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Abstract—Staggering computational and algorithmic advances
in recent years now make possible systematic Quantum Monte
Carlo (QMC) simulations of high temperature (high-Tc) su-
perconductivity in a microscopic model, the two dimensional
(2D) Hubbard model, with parameters relevant to the cuprate
materials. Here we report the algorithmic and computational
advances that enable us to study the effect of disorder and
nano-scale inhomogeneities on the pair-formation and the su-
perconducting transition temperature necessary to understand
real materials. The simulation code is written with a generic
and extensible approach and is tuned to perform well at scale.
Significant algorithmic improvements have been made to make
effective use of current supercomputing architectures. By im-
plementing delayed Monte Carlo updates and a mixed single-
/double precision mode, we are able to dramatically increase the
efficiency of the code. On the Cray XT4 systems of the Oak Ridge
National Laboratory (ORNL), for example, we currently run
production jobs on 31 thousand processors and thereby routinely
achieve a sustained performance that exceeds 200 TFlop/s. On
a system with 49 thousand processors we achieved a sustained
performance of 409 TFlop/s. We present a study of how random
disorder in the effective Coulomb interaction strength affects the
superconducting transition temperature in the Hubbard model.
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I. INTRODUCTION

Superconductors are materials that conduct electricity with

zero resistance below a certain critical temperature Tc, and,

at the same time, show perfect diamagnetic behavior, i.e.,

perfectly repel magnetic fields. Given the intricacies of the

current electric grid where electricity is transmitted at tens

or hundred of kilovolts to avoid unacceptable energy losses,

as well as the desperate need for new low-power paradigms

in microelectronics, it is difficult to overstate the potential

impact of a major breakthrough in superconductivity research.

The critical temperature in conventional superconductors is a

few tens of degree Kelvin (or less) and electronic applications

of these superconductors require cooling with liquid helium.

Expectations rose very high some two decades ago, with the

discovery of superconductivity at transition temperatures as

high as 150K in the cuprates – only liquid nitrogen was

required to cool the materials below Tc. But despite intense

experimental and theoretical studies, cuprates have not found

widespread use in technology as was expected at the time of

their discovery. The highest known transition temperatures are

still far below room temperature, and other material limitations

such as poor ductility or naturally occurring grain boundaries

that limit the critical currents have impaired the usefulness of

the cuprates. Unlike other classes of materials that are well

understood theoretically and where a systematic knowledge

driven materials design and development has led to technol-

ogy revolutions (e.g., semiconductors in microelectronics or

magnetic heterostructures in spintronics), there is presently

no generally accepted theory of the origin of the pairing

interaction in the superconducting state or the anomalous

normal state properties of the cuprates.

The essential features of the cuprates were recognized

soon after their discovery (3) in 1986 and summarized in

a paper by Anderson in 1987 (1): (1) the structural units

are the two-dimensional CuO2 planes (Fig. 1a), and (2) the

superconductivity is created by doping these planes that would

otherwise be a Mott insulator with charge carriers (electrons or

holes). Zhang and Rice pointed out (20) that due to the strong

on-site coulomb repulsion, these carriers form a localized

singlet state consisting of the Cu dx2−y2 orbital hybridized

with the respective px and py orbitals of the neighboring O

atoms (Fig. 1b). These considerations lead to a remarkably

simple model description, the two-dimensional (2D) Hubbard

Model, in which the carriers can hop between their nearest
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neighbor sites on a square lattice with transition amplitude t
and interact through an onsite Coulomb repulsion U (Fig. 1c).

Due to the strength of the Coulomb repulsion (U ∼ 5 − 10
eV � 8t), the sites will be mostly singly occupied, hence

leading to the formation of atomic moments due to the

spin 1/2 character of the carriers. Furthermore, because of

the Pauli exclusion principle for Fermions, which precludes

double occupation of a site with two carriers of the same spin

orientation, the magnetic moments on neighboring sites will

tend to order antiferromagnetically in order to minimize the

kinetic energy. At the doping level where superconductivity

is seen experimentally, this antiferromagnetic arrangement is

frustrated and no long-range order exists. However, neutron

scattering experiments clearly indicate that antiferromagnetic

fluctuations exist over a length scale of a few nanometers. It

has been suggested that these antiferromagnetic fluctuations

play a key role in the formations of the Cooper pairs for the

superconducting state (4; 17; 16). Superconductivity itself is

a macroscopic effect in which order 1023 paired carriers form

a coherent quantum state that can be observed in wires that

reach hundreds of meters in length.

