
Accelerating S3D: A GPGPU Case Study

Kyle Spafford1, Jeremy Meredith1, Jeffrey Vetter1, Jacqueline Chen2, Ray
Grout2, and Ramanan Sankaran1

1 Oak Ridge National Laboratory
{spaffordkl,jsmeredith,vetter,sankaranr}@ornl.gov

2 Sandia National Laboratories
{jhchen,rwgrout}@sandia.gov

Abstract. The graphics processor (GPU) has evolved into an appeal-
ing choice for high performance computing due to its superior memory
bandwidth, raw processing power, and flexible programmability. As such,
GPUs represent an excellent platform for accelerating scientific applica-
tions. This paper explores a methodology for identifying applications
which present significant potential for acceleration. In particular, this
work focuses on experiences from accelerating S3D, a high-fidelity tur-
bulent reacting flow solver. The acceleration process is examined from a
holistic viewpoint, and includes details that arise from different phases
of the conversion. This paper also addresses the issue of floating point
accuracy and precision on the GPU, a topic of immense importance to
scientific computing. Several performance experiments are conducted,
and results are presented from the NVIDIA Tesla C1060 GPU. We gen-
eralize from our experiences to provide a roadmap for deploying existing
scientific applications on heterogeneous GPU platforms.

1 Introduction

Strong market forces from the gaming industry and increased demand for high
definition, real-time 3D graphics have been the driving forces behind the GPU’s
incredible transformation. Over the past several years, increases in the memory
bandwidth and the speed of floating point computation of GPUs have steadily
outpaced those of CPUs. In a relatively short period of time, the GPU has
evolved from an arcane, highly-specialized hardware component into a remark-
ably flexible and powerful parallel coprocessor.

1.1 GPU Hardware

Originally, GPUs were designed to perform a limited collection of operations
on a large volume of independent geometric data. These operations fell into to
only two main categories (vertex and fragment) and were highly parallel and
computationally intense, resulting in a highly specialized design with multiple
cores and small caches. As graphical tasks became more diverse, the demand for
flexibility began to influence GPU designs. GPUs transitioned from a fixed func-
tion design, to one which allowed limited programmability of its two specialized



pipelines, and eventually to an approach where all its cores were of a unified,
more flexible type, supporting much greater control from the programmer.

1.2 CUDA

The striking performance numbers of modern GPUs have resulted in a surge of
interest in general-purpose computation on graphics processing units (GPGPU).
GPGPU represents an inexpensive and power-efficient alternative to more tra-
ditional HPC platforms. In the past, there has been a substantial learning curve
associated with GPGPU, and expert knowledge was required to attain impres-
sive performance. This involved extensive modification of traditional approaches
in order to effectively scale to the large number of cores per GPU. However, as
the flexibility of the GPU has increased, there has been a welcomed decrease
in the associated learning curve of the porting process. In this study, we utilize
NVIDIA’s Compute Unified Device Architecture (CUDA), a parallel program-
ming model and software environment. CUDA exposes the power of the GPU
to the programmer through a set of high level language extensions, allowing
for existing scientific codes to be more easily transformed into GPU compatible
applications.

Fig. 1. CUDA Programming Model – Image from NVIDIA CUDA Programming
Guide[1].

Programming Model While a full introduction to CUDA is beyond the scope
of this paper, this section mentions the basic concepts required to understand
the scope of the parallelism involved. CUDA views the GPU as a highly parallel
coprocessor. Functions called kernels, are composed of a large number of threads,



which are organized into blocks. A group of blocks is known as a grid, see Figure
1. Blocks contain a fast shared memory that is only available to threads which
belong to the block, while grids have access to the global GPU memory. Typical
kernel launches involve one grid, which is composed of hundreds or thousands
of individual threads, a much higher degree of parallelism than normally occurs
with traditional parallel approaches on the CPU. This high degree of parallelism
and unique memory architecture have drastic consequences for performance,
which will be explored in a later section.

