
Comput Sci Res Dev
DOI 10.1007/s00450-010-0104-6

S P E C I A L I S S U E PA P E R

Cooperative server clustering for a scalable GAS model
on petascale cray XT5 systems

Weikuan Yu · Xinyu Que · Vinod Tipparaju ·
Richard L. Graham · Jeffrey S. Vetter

© Springer-Verlag 2010

Abstract Global Address Space (GAS) programming mod-
els are attractive because they retain the easy-to-use address-
ing model that is the characteristic of shared-memory style
load and store operations. The scalability of GAS models
depends directly on the design and implementation of run-
time libraries on the targeted platforms. In this paper, we
examine the memory requirement of a popular GAS run-
time library, Aggregate Remote Memory Copy Interface
(ARMCI) on petascale Cray XT 5 systems. Then we de-

This work was funded in part by a UT-Battelle grant
(UT-B-4000087151) to Auburn University, and in part by National
Center for Computational Sciences. This research used resources of
the National Center for Computational Sciences at Oak Ridge
National Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725. This research was also supported by an
allocation of advanced computing resources provided by the National
Science Foundation. Part of the computations were performed on
Kraken (a Cray XT5) at the National Institute for Computational
Sciences (http://www.nics.tennessee.edu/).

W. Yu (�) · X. Que
Department of Computer Science, Auburn University, Auburn,
AL 36849, USA
e-mail: wkyu@auburn.edu

X. Que
e-mail: xque@auburn.edu

V. Tipparaju · R.L. Graham · J.S. Vetter
Computer Science & Mathematics, Oak Ridge National
Laboratory, Oak Ridge, USA

V. Tipparaju
e-mail: tipparajuv@ornl.gov

R.L. Graham
e-mail: rlgraham@ornl.gov

J.S. Vetter
e-mail: vetter@ornl.gov

scribe a new technique cooperative server clustering that
enhances the memory scalability of ARMCI communication
servers. In cooperative server clustering, ARMCI servers are
organized into clusters, and cooperatively process incoming
communication requests among them. A request interven-
tion scheme is also designed to expedite the return of re-
sponses to the initiating processes. Our experimental results
demonstrate that, with very little impact on ARMCI commu-
nication latency and bandwidth, cooperative server cluster-
ing is able to significantly reduce the memory requirement
of ARMCI communication servers, thereby enabling highly
scalable scientific applications. In particular, it dramatically
reduces the total execution time of a scientific application,
NWChem, by 45% on 2400 processes.

Keywords PGAS · Cray XT5 · ARMCI

1 Introduction

GAS (Global Address Space) or PGAS (Partitioned Global
Address Space) models support data access to local and re-
mote memory through a simple shared memory styled ac-
cess. Because of the attractiveness of its simple data ac-
cesses, PGAS languages like Unified Parallel C (UPC) [17],
Co-Array Fortran (CAF) [5], and GAS libraries such as
Global Arrays (GA) Toolkit [6] are becoming increasingly
popular. Recently, a slightly different category of PGAS
model, termed Asynchronous Partitioned Global Address
space model, has emerged to add additional capabilities such
as remote method invocations. IBM’s X10 language [7] and
Asynchronous Remote Methods (ARM) [12] in UPC have
pioneered this new model.

All the above mentioned GAS languages and libraries use
the services of an underlying communication library (which

http://www.nics.tennessee.edu/
mailto:wkyu@auburn.edu
mailto:xque@auburn.edu
mailto:tipparajuv@ornl.gov
mailto:rlgraham@ornl.gov
mailto:vetter@ornl.gov

W. Yu et al.

we refer to as the GAS Runtime) for their communication
needs. GAS languages normally use this runtime as a com-
pilation target to do the data transfers on distributed mem-
ory architectures. They have a translation layer that trans-
lates a memory access to a corresponding data transfer on
the underlying system. ARMCI (Aggregated Remote Mem-
ory Copy Interface) [10] is a popular GAS runtime that has
been used to implement both PGAS languages (such as Co-
Array Fortran) and GAS libraries (such as Global Arrays).
It is highly scalable and has been ported to a variety of en-
vironments and platforms. Recently, a scalable implementa-
tion of ARMCI (described in [16]) was made available on
the Jaguar Cray XT5 supercomputer at Oak Ridge National
Laboratory. It enables a highly scalable Global Address
Space model, Global Arrays, supporting mission critical ap-
plications such as NWChem [8]. However, overall memory
usage and reliance on network flow control emerged as seri-
ous limitations of this solution.