The inherent multi-scale nature of the problem – atomic

scale coulomb repulsion and moment formation, nano-scale

antiferromagnetic fluctuations (and probably other nano-scale

properties of the materials discussed below), and macroscopic

quantum coherence – has made the solution of the 2D Hubbard

Model for the cuprates such a difficult endeavor. Over two

decades, many thousands of papers have been published on

the subject, but only recently, with the advent of multi-

teraflop/s computers and new computational algorithms that

can systematically tackle the multi scale problem, we see

numerical studies that can answer fundamental questions about

the pairing mechanism and high temperature superconductiv-

ity.

The first simulations to show evidence that the 2D Hubbard

model with parameters t and U that are representative of the

cuprates do describe high-temperature superconductivity (15),

were done on the Cray X1E system of the NCCS in 2005. The

simulations employed a quantum cluster method known as the

Dynamical Cluster Approximation (DCA) (7; 10) in conjunc-

tion with the Hirsch-Fye QMC (HF-QMC) algorithm (8). The

approach to the multi-scale problem in these simulations is to

solve the quantum many-body problem at the atomic and nano-

scale exactly with QMC, and to account for the macroscopic

length scales within a mean-field approximation by self-

consistently and coherently embedding the cluster solution into

an effective medium. In the limit of infinitely large clusters,

the DCA/QMC recovers the exact solution. On the NCCS

Cray X1E with its 18 TFlop/s peak performance where the

codes ran at about 50 percent efficiency, the computer power

sufficed to simulate clusters of up to 36 atoms, reaching

length scales in the QMC part of the simulation that are

large enough to converge the computed values of Tc (15).

Subsequent simulations with the same method performed a

systematic analysis of the pairing mechanism in the Hubbard

model (19; 11; 12; 13; 14) and confirmed in an unbiased way

the earlier arguments that the pairing interaction is due to spin

fluctuations.

Fig. 1. (a) The crystal structure of La2CuO4, a typical cuprate, where black,
red, and blue spheres represent Cu, O, and La, respectively. (b) The CuO2

plane with outlines of the Cu dx2−y2 and O px and py orbitals. Also shown
in full color is the Zhang-Rice singlet state that forms from hybridization
of the Cu orbitals with the neighboring O orbitals (see text). (c) Pictorial
representation of the single band 2D Hubbard model with on- site Coulomb
repulsion U and inter-site hopping t.

In the present paper we discuss the DCA++ code that im-

plements the DCA/QMC and other quantum cluster methods

in the framework of generic programming techniques and

allows for effective extensions of the models. In particular,

we focus on an extension of the model that will allow us to

study models with random disorder or other types of nano-

scale variations of the effective coulomb interaction. These

extensions are motivated by recent experiments that have

found spatial variations of Tc and even identified local regions

in which the signatures of superconductivity (superconducting

gap in the excitation spectrum) persisted to temperatures well

above the macroscopically measured Tc (5; 18). With new

and much larger supercomputers scheduled to come online in

the coming year, a systematic study of the disorder effects

on large clusters will be possible. In section 2 of this paper

we present an overview of the DCA/QMC algorithm that

should give the reader enough background to understand the

generic implementation in the DCA++ code. We also discuss

an algorithmic improvement that dramatically enhances the

performance on scalar processors and allows us to perform

simulations of large clusters on current Intel and AMD pro-

cessors. In section 3 we discuss a series of simulation results

generated with the DCA++ code and that unequivocally show

a rather strong disorder dependence of the superconducting

transition temperature. In section 4 we discuss implementation

and performance characteristics of the production runs. On

the Cray XT4 systems at ORNL with its 420TFlop/s peak

performance, we have found the code to perform at a sustained

double precision performance in excess of 200 Teraflop/s.

When the QMC parts of the calculations are running in single



precision accuracy, we find that without significant reduction
in accuracy of the results, the speed of the calculations can

be increased by up to a factor 2 and the mixed precision code

runs at 409 Teraflop/s equivalent sustained performance.

II. OVERVIEW OF THE DCA/QMC METHOD

A comprehensive review of quantum cluster methods and

the DCA can be found in a recent review article (10), and a de-

tailed description of the DCA/QMC algorithm has been given

in reference (9). We limit our discussion of the DCA/QMC

method here to a brief overview.