1.3 Domain and Algorithm Description

S3D is a massively parallel direct numerical solver (DNS) for the full compressible
Navier-Stokes, total energy, species and mass continuity equations coupled with
detailed chemistry[2, 3]. It is based on a high-order accurate, non-dissipative
numerical scheme solved on a three-dimensional structured Cartesian mesh.
S3D’s performance has been studied and optimized including I/O[4] and control
flow[5]. Still, further improvements allow for increased grid size, more simulation
timesteps, and more species equations. These are critical to the scientific goals
of turbulent combustion simulations in that they help achieve higher Reynolds
numbers, better statistics through larger ensembles, more complete temporal de-
velopment of a turbulent flame, and the simulation of fuels with greater chemical
complexity.

Here we assess S3D code performance and parallel scaling through simulation
of a small amplitude pressure wave propagating through the domain for a short
period of time. The test is conducted with detailed ethylene-air (C2H4) chem-
istry consisting of twenty-two chemical species and mixture-averaged molecular
transport model. Due to the detailed chemical model, the code solves for twenty-
two species equations in addition to the five fluid dynamic variables.

2 Related Work

Recent work by a number of researchers has investigated GPGPU with impres-
sive results in a variety of domains. Owens et. al. provide an excellent history of
the GPU [6], chronicling its transformation in great detail. It is not uncommon
to find researchers who achieve at least an order of magnitude improvement
over reference implementations. GPUs have been used to accelerate a variety
of application kernels, including more traditional operations like dense[7, 8, 9]
and sparse[10] linear algebra as well as scatter-gather techniques[11]. The GPU
has been successfully applied to a wide variety of fields including computational
biophysics[12], molecular dynamics[13], and medical imaging[14, 15]. Our work
takes a slightly higher level approach. While we do present performance measure-
ments from an accelerated version of S3D, we examine the acceleration process
as a whole, and endeavor to answer why certain applications perform so well on
GPUs, while others fail to achieve significant performance improvements.



3 Identifying Candidates for Acceleration

3.1 Profiling

The first step in identifying a scientific application for acceleration is to iden-
tify the performance bottlenecks. The best case scenario involves a small num-
ber of computationally intense functions which comprise most of the runtime.
This is a fairly basic requirement and is a direct consequence of Amdahl’s law.
The CPU based profiling tool Tau identified S3D’s getrates kernel as a major
bottleneck[16]. This kernel involves calculating the rates of chemical reactions
occurring in the simulation at each point in space. This computation comprises
about half of the total runtime with the current chemistry model. As the chem-
ical model becomes more complex, we anticipate that the getrates kernel will
begin to comprise a stronger majority of total runtime. As the kernel’s total per-
centage of runtime increases, the greater the potential for application speedup.
Therefore, when choosing kernels to accelerate, the first to be examined should
be the most time consuming.

3.2 Parallelism and Data Dependency

One of the main advantages of the GPU is the high number of processors, so
it follows that kernels must exhibit a high degree of parallelism to be success-
ful on a heterogenous GPU platform. While this can correspond to task-based
parallelism, GPUs have primarily been used for data-parallel operations. This
makes it difficult for GPUs to handle unstructured kernels, or those with intricate
patterns of data dependency. Indeed, in situations with irregular control flow, in-
dividual threads can become serialized, which results in performance loss. Since
the memory architecture of a GPU is dramatically different than most CPUs,
memory access times can differ by several orders of magnitude based on access
pattern and type of memory. For example, on the Tesla, an access to shared
block memory is much faster than an access to global memory. Therefore, ker-
nels must often be chosen based on memory access pattern, or restructured such
that memory access is more uniform in nature. In S3D, the getrates kernel oper-
ates on a regular three dimensional mesh, so access patterns are fairly uniform,
an easy case for the GPU.