The hallmark of ARMCI is its one-sided communication
model and its simple progress rules that can be leveraged
as compilation target by GAS models. To support this one-
sidedness, ARMCI is designed with a communication server
on each node to receive and respond to asynchronous re-
quests from remote processes, without the involvement of
the target process. The communication server has to pre-
allocate one set of buffers to receive requests from every
remote process (even if the remote access is for a mere hand-
shake). The buffer requirement grows linearly with the total
number of processes. For a parallel program with 64 thou-
sand processes, it amounts to 1024 MB even if only one
buffer of 16-KB is allocated per process. Thus, it creates
an immense scalability challenge and limits the amount of
available memory applications. Such a large memory foot-
print can also perturb the locality of data accesses as requests
arrive in an arbitrary manner.

In this paper, we propose a technique called cooperative
server clustering to cope with this scalability challenge. In
cooperative server clustering, instead of allocating one set
of buffers for all peer processes at each server, communica-
tion servers form cooperative clusters and then distribute the
buffers for other peer processes among them. So long as a re-
quest reaches one server in a cooperative cluster, it will be
forwarded to the target server, and receive appropriate han-
dling and responses. Cooperative server clustering dramat-
ically reduces the memory requirement of communication
servers and increases the scalability of ARMCI. A request
intervention scheme is also designed to work together with
cooperative server clustering, and expedite the delivery of
responses to initiating processes. An implementation of co-
operative server clustering is accomplished on the Petascale
Cray XT5 supercomputers, including Kraken at University
of Tennessee Knoxville (UTK) and Jaguar at ORNL. Our
experimental results demonstrate that, with little impact on

Fig. 1 Typical usage of ARMCI

the communication efficiency, cooperative clustering greatly
improves the memory scalability of ARMCI. It also brings
significant benefits to the performance of scientific applica-
tions. Our experiments show that, with cooperative server
clustering, the total execution time of NWChem is reduced
by 45% on 2400 processes.

The rest of the paper is organized as follows. Section 2
discusses the background and related work. Section 3 de-
scribes the design of cooperative server clusters in ARMCI.
Several implementation issues are then presented in Sect. 4.
Experimental results are provided in Sect. 5. Finally Sect. 6
concludes the paper.

2 Background and related work

2.1 ARMCI runtime system

ARMCI relies on a message-passing library and elements
of the execution environment (job control, process creation,
interaction with the resource manager). ARMCI, in addition
to being the underlying communication interface for GA,
has been used to implement other communication libraries
and compilers [5, 11]. Typical structure of an application
using ARMCI is shown in Fig. 1. ARMCI offers an exten-
sive set of functionalities in the area of RMA communi-
cation: (1) data transfer operations (Get, Put Accumulate);
(2) atomic operations; (3) memory management and syn-
chronization operations; and (4) locks. Communication in
most of the non-collective GA operations is implemented as
one or more ARMCI communication operations.

ARMCI supports blocking and non-blocking versions of
contiguous, strided and vector data transfer operations along
with Read-Modify-Write operations. It uses the fastest avail-
able mechanism underneath to transmit data. On some plat-
forms, native communication protocols are limited in their
ability to provide all the functionalities ARMCI delivers to
its users. An extra communication server is created on each
node to service communication requests from its clients.
ARMCI provides collective memory allocation interfaces

Cooperative server clustering for a scalable GAS model on petascale cray XT5 systems

which allocate communicatable memory.1 On the Cray XT5
system, ARMCI uses shared memory with-in a node and,
uses Portals library for inter-node communication. The goal
of this work is to optimize the communication server mem-
ory usage and its impact on the underlying network at very
large scale.