A. Green functions of many-body theory and the Hubbard
model with disorder

We are interested here in the 2D Hubbard model with atomic

scale disorder in the Coulomb interaction parameter U . The

Hamiltonian operator of a particular distribution ν of onsite

interaction {U (ν)
i } is conveniently written in second quantized

notation

H(ν) = −
∑
ijσ

tijc
†
iσcjσ +

∑
i

U
(ν)
i ni↑ni↓, (1)

where the operator c†iσ (cjσ) creates (annihilates) a particle

with spin σ on site i, tij is the hopping amplitude between

sites, and niσ = c†iσciσ is the density operator. The first part

of this Hamiltonian is usually refered to as the non-interacting

part, H0 = −∑
ij σ tijc

†
iσcjσ. The Hamiltonian operates on

wave functions in Fock space, and in some problems of

quantum chemistry and nuclear physics, one can attempt to

solve directly for its eigenfunctions (2). This is not practical

in condensed matter physics, where one usually considers

systems with exorbitant numbers of electrons (quantum many

particle problem), and one typically resorts to methods used

in quantum field theory. One usually studies the single particle

Green function of many-body theory, which may be written

as

Gσ(xi, τ ; xj , τ
′) = −

〈
Tciσ(τ)c†jσ(τ ′)

〉
, (2)

where the brackets mean a thermodynamic average over all

states in Fock space, xi is the position of site i, τ is the

time variable, and T is the time ordering operator. Note that

in the Hamiltonian, the hopping and interaction processes are

assumed to be instantaneous. The Green’s function is some-

times called a propagator, since it describes how a particle that

is introduced into the system at time τ ′ on site j propagates in

the presence of all other particles to site i where it is removed

at time τ . The particular meaning of the time variable depends

on the context in which Green’s functions are used. We are

using a statistical physics context where τ is an imaginary time

variable that represents the inverse temperature of the system

and the Green function only depends on one time variable due

to symmetry. The Green’s function of a non-interacting system

is identical to the resolvent of the operator H0, which, after

taking the lattice Fourier transform, can be written as

G0(k, z) = (z − ε0(k))−1, (3)

where ε0(k) is the spectrum of the lattice Fourier transformed

non-interacting Hamiltonian H0(k).
The lattice Fourier transformed Green function of the inter-

acting system, averaged over all disorder configurations, can

formally be written as

G(k, z) = [z − ε0(k)− Σ(k, z)]−1
, (4)

where the self-energy Σ(k, z) encapsulates all the quantum

correlations of the many-body system (note that we have

dropped the spin variable since G↑ = G↓) and has to be

computed in some approximate form. In the present case,

the vectors k are two-dimensional and since G(k, z) has the

periodicity of the lattice, k can be limited to the first Brillouin

zone or the unit cell of the reciprocal lattice. G(k, z) is always

an analytic function of the complex variable z in the upper and

lower half plane and it is important that any approximation

scheme to compute the self-energy preserves this property of

the Green function.

B. The Dynamical Cluster Approximation

After this very brief introduction to the notation and es-

sential quantities of quantum many-body theory, we are in

a position to discuss how the self-energy is computed in the

DCA. The basic idea is that quantum correlations only have to

be treated explicitly within a cluster of Nc atoms, and that all

correlations outside this cluster can be treated in a mean-field

way, that is, the system outside the cluster is represented by

an effective medium. In this approximation, the self-energy is

fully described on the set of coarse grained k-points K, which

correspond to the lattice Fourier transform of the cluster. There

are Nc such k-points in the Brillouin zone and we introduce

M(k), a function that maps every k-point of the Brillouin

zone onto the nearest coarse grained point K. Within the DCA,

and assuming that the self-energy Σ(K, z) can be somehow

computed, the Green function can be written as

G(k, z) = [z − ε0(k)− Σ(M(k), z)]−1
. (5)

In practice, this function is represented on a discrete but dense

uniform mesh of N k-points in the Brillouin zone. In the first

iteration of the DCA/QMC algorithm, one usually starts out

by setting Σ to zero or by using a self-energy that has been

computed with a computationally inexpensive approximation

(such as second order perturbation theory). One now proceeds

by computing the Coarse Grained Green function

Ḡ(K, z) =
Nc

N

∑
k=K+k̃

[
z − ε0(K + k̃)− Σ(K, z)

]−1

,(6)

and with it computes the cluster excluded Green function of

the effective medium

G′0(K, z) =
[
Ḡ−1(K, z) + Σ(K, z)

]−1
. (7)

Note that this cluster excluded Green function is only equal

to the non-interacting Green function G0(k, z) of the previous

subsection in the limit of an infinite cluster size, i.e., when

Nc = N → ∞ and the self-energy is exact. However, if we



lattice Fourier transform G′0(K, z) into real space, the resulting

real space cluster excluded Green function G′0(Xi − Xj , z)
plays the role of the non-interacting real space Green function

of the embedded cluster [z − H̃0(Xi, Xj ; z)]−1. (Note that

when we solve the quantum many-body problem on the cluster

the {Xi} denote the sites of the cluster and are therefore a

subset of {xi}). Here, H̃0(Xi, Xj ; z) describes the dynamics

of the electrons on the non-interacting cluster and their time-

dependent excursions into the effective medium. The next step

in the DCA algorithm is to use an adequate quantum cluster

solver to determine the cluster Green function G
(ν)
c (Xi, Xj , z)

for a particular configuration {U (ν)
i } of on-site Coulomb repul-

sions. The configurationally averaged cluster Green function

is given by

Gc(Xi −Xj , z) =
1

Nd

Nd∑
ν=1

G(ν)
c (Xi, Xj , z). (8)

