. The number of processes varied from 8 to 128 in each
test. The number of APDs was configured as 8 in all tests. The
total data size accessed was fixed as 16GB in each test.

0

0.05

0.1

0.15

0.2

0.25

8 16 32 64 128

Sp
ee

du
p

Individual Prefetching Collective Prefetching

(a) With 1MB stride

0

0.05

0.1

0.15

0.2

8 16 32 64 128

Sp
ee

du
p

Individual Prefetching Collective Prefetching

(b) With 4MB stride
Figure 6. Speedup with Strided Access Pattern

The experimental tests compared the sustained bandwidth
with the standard MPI-IO library, collective prefetching and
individual prefetching respectively. Figure 6 reports the
speedup of the sustained bandwidth of collective prefetching
and individual prefetching over the standard case respectively.
These two figures cover two cases of the tests, the strided
access pattern with 1MB and 4MB stride respectively. The
sustained bandwidth was decreased as the number of processes
was increased, which was found due to the reason of increased
contention [4]. These tests showed that the collective strided
prefetching outperformed the individual strided prefetching.
The former outperformed the latter by over two fold on average.
In addition, we observe that the individual strided prefetching
is not as stable as collective strided prefetching – there is a
decreasing trend of the individual prefetching speedup, while
the collective prefetching combines prefetch requests, reduces
the contention at a large scale and achieved stable speedup.

0

0.05

0.1

0.15

0.2

8 16 32 64 128

Sp
ee

du
p

Individual Prefetching Collective Prefetching

Figure 7. Speedup with Nested Strided Access Pattern

Algorithm cpf /* Collective Prefetching at MPI-IO */
Input: I/O request offset list, I/O request length list
Output: none
Begin
1. Each aggregator maintains recent access history of

window size w
2. Aggregators/prefetch delegates run prediction or

mining algorithms on all tracked global access
history

a. Algorithms can be as streaming, strided,
Markov, or advanced mining algorithms
such as PCA/ANN

3. Generate prefetch requests and enqueue them in PFQ
4. Process requests in PFQs together with demand

accesses
5. Filter out overlapping and redundant requests
6. Perform extended two-phase I/O protocol with

prefetch requests
a. Prefetched data are kept in cache buffer

to satisfy future requests
b. Exchange data to satisfy demand requests

(move data to user buffer)
End

Figure 7 reports the result of one of the tests with nested
strided pattern with (1MB, 3MB) stride pair. It can be observed
the trend is similar to the tests with strided patterns. The
collective prefetching was more effective than individual
prefetching and was able to achieve more stable improvement.

V. RELATED WORK
Many research efforts have been devoted at caching and

prefetching optimizations for parallel I/O systems. Liao et al.
proposed collective caching at MPI-IO layer to construct a
global cache pool to enhance parallel I/O accesses performance
[8]. Nisar et al. proposed to delegate a small set of compute
nodes called I/O delegates to perform caching collectively,
resolving caching coherence and reducing lock contention [10].
Vilayannur et al. proposed discretionary caching for parallel
I/O to use compilation and runtime support to bypass caching if
the caching hurts the performance [18]. Eshel et al. designed a
cluster file system cache named Panache that exploits
parallelism in many aspects of its design and has been proven
effective and scalable as a parallel file system cache [6].
Several parallel or distributed file systems, such as PanFS [20]
and Ceph [19], also provide client-side caching to improve file
system performance.

Prefetching algorithms, such as One-Block-Lookahead
prefetching, sequential prefetching, stride prefetching, Markov
prefetching, and distance prefetching, have been widely used
for identifying patterns in memory accesses. Most of these
algorithms can be applied to prediction problem in the parallel
I/O domain also. Patterson et al. proposed informed prefetching
strategy using compiler, runtime, and access pattern
information [13]. Tran et al. proposed time series modeling to
provide efficient adaptive prefetching [11]. Recently, a more
aggressive pre-execution based prefetching, where a
prefetching thread runs ahead of main computing thread to
prefetch data, was introduced [5]. A signature based
prefetching with post-execution analysis and runtime
adjustment was introduced by Byna et al [3]. Blas et al.
proposed multiple-level caching and one-level prefetching for
Blue Gene systems based on ROMIO [2]. In this study, we
propose collective prefetching to exploit the correlation among
multiple processes, and to explore globally coordinated
prefetching for parallel I/O systems, which has not been
exploited in existing literature.