2.2 Related work

The issue of scalability spans across a wide variety of as-
pects including process management, selection of connec-
tion models, data communication, communication buffer
management, as well as flow control. The design and im-
plementation of MPI on Portals is described in [2]. This
has been a reference implementation for the communica-
tion design of other programming models on top of Por-
tals. Communication protocols for different size messages
were elaborated. Bonachea et al. [1] recently ported GAS-
Net to the Portals communication library on the Cray XT
platform to support UPC and other GAS models. Generic is-
sues such as enabling communication operations, handling
requests/replies, and flow control were discussed. Tipparaju
et al. [16] designed and implemented a scalable ARMCI
communication library and demonstrated its strength in en-
abling GA and a real world scientific application, NWChem.
Both of these efforts have laid out base line implementations
of efficient GAS run-time systems using the native Portals
communication library on the petascale Cray XT platforms.
This work is a continued effort based on that of Tipparaju et
al. to improve the communication model and resource man-
agement of ARMCI for better scalability.

Many other efforts studied the communication scalabil-
ity for other programming models. Yu et al. [18] proposed
an adaptive management model to improve the scalability
of InfiniBand connections on large-scale platforms. Sur et
al. [14] and Shipman et al. [13] studied the use of shared
receive queue to increase the scalability of MPI communi-
cation resources. Sur et al. [15] examined the memory scal-
ability of various MPI implementations on the InfiniBand
network. Koop et al. [9] exploited the use of message coa-
lescing to reduce the memory requirements for MPI on In-
finiBand clusters. Chen et al. [3] optimized the communi-
cation for UPC applications through a combination of tech-
niques including redundancy elimination, split-phase com-
munication, and communication coalescing. Chen et al. [4]
investigated the use of compiler techniques that can auto-
matically schedule data transfers for non-blocking commu-
nication, thereby achieving better computation and commu-
nication overlap. Our work differ from these earlier stud-
ies by improving the scalability of ARMCI runtime system

1Memory is communicatable when all the necessary steps required by
the communication library in order to send messages to this memory
are performed at its allocation.

through a cooperative server clustering scheme that can re-
duce the memory requirements of ARMCI communication
servers and alleviate the pressure from an enormous number
of clients on individual servers. To our knowledge, we are
not aware of any runtime that utilizes a scheme similar to
cooperative server clustering.

3 Design of cooperative server clustering

The main theme of this work is to increase the memory scal-
ability for ARMCI communication servers. We first discuss
the original process management and memory management
in ARMCI communication servers. Then we describe the
design of cooperative server clustering and a modified pro-
tocol request intervention that handles communication re-
quests.

3.1 ARMCI process management for one-sided
communication

As discussed earlier, GAS models provide a simple address-
ing model for data accesses in the form of load and store op-
erations. These load and store operations are translated into
compilation targets as one-sided communication calls by the
GAS runtime communication system. ARMCI guarantees
that its one-sided operations are fully unilateral (i.e., com-
plete regardless of the actions taken by the remote process).
In particular, polling the application by remote process (im-
plicitly when making a library call, or explicitly by calling
provided polling interface) is not required for communica-
tion progress. This is realized by introducing a communi-
cation server (CS) at each compute node, along with other
processes on the node.

Figure 2 shows the process management of ARMCI. On
two arbitrary nodes, i and j , each has a set of processes
with their global ranks. Processes on node i are also denoted
as P(i,k), ∀ k ∈ [0,m − 1]. An area of shared memory is al-
located for these m processes. The lowest ranked process
P(i,0) creates a separate thread as a communication server
CSi . The communication server CSi receives incoming re-
mote one-sided communication requests and processes them

Fig. 2 ARMCI process management

W. Yu et al.

on behalf of all local processes. To this purpose, it communi-
cates with these local processes through the shared memory.

Every communication server has to pre-allocate re-
quest buffers for all remote peer processes. For a group
of processes denoted as Pr , ∀ r ∈ [0, n − 1], Fig. 3 shows
the request buffer management of the communication server
CSi on Node i. It allocates a set of request buffers each re-
mote process, e.g. Br for Pr . The total buffer requirements
would be roughly N ∗ M ∗ B , where N is the total num-
ber of processes (actually slightly smaller than N due to
local processes), M the number of buffers for each process,
and B the size of a buffer. With only two 16-KB buffers
per process, it would require 1024 MB to support parallel
programs with 32,000 processes, and 32 GB for future pro-
grams with a million processes. Clearly, a more scalable
solution is needed for petascale supercomputer and future
exascale machines.