Note that because the cluster excluded Green’s function is

the lattice Fourier transform and since we average over all

configurations (for example if we have n possible values of

U per site we would have Nd = nNc configurations {U (ν)
i }),

the cluster excluded Green function will have periodic bound-

ary conditions and can be lattice Fourier transformed into

Gc(K, z). The new estimate to the self energy is given by

Σ(K, z) = G−1
0 (K, z)−G−1

c (K, z), (9)

and can be used to compute a new cluster excluded Green

function with equation (7). The DCA method is iterated until

the self energy converges. With a converged self-energy, one

can compute the Green function G(k, z) of the system as well

as many other quantities needed to analyze the solutions of

the Hubbard model.

C. A new Hirsch-Fye QMC cluster solver algorithm with
delayed updates

The quantum many-body problem that has to be solved on

the cluster is given by the cluster excluded Green function.

It describes the non-interacting part of the cluster and the

coupling to the host lattice, as well as the interacting part

of the Hubbard Hamiltonian

H
(ν)
I =

∑
i

U
(ν)
i ni↑ni↓ (10)

for a particular set of local interaction parameters {U (ν)
i }. One

can formulate the solution to the cluster problem in terms of

Green functions, but a formulation of the problem in terms of a

Hamiltonian is complicated by the fact that the non-interacting

equivalent is only known in terms of G′0(Xi−Xj , z). For the

present purpose, we have implemented a modified version of

the HF-QMC algorithm (8), but would like to stress that the

DCA will work with any many-body technique that can be

cast into an action based approach. The modifications to the

conventional HF-QMC algorithm are necessary to achieve high

performance on most supercomputers today. A straightforward

implementation is memory bandwidth limited with few FLOPs

per memory access.

The HF-QMC algorithm employs a path integral formalism

on a space-(imaginary)time lattice of size Nt = Nc × Nl,

where Nl represents the number of time slices (time steps)

used in the path integral. The canonical Hubbard-Stratonovich

(HS) transformation is used to replace the quadratic term in

niσ of the interaction with a linear term and an additional

integral over an auxiliary degree of freedom (known as the

HS field) at every point in space-time. Importance sampling is

used to integrate over the HS field configurations in a Markov

process. The acceptance criterion for the proposed new HS

field configurations in the HF algorithm consists of a ratio

of determinants of the Green function, and can be computed

very efficiently. However, when a HS spin flip at position pk is

accepted, the Nt×Nt Green’s function matrix at step k (matrix

Gk) has to be updated according to the rank one vector outer

product update

Gk+1 = Gk + αk(Gk(:, pk)− epk
)Gk(pk, :) (11)

= Gk + akbt
k (12)

= G0 + a0bt
0 + a1bt

1 + · · ·+ akbt
k (13)

where epk
is the pk-th column of the identity matrix, ak =

αk(Gk(:, pk) − epk
) is computed from a column of Gk, bk

from a row of Gk, and scalar αk depends the diagonal entry

αk =
γk

1 + (1−Gk(pk, pk))γk
(14)

with another scalar γk that does not depend on the Green

function matrix. The transition probability R from state k
to state k + 1 is given by the ratio of determinants of the

corresponding inverse Green’s functions and for a single spin-

flip update reduces to

R =
det(Gk)

det(Gk+1)
= 1 + γk(1−Gk(pk, pk)) . (15)

Thus, R depends only on Gk(pk, pk), the diagonal entry of

Gk at position pk.

The usual computation of R is obtained by first updating

the Green’s function according to Eq. (11) (BLAS xGER

operation) and then computing R using Eq. (15). This requires

O(N2
t ) computations per step for the Green’s function matrix

update.

By realizing that only the determinant ratio R and hence a

diagonal entry of Gk is needed to accept or reject a Monte

Carlo move, it is possible to delay multiple rank-1 updates to

perform a more efficient rank-k update to Gk. The diagonal

entries of Gk are updated separately in vector dk to reduce

the complexity of calculating the ratio R. At the k-step, row

pk and column pk of Gk are regenerated as

colk = col0 +
k−1∑
i=0

aibi(pi) (16)

rowk = row0 +
k−1∑
i=0

ai(pi)bi . (17)



The diagonal entries of the Green’s function matrix are then

obtained from ak = αk(colk − epk
), bk = rowk and

dk+1(p) = Gk+1(p, p) = dk(p)+ak(p)bk(p), for p = 1 : Nt.