The following psuedocode outlines the general structure of the sequential
getrates kernel. The outer three loops can be computed in parallel, since points
in the mesh are independent.

for x = 1 to length
for y = 1 to length

for z = 1 to length
for n = 1 to nspecies

grid[x][y][z][n] = F(grid[x][y][z][1:nspecies])

where length refers to the length of an edge of the cube, nspecies refers to the
number of chemical species involved, and function F is an abstraction of the
more complex chemical computations.



4 Kernel Acceleration

Once a suitable portion of the application has been identified, the acceleration
process can begin. Parallel programming is inherently more difficult than sequen-
tial programming, and developing high performance code for GPUs also incor-
porates complexity from architectural features. This “memory aware” program-
ming environment grants the programmer control over low level memory move-
ment, but demands meticulous data orchestration to maximize performance.

For S3D, the mapping between the getrates kernel and CUDA concepts is
fairly simple. Since getrates operates on a regular, three-dimensional mesh, each
point in the mesh is handled by a single thread. A block is composed of a local
region of the mesh. Block size was chosen to be 256, based on the available
number of registers per GPU core, in order to maximize occupancy.

During the development of the accelerated version of the getrates kernel, the
memory access pattern was the most important factor for performance. When
threads read or write memory in a highly parallel fashion, CUDA coalesces the
memory access into a single operation, which has a dramatic and beneficial effect
on performance. The optimized versions of the getrates kernel also use batched
memory transfers and exploit block shared memory. This attention to detail pays
off–accelerated versions of the getrates kernel exhibit promising speedups over
the serial CPU version: up to 14.6x for the single precision version, and 9.3x for
the double precision version for a single iteration of the kernel, see Figure 2. The
serial CPU version was measured on an Intel Harpertown running at 2.5Ghz
with 8GB of RAM.

Fig. 2. Accelerated Kernel Results

5 Accuracy

While the evolution of the GPU has been remarkable, architectural remnants
of its original, specialized function remain. Perhaps the most relevant of these



to the scientific community is the bias towards single precision floating point
computations. Single precision arithmetic was sufficient for the GPU’s original
tasks (rasterization, etc.). GPU benchmarking traditionally involved only these
single precision computations, and performance demands have clearly shaped
the GPU’s allocation of hardware resources. Many GPUs are incapable of double
precision, and those that are typically pay a high performance cost. This cost
generally arises from the differing number of floating point units, and it is almost
always more than the performance difference between single and double precision
on a traditional CPU. In S3D, the cost can clearly be seen in the performance
difference in the single versus double precision versions of the getrates kernel.

From a performance standpoint, single precision computations are favorable
compared to double precision, but the computations in scientific applications
can be extremely sensitive to accuracy. Moreover, some double precision opera-
tions are not always equivalent on the CPU and GPU. GPUs may sacrifice fully
IEEE compliant floating point operations for greater performance. For example,
scientific applications frequently make extensive use of transcendental functions
(sin, cos, etc.), and the Tesla’s hardware intrinsics for these functions are faster,
but less accurate than their CPU counterparts.

5.1 Accuracy in S3D

In S3D, the reaction rates calculated by the getrates kernel are integrated over
time as the simulation progresses, and error from inaccurate reaction rates com-
pounds and propagates to other simulation variables. While this is the first com-
parison of double and single precision versions of S3D, the issue of accuracy has
been previously studied, and some upper bounds for error are known. S3D has an
internal monitor for the estimated error from integration, and can take smaller
timesteps in an effort to improve accuracy. Figure 3 shows the estimated error
from integration versus simulation time. In this graph, the CPU and GPU DP
versions quickly begin to agree, while the single precision version is much more
erratic. In both double precision versions, the internal mechanism for timestep
control succeeds in settling on a timestep of appropriate size. The single preci-
sion version has a much weaker guarantee on accuracy, and the monitor has a
difficult time controlling the timestep, oscillating between large timesteps with
high error (sometimes beyond the acceptable bounds), and short timesteps with
very low error. The increased number of timesteps required by the GPU single
precision version will have consequences for performance, which will be explored
in a later section.