3.2 Cooperative server clustering

To fundamentally address the scalability problem of buffer
management in ARMCI servers, we design a technique
called cooperative server clustering. Instead of allocating
one set of buffers for all remote processes, communication
servers from different nodes form cooperative clusters. Then
the servers in a cluster divide peer processes amongst them.

Figure 4 shows the design of cooperative server clus-
tering. A set of servers form a cluster Ci , which consists
of CS(Ci, k), ∀ k ∈ [0, g − 1], where g is the number of
servers in the cluster. The server CS(Ci, k) will allocate
request buffers for Pr , when k = �r/g�. For example, the

Fig. 3 ARMCI server’s request buffer management

Fig. 4 Scalable ARMCI with cooperative server clustering

set of buffers Br needed by Pr are allocated at CS(Ci, k).
The servers in a cluster cooperate (co-op) to handle requests
from all processes. When a request reaches any server in this
cluster of servers, it will be forwarded to the destined server
along with all appropriate handling details and any potential
response information.

Compared to the original buffer management at ARMCI
servers, this new scheme requires only N ∗ B ∗ M/g at an
individual CS, where g is the number of communication
servers in a cluster. N , B , and M are defined the same as
discussed in Sect. 3.1. If a large-scale program can form
clusters of 100 servers or more, the reduction in memory
requirement can be several orders of magnitude.

3.3 Request intervention

In the original design of ARMCI, the communication server
directly receives and handles one-sided communication re-
quests from remote processes. For each request, a server
returns a corresponding response (or acknowledgment) to
an initiating process. This forms a direct request/response
pair and a simplified flow control scheme between an initi-
ating process and a target server. Figure 5(a) shows the di-
rect pairing of request and response in an original ARMCI
communication server. With cooperative server clustering,
a technique referred to as request intervention is designed
to process incoming requests. Figure 5(b) shows a flow di-
agram of request intervention in cooperative server cluster-
ing. A request from Pr will be intervened by an interme-
diate server CSi and then forwarded it to the target server
CSt . Upon its arrival, CSt communicates the response (or
acknowledgment) directly to the requesting process Pr . CSt

also detects that the request is forwarded from CSi , so it
sends an acknowledgment to CSi . The acknowledgment also
serves as a means for flow control between CSi and CSt .

4 Implementation

We have designed and implemented a prototype of coopera-
tive server clustering for ARMCI on the Cray XT5 systems
including both Kraken at UTK and Jaguar at ORNL. Several
implementation details are worth mentioning here. First, we
allocate two separate pools of buffers in each communica-
tion server. One pool is reserved for requests from regular
processes; the other is for the requests that are forwarded
from intermediate communication servers. This separation
avoids a race condition for the same resource from different
requests. Second, we support request buffering at interme-
diate communication servers. This is needed when the re-
sponse arrives at the requesting process sooner than the ac-
knowledgment reaches the intermediate server. Third, we al-
locate a single portal memory descriptor for transmitting ac-
knowledgments between servers. This avoids the need of ad-
ditional memory descriptors for tracking forwarded requests

Cooperative server clustering for a scalable GAS model on petascale cray XT5 systems

Fig. 5 One-sided request and response in cooperative server clustering

individually, and the associated communication processing,
such as binding and unlinking the memory descriptors from
the portals match list.

4.1 Preserving progress rules

Progress rules in ARMCI include checking for local com-
pletion and remote completion of data transfers. Our design
of cooperative server clustering doesn’t alter the logic or se-
mantics of local completion. The support for remote com-
pletion in ARMCI is offered via a call to ARMCI_Fence.
The implementation of remote completion involves a mes-
sage to the communication server to verify the completion
of all Put and Accumulate one-sided operations at the com-
munication server. Our design of cooperative server clus-
tering together with request intervention implicitly incorpo-
rates the logic to “forward” for remote completion requests
as shown in Fig. 5(b). This ensures that the verification for
remote completion initiated by any particular process Pr to
a target t is intervened by a server CSi and forwarded to the
target server CSt and the response to this verification sent
directly to the initiator Pr .

5 Performance evaluation

Our experiments were conducted on Kraken and Jaguar su-
percomputers (both Cray XT5 systems). Both computers
have dual hex-core Opteron processors, a total of 12 cores
per node. Because of the similarity in the processor archi-
tecture and interconnection network, we will not distinguish
between Kraken and Jaguar, but mention the number of
processes in our experimental results.