(18)

The computational complexity of calculating the transition

probability R in this delayed algorithm is thus reduced to

O(kNt) from O(N2
t ) if the updating of the Green’s function

is delayed by k steps. This also means that occasional Green’s

function matrix updates are required so that the complexity of

the delayed algorithm does not exceed the complexity of the

ordinary algorithm. The Green’s function update is performed

as a rank-k update (BLAS xGEMM matrix-matrix multiply

operation) according to

Gk+1 = G0 + [a0|a1| · · · |ak] [b0|b1| · · · |bk]t . (19)

As in the original algorithm, this requires O(kN2
t ) operations.

There is a small amount of redundant computation in updating

the diagonal vector d that is not required in the non-delayed

algorithm; however, the matrix-matrix multiply operation has

many more FLOPs per memory access than the rank-one

matrix update of the original algorithm, and therefore performs

much better on most architectures (more details will be given

in section IV-A and in Figure 5).

As is usual in Monte Carlo simulations, measurements

of physical quantities such as the cluster Green function

G
(ν)
c (Xi − Xj , z) or two-particle correlation functions, are

performed along the Markov chain. Several update sweeps are

performed between measurements to ensure that the measure-

ments are fully decorrelated.

Algorithm 1 DCA/QMC Algorithm with QMC cluster solver

(lines 5-10), disorder averaging (lines 4, 11-12), and DCA

cluster mapping (line 3, 13)

1: Set initial self-energy

2: repeat
3: Compute the coarse-grained Green Function

4: for Every disorder configuration (in parallel) do
5: Perform warm-up steps

6: for Every Markov chain (in parallel) do
7: Update auxiliary fields

8: Measure Green Function and observables

9: end for
10: Accumulate measurements over Markov chains

11: end for
12: Accumulate measurements over disorder configurations.

13: Re-compute the self-energy

14: until self consistency is reached

The main parts in the simulation sequence of the HF-

QMC can be summarized as follows: during the “warm-

up” or thermalization phase of the calculations, only Monte

Carlo moves with updates of the Green function are per-

formed until the HS field configurations are thermalized.

Measurements should not be performed during this phase,

as the auto-correlation time is very long and one would not

.

.

.

.

..

Fig. 2. The DCA self-consistency loop that has to be iterated consists of
two essential parts. The Cluster mapping in which the new self-energy (using
Eq. (9) for all but the first iteration), the coarse grained Green function in
Eq. (6) and the cluster excluded Green function in Eq. (7) are computed.
In the present case, the quantum cluster solver implements the HF-QMC
algorithm with delayed updates (section II-C). Between these two steps the
Green’s functions are lattice Fourier transformed. The top level parallelization
is over disorder configurations. For every disorder configuration we run one
cluster solver that itself is parallelized over Markov chains. The two red circles
indicate points where communications occurs. At the end of every cluster
solver, the measured Green’s function and charge susceptibility have to be
accumulated for every disorder configuration. At the beginning of every cluster
mapping step, the Green’s function and charge susceptibility are averaged over
all configurations.

measure independent samples. This phase typically lasts for

approximately 50 sweeps though the space-time lattice. The

“measurement” phase of the calculations consists of Monte

Carlo moves and updates as well as measurements that are

typically performed every two, four, or eight sweeps depending

on the simulated temperature (larger numbers of sweeps are

needed for lower temperatures as the auto-correlation time is

longer when the temperature is reduced). The HF-QMC with

delayed updates is executed for every disorder configuration.

Averaging over disorder configurations leads to the cluster

Green function of a given DCA iteration, from which the self-

energy is recomputed. The DCA loop is iterated until the self-

energy is converged (see depiction in Figure 2 and algorithm

template 1).

III. SIMULATION RESULTS: DISORDER EFFECT ON THE

SUPERCONDUCTING TRANSITION TEMPERATURE Tc

In the present simulations we are interested in a transition

to a superconducting state with d-wave symmetry. The order



parameter that signals a transition to this state is given by

Δ†d =
∑
k

g(k)c†k,↑c
†
−k,↓ , (20)

where g(k) = coskx−cosky is a d-wave form-factor. In linear

response theory, the pair-field susceptibility formed from this

order parameter

Pd =

β∫

0

dτ〈TτΔd(τ)Δ†d(0)〉 (21)

diverges at the transition temperature Tc to the d-wave super-

conducting state. Using the Bethe-Salpeter equation, the pair-

field susceptibility may also be written in terms of a particle-

particle vertex function Γpp

Pd = P 0
d + P 0

d ΓppPd . (22)