The error from low precision can also be observed in simulation variables
such as temperature (see Figure 4) or in chemical species, such as H2O2(see
Figure 5). The current test essentially simulates a rapid ignition, and a relatively
significant time gap can be seen between the rapid rise in temperature in the
GPU single precision kernel versus the other versions. In the sensitive time scale
of ignition, this gap represents a serious error. In Figure 5, the error is much more
pronounced, as the single precision version fails to predict the sudden decrease
in H2O2 which occurs roughly at time 4.00E-04.



Fig. 3. Estimated Integrated Error. 1.00E-03 is the upper bound on acceptable error.
The GPU DP and CPU versions completely overlap beginning roughly at time 4.00E-
04.

A similar trend can be observed throughout many different simulation vari-
ables in S3D. The CPU version tends to agree almost perfectly with the GPU
double precision version, while the single precision version deviates substantially.
Consequently, while the single precision version is much faster, it may be insuf-
ficient for sensitive simulations.

6 S3D Performance Results

In an ideal setting, the chosen kernel would strongly dominate the runtime of
the application. However, in S3D, the getrates kernel comprises roughly half of
the total runtime, with some variation based on problem size. Table 1 shows how
speedup in the getrates kernel scales to whole-code performance improvements.
Amdahl’s limit is the theoretical upper bound on speedup, s∞ ≈ 1

1−fa
, where

fa is the fraction of runtime that is accelerated.
In S3D, there is a complex relationship between performance and accuracy.

When inaccuracy is detected, timestep size is reduced in an attempt to decrease
error, see Figure 6. Since single precision is less accurate, one can see erratic
timestep sizes. This means that given the same number of timesteps, a highly
accurate computation can simulate more time. In order to truly measure perfor-
mance, it is important to normalize the wallclock time to account for this effect.
In Table 1, normalized cost is the wallclock time it takes to simulate one nanosec-
ond at one point in space. While the getrates kernel can be executed faster in
single precision, the lack of accuracy causes the simulation to take very small
timesteps. In some cases, the loss of accuracy in single precision calculations
causes the total amount of simulated time to decrease, potentially eliminating
any performance benefits.



Fig. 4. Simulation temperature. Note the time gap of the increase in temperature at
time roughly 3.00E-04. This corresponds to a delay in the prediction of ignition time.

Table 1. Performance Results - Normalized cost is the average time it takes to simulate
a single point in space for one nanosecond. S - Single Precision D - Double Precision

Size Kernel Speedup % of Amdahl’s Actual Speedup Normalized Cost (ms)
S D Total Limit S D CPU GPU DP GPU SP

32 13.05x 8.17x 46.01% 1.82x 1.78x 1.61x 16.7 10.44 9.49
60 14.56x 9.32x 58.02% 2.38x 2.32x 2.27x 13.53 5.95 5.97

7 Conclusions

Graphics processors are rapidly emerging as a viable platform for high perfor-
mance scientific computing. Improvements in the programming environments
and libraries for these devices are making them an appealing, cost-effective way
to increase application performance. While the popularity of these devices has
surged, GPUs may not be appropriate for all applications. They offer the great-
est benefit to applications with well structured, data-parallel kernels. Our study
has described the strengths of GPUs, and provided insights from our experi-
ence in accelerating S3D. We have also examined one of the most important
aspect of GPUs for the scientific community, accuracy. The differences in ac-
curacy between GPU and IEEE arithmetic resulted in drastic consequences for
correctness in S3D. Despite this relative weakness, the heterogeneous GPU ver-
sion of the kernel still manages to outperform the more traditional CPU version
and produce high quality results in a real scientific application.

References

[1] NVIDIA: CUDA programming guide 2.0 downloaded December 1, 2008.