5.1 Latency and bandwidth

Cooperative server clustering is designed to reduce the
memory requirement of ARMCI communication servers.
However, it is critical to minimize the performance impact
to ARMCI communication operations. Particularly, ARMCI
makes heavy use of put and get operations. So we have
evaluated their latency and bandwidth to validate our de-
sign. These experiments were conducted across four nodes

each with 12 processes. For cooperative clustering, servers
are grouped into two clusters of two each. So there are two
different communication patterns, one that directly occurs
between a process and its targeted server, the other that re-
quires one intermediate server to do request intervention, i.e.
forwarding.

Figure 6 shows the latency comparisons between the
“original” and “new” versions of ARMCI. For the new ver-
sion, there are two variants, “direct” and “forward”. As
shown in the figure, all three have comparable latency for
small messages. The original latency is slightly lower on get,
marginally higher for put operations. For large messages,
all three are on par with each other (data not shown due to
the page limit). Figure 7 shows the bandwidth comparisons
between the “original” and “new” versions of ARMCI. As
shown in the figure, for small messages, the original version
has slightly higher bandwidth compared to the new version,
for both put and get operations. In terms of large messages,
two versions are comparable to each other.

These results indicate that our design of cooperative
server clustering has very little impact to the common com-
munication operations of ARMCI. Given the significant
improvement on memory scalability (as discussed below),
we deem it as a worthy design, particularly when running
ARMCI on a large number of processes.

5.2 Memory scalability

We measure the effectiveness of cooperative server cluster-
ing in reducing the memory footprint of ARMCI communi-
cation servers. The resident working set size (VmRss) in the
/proc file system was taken as the memory footprint. All ex-
periments were conducted with 12 processes per node. The
servers are divided into clusters, with a cluster size close to
the square root of the total number of servers. That is to say,
for 1200 processes, there will be 100 ARMCI servers, which
are divided into 10 clusters of 10 servers each.

Figure 8 shows the comparison of memory scalability be-
tween the “original” and “new” versions of ARMCI. With
multiple processes on a single node, each ARMCI node
is also allocated with a big pool of shared memory region
for intranode communication. In addition, the communica-
tion server needs to allocate more request buffers for an in-
creasing number of processes. As shown in the figure, the

W. Yu et al.

Fig. 6 Comparisons of ARMCI latency

Fig. 7 Comparisons of ARMCI bandwidth

original version has a linear memory growth trend, strictly
in the order of O(N). The new version with cooperative
server clustering reduces the memory requirement signifi-
cantly. For 9600 processes on 800 nodes, the new version
requires only 34.7 MB of more memory in ARMCI commu-
nication servers, while the original version needs 169.7 MB
more memory. This is a factor of 4.8 improvement. With
larger number of processes, the benefit is expected to be
more significant.

5.3 Performance benefits to a scientific application

Density Functional Theory (DFT) is a widely used elec-
tronic structure method in NWChem. It is the workhorse of
electronic structure for its balance between computational
cost and accuracy (1998 Nobel prize in Chemistry). We used

the DFT SiOSi3 benchmark to measure the performance
benefits of cooperative server clustering. Figure 9 shows
the performance of DFT SiOSi3 with a varying number of
processes. As shown in the figure, ARMCI with cooperative
server clustering significantly benefits the execution time of
NWChem, by 45% with 2400 processes. This result demon-
strates that the improvement in memory footprint benefits
scientific applications such as NWChem, despite the slight
degradation on microbenchmarks such as latency and band-
width.

6 Conclusions

We have designed a scalable memory management scheme,
cooperative server clustering, for ARMCI communication
servers and have shown its effectiveness in enabling the

Cooperative server clustering for a scalable GAS model on petascale cray XT5 systems

Fig. 8 Memory scalability

Fig. 9 Benefits to DFT siosi3 execution time

Global Arrays (GA) GAS programming model [6]. By con-
structing communication servers into cooperative clusters,
and dividing incoming requests among them, cooperative
server clustering can significantly reduce the memory re-
quirement of large-scale GAS programs, thereby improving
the scalability of GA on petascale machines such as Jaguar.
A request intervention scheme is also designed to expedite
the delivery of responses to requesting processes. In realiz-
ing cooperative server clustering and request intervention,
we have also dealt with various implementation issues in-
cluding race conditions and preserving progress rules.