Here, P 0
d and Γpp are matrices of size NL × NL, where N

is the number of lattice sites and L the number of Matsubara-

frequencies, P 0
d is the pair-field susceptibility of the non-

interacting part of the model and the right hand side contains

an implicit sum over the matrix elements. In the DCA, the ver-

tex function Γpp is approximated by its corresponding cluster

quantity which is a smaller matrix of size NcL ×NcL. This

matrix is calculated from the cluster pair-field susceptibility

which is measured in the HF-QMC process in the last DCA

iteration. Since Eq. (22) can be written as

Pd =
P 0

d

1− ΓppP 0
d

, (23)

one can conveniently determine instabilities by calculating the

eigenvalues and eigenvectors of the pairing matrix ΓppP 0
d , i.e.,

solving

− T

Nc

∑
K′

Γpp(K, K ′)P 0
d (K ′)φα(K ′) = λαφα(K) . (24)

The susceptibility diverges when the leading eigenvalue λα

crosses one which determines Tc. The symmetry of the ordered

state is then given by the K dependence of the corresponding

eigenvector φα(K).
At low temperatures the leading eigenvector has dx2−y2-

symmetry. The leading eigenvalue is shown as a function of

temperature in Fig. 3

In the system without disorder (dU = 0), the leading

eigenvalue crosses one at the transition temperature T clean
c =

0.08t (11). In the disordered system, Tc is reduced, although

the reduction is only significant for dU = 0.5. One sees

that as the disorder strength is increased, Tc decreases. It

therefore must be concluded that Tc is suppressed by disorder

in the interaction strength. It will be interesting to perform an

analysis of the pairing interaction similar to what was done for

the homogeneous system (19; 11; 12) to determine the cause

of the reduction of Tc with increasing disorder strength.
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Fig. 3. The leading eigenvalue λd of the Bethe-Salpeter equation, Eq. (24),
calculated on a 16-site cluster for Ui = 4t(1+ ξidU), where ξi is a random
number with value ±1 for three different values of disorder.

IV. IMPLEMENTATION AND PERFORMANCE AT SCALE

The DCA++ code implements the DCA/QMC algorithm

described in section II with a generic and therefore extensible

approach that builds on the programming model of the C++

Standard Template Library (STL). Since special attention has

been paid to portability from workstations to clusters and high-

end supercomputers, we are limiting the generic program-

ming paradigms used to those of the STL (for example, we

avoid using expression templates), and we are limiting the

dependency on external libraries to well established packages

that are needed for performance (BLAS/LAPACK), parallel

programming (MPI and OpenMP), or numerical reliability

(SPRNG). We limit the discussion here to the parts of the

code that are critical for scaling and performance on multi-

core architectures.

The main loop of the DCA++ code implements the DCA

cycle depicted in Fig. 2, where most of the computing time

in production calculations is spent in and around the cluster

solver. However, much of the software complexity of the

DCA++ implementation is in the coarse-graining procedure

in the DCA cluster mapping part of the loop, since the code

supports all 2D space-groups for models with arbitrary lattices.

A. Accelerating time to solution: mixed precision and optimal
delayed updates

The cluster mapping part of the DCA loop has to be

performed with double precision. In the QMC updates and

measurements, however, it is possible to perform only single

precision calculations. This is demonstrated in Fig. 4, where

we show results for the critical temperature Tc, at which

the leading eigenvalue λd of the Bethe-Salpeter equation,

Eq. (24), assumes a value of 1 - according to the discussion

of section III this is the temperature at which the transition to

the superconducting state occurs. Shown are the results of a

mixed precision run (coarse graining in double precision and

QMC in single precision) as well as a set of runs in which all

parts of the calculation has been done in double precision. The



length of the respective QMC runs were similar in terms of the

total number of updates and measurements, and there seems

to be no loss in precision of the final result of the calculations.

However, the speed-up of the mixed precision runs over the

double precision runs can be significant. We find the speed-

up to be typically a factor 1.5 or more, with runs for larger

clusters the acceleration can be as high as a factor of 2.
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Fig. 4. Comparison of the critical temperatures calculated on a 4-site cluster
for U = 8t for the homogeneous system, for multiple runs done in double
(red circles) and mixed precision (blue squares). The black diamonds indicate
averages of the respective data sets.

In Figure 5 we show how the time to solution changes as

a function of number of delays in the update of the Green

function using the modified HF-QMC algorithm we discussed

in section II-C. Compared to the original HF-QMC, which

would correspond to a delay of 1, the acceleration is very

substantial. At delays of about 56 and 64 for mixed and

double precision runs, respectively, the additional overhead

caused by the delayed updates starts to outweigh the benefits

of increasing the squareness of the matrices in the s/dgemm

calls of the update. For the remaining results of this section

and the next, we use a delay of 56.