VI. CONCLUSION AND FUTURE WORK
With the tremendous advances in processor architectures

and the computational capability, I/O has been widely
recognized as the performance bottleneck for many
applications. In this research, we propose a new form of
prefetching specifically for parallel applications, called
collective prefetching, to improve parallel I/O prefetching
efficiency and to enhance parallel I/O performance. This
investigation is motivated by the fact that existing I/O
prefetching strategies are not coordinated even though parallel
applications have correlation in their I/O accesses. Although
existing parallel I/O strategies, such as collective I/O, two-
phase I/O, and data sieving, take advantage of the correlation
and have been demonstrated to be beneficial in many scenarios,
no studies have explored the correlation and optimization for
I/O prefetching strategies. This research and the proposed
collective prefetching strategy address the limitation of existing

studies. It exploits the correlation among accesses from
multiple processes of a parallel application and optimizes
parallel I/O prefetching. This is a general idea that can be
applied at many levels, such as the storage device level or
server level. In this study, we focus on the middleware level,
i.e. the MPI-IO level. We will continue working on the
investigation of collective prefetching at MPI-IO layer. In the
future, we plan to investigate the potential of collective
prefetching strategy at the server and storage level as well.

VII. ACKKNOWLEDGEMENT
The authors are grateful to Prof. Xian-He Sun of Illinois

Institute of Technology and Dr. Rajeev Thakur of Argonne
National Laboratory for their constructive and helpful
suggestions toward this study. The authors are also thankful to
Prof. Wei-Keng Liao and Prof. Alok Choudary of
Northwestern University for their collective caching code.

REFERENCES
[1] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J.

Nunez, M. Polte, M. Wingate, “PLFS: A Checkpoint Filesystem for
Parallel Applications,” SC 2009.

[2] J. G. Blas, F. Isaila, J. Carretero, R. Latham, R. Ross, “Multiple-Level
MPI File Write-Back and Prefetching for Blue Gene Systems”,
PVM/MPI 2009.

[3] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, W. Gropp, “Parallel I/O
Prefetching Using MPI File Caching and I/O Signatures,” SC 2008.

[4] Y. Chen, X.-H. Sun, R. Thakur, H. Song and H. Jin, “Improving Parallel
I/O Performance with Data Layout Awareness,” Cluster 2010.

[5] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, W. Gropp, “Hiding I/O
Latency with Pre-execution Prefetching for Parallel Applications,” SC08.

[6] M. Eshel, R. L. Haskin, D. Hildebrand, M. Naik, F. B. Schmuck, R.
Tewari, “Panache: A Parallel File System Cache for Global File
Access”, FAST 2010.

[7] W. D. Gropp, E. Lusk, and R. Thakur, Using MPI-2, MIT Press, 1999.
[8] W.K. Liao, A. Ching, K. Coloma, A. Choudhary and L. Ward, “An

Implementation and Evaluation of Client-Side File Caching for MPIIO”,
IPDPS 2007.

[9] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki and C. Jin,
“Flexible IO and Integration for Scientific Codes Through the Adaptable
IO System (ADIOS),” CLADE 2008.

[10] A. Nisar, W.-K. Liao, A. Choudhary. “Scaling Parallel I/O Performance
through I/O Delegate and Caching System”, SC 2008.

[11] N. Tran, D. A. Reed, “Automatic ARIMA Time Series Modeling for
Adaptive I/O Prefetching,” IEEE TPDS, 15(4), pp. 362-377, 2004.

[12] A. Papathanasiou and M. Scott, “Aggressive Prefetching: An Idea
Whose Time Has Come”, HotOS X, 2005.

[13] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka,
“Informed Prefetching and Caching,” SOSP 1995.

[14] R. Ross, R. Latham, M. Unangst, B. Welch, “Paralell I/O in Practice”,
tutorial in the ACM/IEEE Supercomputing Conference (SC’09), 2009.

[15] F. Shorter, “Design and Analysis of a Performance Evaluation Standard
for Parallel File Systems”, Master Thesis, Clemson University. 2003.

[16] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective I/O in
ROMIO”, Frontiers 1999.

[17] Top 500 Supercomputing Website. http://www.top500.org
[18] M. Vilayannur, A. Sivasubramaniam, M. T. Kandemir, R. Thakur, R.

Ross, “Discretionary Caching for I/O on Clusters,” Cluster Computing
9(1): 29-44, 2006.

[19] S. A. Weil, S. A. Brandt, E. L. Miller, D. D.E. Long, C. Maltzahn,
“Ceph: A Scalable, High-Performance Distributed File System,” OSDI
2006.

[20] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B.Mueller, J. Small, J.
Zelenka, and B. Zhou, “Scalable Performance of the Panasas Parallel
File System,” FAST 2008.