Our experimental results have demonstrated that the
memory requirement at ARMCI communication servers has
been significantly reduced. With little impact on commu-
nication bandwidth. our optimization can significantly im-
prove scientific applications. Particularly, we have demon-
strated that ARMCI with cooperative sever clustering can
reduce the total execution time of a scientific application
NWChem by 45% on 2400 processes.

In future, we look forward to further optimization of the
GA model and ARMCI on petascale systems. We also plan

to study the applicability of cooperative server clustering to
GA and ARMCI on other petascale platforms such as Blue-
Gene /P.

References

1. Bonachea D, Hargrove PMW, Yelick K (2009) Porting gasnet to
portals: partitioned global address space (pgas) language support
for the cray xt. In: CUG ’09: cray user group meeting

2. Brightwell R, Riesen R, Maccabe AB (2003) Design, implemen-
tation, and performance of mpi on portals 3.0. Int J High Perform
Comput Appl 17(1)

3. Chen WY, Iancu C, Yelick K (2005) Communication optimiza-
tions for fine-grained upc applications. In: PACT ’05: proceedings
of the 14th international conference on parallel architectures and
compilation techniques. IEEE Computer Society, Washington, pp
267–278

4. Chen WY, Bonachea D, Iancu C, Yelick K (2007) Automatic non-
blocking communication for partitioned global address space pro-
grams. In: ICS ’07: proceedings of the 21st annual international
conference on supercomputing. ACM, New York, pp 158–167

5. Dotsenko Y, Coarfa C, Mellor-Crummey J (2004) A multi-
platform co-array Fortran compiler. In: Proceedings of parallel ar-
chitecture and compilation techniques

6. Global Arrays Toolkit (2009) http://www.emsl.pnl.gov/docs/
global

7. IBM (2008) Report on experimental language X10. http://dist.
codehaus.org/x10/documentation/languagespec/x10-170.pdf

8. Kendall RA, Aprà E, Bernholdt DE, Bylaska EJ, Dupuis M, Fann
GI, Harrison RJ, Ju J, Nichols JA, Nieplocha J, Straatsma TP, Win-
dus TL, Wong AT (2000) High performance computational chem-
istry: an overview of NWChem a distributed parallel application.
Comput Phys Commun 128(1):260–283 -2

9. Koop MJ, Jones T, Panda DK (2007) Reducing connection mem-
ory requirements of mpi for infiniband clusters: a message coa-
lescing approach. In: Proceedings of the seventh IEEE interna-
tional symposium on cluster computing and the grid, Washington,
DC, USA

10. Nieplocha J, Tipparaju V, Krishnan M, Panda DK (2006) High per-
formance remote memory access communication: the armci ap-
proach. Int J High Perform Comput Appl 20(2):233–253

11. Parzyszek K (2003) Generalized portable shmem library for
high performance computing. PhD thesis, Ames, IA, USA, co-
Major professor-Kendall, Ricky A and Co-Major professor-Lutz,
Robyn R

12. Shet A, Tipparaju V, Harrison R (2009) Asynchronous program-
ming in upc: a case study and potential for improvement. In:
Workshop on asynchrony in the PGAS programming model col-
located with ICS 2009

13. Shipman G, Woodall T, Graham R, Maccabe A, Bridges P (2006)
Infiniband scalability in open mpi. In: International parallel and
distributed processing symposium

14. Sur S, Chai L, Jin HW, Panda DK (2006) Shared receive queue
based scalable mpi design for infiniband clusters. In: International
parallel and distributed processing symposium

15. Sur S, Koop MJ, Panda DK (2006) High-performance and scal-
able mpi over infiniband with reduced memory usage: an in-
depth performance analysis. In: SC ’06: proceedings of the 2006
ACM/IEEE conference on supercomputing. ACM, New York,
p 105

16. Tipparaju V, Apra E, Yu W, Vetter JS (2010) Enabling a highly-
scalable global address space model for petascale computing. In:
Computing frontiers

http://www.emsl.pnl.gov/docs/global
http://www.emsl.pnl.gov/docs/global
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf

W. Yu et al.

17. UPC Specifications, v12 (2009) http://www.gwu.edu/~upc/
publications/LBNL-59208.pdf

18. Yu W, Gao Q, Panda D (2006) Adaptive connection management
for scalable mpi over infiniband. In: International parallel and dis-
tributed processing symposium, Greece

Weikuan Yu is currently an As-
sistant Professor in the Department
of Computer Science and Software
Engineering at Auburn University.
Prior to joining Auburn, he served
as a Research Scientist for two and
a half years at Oak Ridge National
Laboratory (ORNL) until January
2009. Yu is also a Joint Faculty at
ORNL. He earned his PhD in Com-
puter Science from the Ohio State
University in 2006. Yu also holds
a master’s degree in Developmental
Biology from the Ohio State Uni-
versity and a Bachelor degree in Ge-

netics from Wuhan University, China. At Auburn University, Yu leads
the Parallel Architecture and System Laboratory (PASL) for research
and development on high-end computing, parallel and distributing net-
working, storage and file systems, as well as interdisciplinary topics on
computational biology. Yu is a member of AAAS, ACM, and IEEE.

Xinyu Que is a Ph.D. student of
Parallel Architecture and System
Laboratory (PASL) in the Depart-
ment of Computer Science at Auburn
University. Que earned his master’s
degree in Computer Science from
University of Connecticut in 2009.
His research interests include High
Performance Computing, High Speed
Networking, Network and Grid Com-
puting.

Vinod Tipparaju is a Research
Staff Member in the Computer Sci-
ence and Mathematics Division
(CSM) of Oak Ridge National Lab-
oratory (ORNL), where he is a
member in the Future Technolo-
gies Group and a matrix-ed mem-
ber in the NCCS Scientific Com-
puting and Technology Integration
Groups. He is one of the main devel-
opers of Global Arrays toolkit and
the ARMCI communication library.
He joined ORNL in 2008, after over
six years at Pacific Northwest Na-

tional Laboratory. Tipparaju’s interests span several areas of high-
end computing including Programming Models for High Performance
Computing, Network Interconnects and Collective Communication Al-
gorithms.

Richard L. Graham is a Distin-
guished Research Staff Member,
and Group Leader of the Applica-
tion Performance Tools group, in the
Computer Science and Mathemat-
ics Division at Oak Ridge National
Laboratory (ORNL). He is cur-
rently chairing the MPI Forum. Be-
fore joining ORNL he was the Ad-
vanced Computing Laboratory Act-
ing Group Leader at the Los Alamos
National Laboratory (LANL). He
joined LANL’s Advanced Comput-
ing Laboratory (ACL) as a technical

staff member in 1999 and as Team Leader for the Resilient Technolo-
gies Team, started the LA-MPI project and co-founded the Open MPI
project. Prior to joining ACL, he spent seven years working for Cray
Research and SGI. Graham earned his PhD in Theoretical Chemistry
from Texas A&M University in 1990 and received post-doctoral train-
ing at the James Franck Institute of University of Chicago. He has a
BS in chemistry from Seattle Pacific University.

Jeffrey S. Vetter is a computer
scientist in the Computer Science
and Mathematics Division (CSM)
of Oak Ridge National Laboratory
(ORNL), where he leads the Future
Technologies Group and directs the
Experimental Computing Labora-
tory. Dr. Vetter is also a Joint Pro-
fessor in the College of Comput-
ing at the Georgia Institute of Tech-
nology, where he earlier earned his
PhD. He joined ORNL in 2003, af-
ter four years at Lawrence Liver-
more National Laboratory. Vetter’s

interests span several areas of high-end computing—encompassing ar-
chitectures, system software, and tools for performance and correctness
analysis of applications.

http://www.gwu.edu/~upc/publications/LBNL-59208.pdf
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf

	Cooperative server clustering for a scalable GAS model on petascale cray XT5 systems
	Abstract
	Introduction
	Background and related work
	ARMCI runtime system
	Related work

	Design of cooperative server clustering
	ARMCI process management for one-sided communication
	Cooperative server clustering
	Request intervention

	Implementation
	Preserving progress rules

	Performance evaluation
	Latency and bandwidth
	Memory scalability
	Performance benefits to a scientific application

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