The ratio of double to single precision floating point op-

erations in the mixed precision runs is about 1:1000 and the

single precision part of the calculations is dominated by matrix

multiplies in the QMC updates, where the matrix shape is

k×Nt and the inner loop is over the shorter dimension k. We

have timed the BLAS SGEMM and DGEMM calls for the

type of runs presented in Figure 5, and find that SGEMM is

a factor 2.02 faster than DGEMM. The best performance was

achieved with K. Goto’s implementation of BLAS (6) in which

DGEMM runs at 6.2GFlop/s per core, which corresponds to

about 74 percent of the theoretical peak performance. These

numbers explain why the overall time to solution improvement

of the mixed precision runs can be almost a factor 2 compared

to the double precision runs.

B. Parallel efficiency

With the QMC cluster solver used in the present simula-

tions, the great majority of time is spent updating the Green
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Fig. 5. Time to solution for different numbers of delays in the modified
HF-QMC algorithm (see section II-C). The results are for a Nc = 16 cluster
at inverse temperature β = 150 using 150 time slices (Nt = 2400). The
calculations consisted of 4 parallel Markov chains running each on one core
on a Cray XT4 with quad-core AMD Budapest processors running at 2.1
GHz.

function and performing measurements. Until self-consistency

is reached in the self-energy, that is, typically in all but

the last iteration of the DCA loop, only the averaged Green

function and quantities such as the cluster charge susceptibility

that are inexpensive to compute have to be measured. In

this phase of the calculation, the performance is therefore

dominated by DGEMM calls with matrices mentioned above.

During the last iteration, when the self-energy is converged

and one can measure meaningful physical quantities such

as spin-spin correlation functions, the measurements can be

quite involved and use about the same fraction of the run-

time as the update sweeps between measurements. In order

to compute the superconducting transition temperatures as

in the previous section, we have to measure the pair-field

susceptibility. Measuring this quantity, which is performed in

reciprocal space, requires two lattice Fourier transforms that

have been implemented in terms of a Kronecker product that

requires 8 × Nt complex matrix multiplies (using ZGEMM)

per measurement - the typical matrix dimensions are (Nc by

Nc), (Nc by Nl), and (Nl by Nl).

There are three natural levels of parallelism that have been

implemented (see Figure 2 and algorithm template 1 for

top two levels). At the top level we have the paralleliza-

tion over disorder configurations, which is straightforwardly

implemented with MPI. Note that for a typical cluster size

of Nc = 16 sites and binary disorder, we have to average

by sampling over 216 configurations. The second level is

within the HF-QMC cluster solver, where the measurements

are spread over parallel Markov chains. At the end of every

HF-QMC phase of the runs, we average the measured cluster

Green function as well as other quantities over the parallel

Markov chains, and subsequently we average over all disorder

configurations before entering the coarse-graining phase of

the DCA loop. The last HS field configuration is then used

as a starting point in the cluster solver for the next DCA



Fig. 6. Strong scaling results for DCA++ on Cray XT4 with dual core
processors for a typical production run with one disorder configuration at
moderate temperatures with 40,000 measurements and two sweeps between
measurements, and where Nc = 16, Nl = 80.

iteration, in order to shorten the auto-correlation time and

therefore reduce the number of sweeps during the warm-

up phase of the HF-QMC part of subsequent iterations. The

thermalization phase is the part of the simulation that does

not scale, since it has to be executed by every Markov chain.

Following Amdahl’s law, it is this part of the simulation

that dominates the calculation when the second parallelization

level is scaled to very large numbers of random walkers per

disorder configurations. However, as is illustrated in Fig. 6,

we can have as many as 1000 Markov chains without seeing

significant deviations from optimal scaling. The third paral-

lelization level in the DCA++ code is in the kernel of the

Green function updates and measurements, and uses a shared-

memory programming model with OpenMP. This level can

be useful in studies of models without disorder that have to

be scaled to thousands of processors. This situation, however,

does not apply to our studies of cuprates, where the availability

of systems with several hundred TFlop/s will allow us to

average over disorder configurations and hence allow us to

study the effect of disorder and nano-scale inhomogeneities

on the superconducting transition temperature.

In Fig. 7, we show the weak scaling behavior of the code

when the number of disorder configurations is increased com-

mensurately with the number of processors. We are using 122

Markov chains in parallel for every disorder configurations,

in order to keep the QMC simulations at optimal efficiency.

The largest run corresponds to 404 disorder configurations and

used 49288 cores. It is seen that the DCA++ code scales rather

well with the number of cores and almost perfectly with the

clock frequency of the processors.