Fig. 5. Chemical Species H2O2. The CPU and GPU DP versions completely agree,
while the GPU SP version significantly deviates, and fails to identify the dip at time
4.00E-O4

www.nvidia.com/object/cudadevelop.html

[2] Hawkes, E.R., Sankaran, R., Sutherland, J.C., Chen, J.H.: Direct numerical sim-
ulation of turbulent combustion: fundamental insights towards predictive models.
Journal of Physics: Conference Series 16 (2005) 65–79

[3] Sutherland, J.C.: Evaluation of mixing and reaction models for large-eddy sim-
ulation of nonpremixed combustion using direct numerical simulation. Dept of
Chemical and Fuels Engineering, PhD, University of Utah (2004)

[4] Yu, W., Vetter, J., Oral, H.: Performance characterization and optimization of
parallel I/O on the Cray XT. Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on (April 2008) 1–11

[5] Mellor-Crummey, J.: Harnessing the power of emerging petascale platforms. Jour-
nal of Physics: Conference Series 78(1) (July 2007) 12–48

[6] Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., Phillips, J.: GPU
computing. Proceedings of the IEEE 96(5) (May 2008) 879–899

[7] Barrachina, S., Castillo, M., Igual, F., Mayo, R.: Evaluation and tuning of the
level 3 CUBLAS for graphics processors. Proceedings of the IEEE Symposium on
Parallel and Distributed Processing (IPDPS) (April 2008) 1–8

[8] Fujimoto, N.: Faster matrix-vector multiplication on GeForce 8800GTX. Parallel
and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium
on (April 2008) 1–8

[9] Cummins, G., Adams, R., Newell, T.: Scientific computation through a GPU.
Southeastcon, 2008. IEEE (April 2008) 244–246

[10] Bolz, J., Farmer, I., Grinspun, E., Schröoder, P.: Sparse matrix solvers on the
GPU: conjugate gradients and multigrid. In: SIGGRAPH ’03: ACM SIGGRAPH
2003 Papers, New York, NY, USA, ACM (2003) 917–924

[11] He, B., Govindaraju, N.K., Luo, Q., Smith, B.: Efficient gather and scatter op-
erations on graphics processors. In: SC ’07: Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, New York, NY, USA, ACM (2007) 1–12



Fig. 6. Timestep Size – This graph shows the size of the timesteps taken as the rapid ig-
nition simulation progressed. S3D reduces the timestep size when it detects integration
inaccuracy. While the double precision versions take timesteps of roughly equivalent
size, the single precision version quickly reduces timestep size in an attempt to preserve
accuracy.

[12] Stone, J.E., Phillips, J.C., Freddolino, P.L., Hardy, D.J., Trabuco, L.G., Schul-
ten, K.: Accelerating molecular modeling applications with graphics processors.
Journal of Computational Chemistry 28 (January 2005) 2618–2640

[13] Rodrigues, C.I., Hardy, D.J., Stone, J.E., Schulten, K., Hwu, W.M.W.: GPU
acceleration of cutoff pair potentials for molecular modeling applications. In: CF
’08: Proceedings of the 2008 conference on Computing frontiers, New York, NY,
USA, ACM (2008) 273–282

[14] Kruger, J., Westermann, R.: Acceleration techniques for GPU-based volume ren-
dering. Visualization, 2003. VIS 2003. IEEE (Oct. 2003) 287–292

[15] Mueller, K., Xu, F.: Practical considerations for GPU-accelerated CT. Biomedical
Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on (April
2006) 1184–1187

[16] Shende, S., Malony, A.D., Cuny, J., Beckman, P., Karmesin, S., Lindlan, K.:
Portable profiling and tracing for parallel, scientific applications using C++. In:
SPDT ’98: Proceedings of the SIGMETRICS symposium on Parallel and dis-
tributed tools, New York, NY, USA, ACM (1998) 134–145