C. Sustained performance

The production runs for the results we reported in figure

3 and the scaling benchmarks were run with the same basic

setups. The benchmark runs were scaled down to run in less

than 30 minutes, whereas the results in figure 3 represent

runs that took between 4 and 16 hours on 31,000 cores.
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Fig. 7. Weak scaling results for the DCA++ on the Cray XT4 with quad core
processors for typical productions runs at lower temperatures with Nc = 16,
Nl = 150, 60 measurements per core, 4 sweeps between measurements, and
12 sweeps during the warmup phase in the QMC part of the calculation. The
machine consists of 31,328 and 18,048 cores running at 2.1 GHz and 2.3
GHz, respectively. Red circles ran on the 2.1 GHz nodes, the blue square
represents a job running on the 2.3 GHz nodes, and the magenta diamond
represents a run on the combined nodes.

In order to estimate the executed floating point operations

of the benchmark runs, we have instrumented the DCA++

code with PAPI calls. The average number of floating point

operations per second reported in table I is computed from the

total number of retired floating point operations as reported by

PAPI FP OPS events divided by the measured execution time

of the runs. The run time has been measured with PAPI calls

to PAPI get real usec as well as calls to the C time routine.

The sustained performance of these benchmark runs are

summarized in Table I. A few points are worth noting besides

the highest attained peak performance of 408.9 TFLOP/s in the

mixed precision runs on 49,288 cores: (1) there is a noticable

drop in performance going from a serial run (1 core) to a 4

core run, because the four core share memory bandwidth; (2)

There is about a five percent drop in going from four cores on

one processor to more cores on multiple processors because

communication between MPI tasks runs via the Hypertransport

link in the former and via the Seastar 2 interconnect in the

latter case; (3) The performance per core on the runs with

mixed frequency run is similar to the performance of the

slower nodes as can be expected from the communication

model we use.

V. SUMMARY AND OUTLOOK

Despite nearly two decades of intense research, application

of high transition temperature superconductor still fall short of

their potential to contributed to a revolution in grid technology

as well as microelectronics. However, recent advances in

simulation capabilities, both from a method and computer

performance point of view, open the door to solving long-

standing theoretical questions about the cuprates. Here we

have presented the DCA++ code and simulations of the

disorder dependence of the superconducting transition tem-

perature in the 2D Hubbard model. Simulation results on 16



TABLE I
SUSTAINED PERFORMANCE OF THE DCA++ CODE DURING

SELF-CONSISTEN ITERATIONS OF THE DCA LOOP. THE FIRST TWO ROWS

REPRESENT DOUBLE PRECISION RUNS AND THE REMAINING ROWS ARE

FOR MIXED PRECISION RUNS. ALL RUNS WITH 122 OR MORE CORES USED

122 RANDOM WALKER IN THE QUANTUM CLUSTER SOLVER, FOR ALL

OTHERS THE NUMBER OF WALKERS WAS THE SAME AS THE NUMBER OF

CORES.

disorder total frequency GFlop/s TFlop/s
configurations cores of core per core total

1 122 2.1 GHz 4.73 0.5771
404 49,288 mixed 4.105 202.3

1 1 2.1 GHz 11.4 0.01140
1 4 2.1 GHz 8.87 0.03549
1 8 2.1 GHz 8.44 67.51
1 122 2.1 GHz 8.46 1.032
4 488 2.1 GHz 8.43 4.112
16 1,952 2.1 GHz 8.42 16.43
64 7,808 2.1 GHz 8.34 65.13
128 15,616 2.1 GHz 8.29 129.5
146 17,812 2.3 GHz 9.28 165.3
404 49,288 mixed 8.30 408.9

site clusters show strong dependence of the superconducting

transition temperature on disorder. The DCA++ code provides

a modern implementation of quantum cluster methods applied

to models of strongly correlated systems. Our implementation

of the DCA/HF-QMC method applied to the 2D-Hubbard

model is focused on fastest time to solution and runs efficiently

at scale on the largest supercomputers currently available -

reaching 409 TFlop/s sustained performance on the Cray XT4

systems at ORNL. This efficiency was achieved through a

combination of algorithmic adaptation, in which we replaced

a rank-one matrix update by a slender regular rank-k matrix

multiply by delaying the QMC Green’s function updates, and

a mixed single-precision/double-precision computation. With

availability of supercomputers with many hundreds of TFlop/s

as well as the petascale systems that are coming online in the

near future, systematic studies of disorder effects as well as

the effect of nano-scale inhomogeneities and confinement on

the superconducting transition temperatures will be possible.

These simulations will provide an invaluable tool to under-

stand spectacular recent experiments (18), which indicate that

the superconducting transition temperatures could be much

higher than what is currently observe macroscopically.
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