
!"#"$%&'%()*+,+-.%/&0$+"1&'%()*.(2,&3%1+$#&4%$.%/&

!

! !

!

"#$#%&!'&()*+,+-.&/!0%+#1!
2+31#$&%!4(.&*(&!5*6!75$)&35$.(/!8.9./.+*!
:5;!<.6-&!=5$.+*5,!>5?+%5$+%@!
:5;!<.6-&A!'&**&//&&!
B4C!
!
)$$1DEEF$G+%*,G-+9!

! !
! !
! !"#$%&%'&("!"#$%"%&'(')*&+

!"#$%&'(%')5!"#$%&'()*+",$&
!"#$%#&'()$#*+,-.)"/+0)"+
!"#$%"&'$()*+(,-%.*
!"#$%&#&

! !
C#$)+%/! 4%.6)5%5*A!4G!

H&$$&%A!IG4!
2)53?&%,5.*A!JG>!
K+--&A!LG7!
8&.$MA!4GI!

! !
C?/$%5($! :#%!N+%;!%&1%&/&*$/!$)&!F.%/$!+F!.$/!;.*6!&FF+%$!$+!566%&//!$)&!,5*-#5-&A!

(+31.,&%A!5*6!%#*$.3&!/#11+%$!%&O#.%&6!F+%!.31,&3&*$.*-!6./$%.?#$&6!
(+*(#%%&*(@!(+*$%+,!3&()5*./3/!#/.*-!/(5,5?,&!8./$%.?#$&6!4+F$N5%&!
'%5*/5($.+*5,!7&3+%@!P84'7Q!$&()*.O#&/G!R&!#*6&%$++;!+#%!N+%;!
N.$).*!$)&!2)51&,!,5*-#5-&!5*6!.31,&3&*$&6!2)51&,S/!5$+3.(!
/5&3&*$/!N.$)!84'7!/#11+%$G!:9&%5,,A!N&!6&3+*/$%5$&!$)&!
1%+-%5335?.,.$@!5*6!1&%F+%35*(&!?&*&F.$/!+F!5$+3.(!$%5*/5($.+*/!
+9&%!,+(;T?5/&6!511%+5()&/G!R&!&95,#5$&!+#%!6&/.-*!+*!$)&!:<=>!
I5-#5%!U'V!/@/$&3!#/.*-!#1!$+!WXYZ!*+6&/!PWVXXX!(+%&/Q!5*6!
6&3+*/$%5$&!.$/!9.5?.,.$@G!R&!6&3+*/$%5$&!$)5$!+#%!84'7!6&/.-*!
/(5,&/!$+!$)+#/5*6/!+F!*+6&/A!N).,&!&[).?.$.*-!1&%F+%35*(&!$)5$!
35$()&/!5*6!+F$&*!&[(&&6/!$)&!1&%F+%35*(&!+F!,+(;T?5/&6!
511%+5()&/G!:#%!%&/#,$/!%&1%&/&*$!$)&!,5%-&/$!%#*/!+F!5*@!84'7!6&/.-*!
5/!N&,,!5/!2)51&,!1%+-%53/!$+!65$&G!!

! !
"#$#%&!'&()*+,+-.&/!0%+#1!'&()*.(5,!<&1+%$! "'0'<TWX\\TXW!

'+$5,!L5-&/! \]!
L#?,.(5$.+*!85$&! VE^EWX\\!

! !
C,/+!1#?,./)&6!5/! T&

! !

A Scalable Implementation of Language-Based Software
Transactional Memory for Distributed Memory Systems

Srinivas Sridharan
∗

Oak Ridge National

Laboratory

ssridhar@ornl.gov

Jeffrey Vetter
Oak Ridge National

Laboratory

vetter@ornl.gov

Bradford L. Chamberlain
Cray Inc.

bradc@cray.com

Peter Kogge
University of Notre Dame

kogge@cse.nd.edu

Steve Deitz
†

Microsoft

steve.deitz@gmail.com

ABSTRACT
Our work represents the first of its kind effort to address
the language, compiler, and runtime support required for
implementing distributed concurrency control mechanisms
using scalable Distributed Software Transactional Memory
(DSTM) techniques. We undertook our work within the
Chapel language and implemented Chapel’s atomic state-
ments with DSTM support. Overall, we demonstrate the
programmability and performance benefits of atomic trans-
actions over lock-based approaches. We evaluate our de-
sign on the ORNL Jaguar XT5 system using up to 2048
nodes (≈ 25000 cores) and demonstrate its viability. We
demonstrate that our DSTM design scales to thousands of
nodes, while exhibiting performance that matches and often
exceeds the performance of lock-based approaches. Our re-
sults represent the largest runs of any DSTM design as well
as Chapel programs to date.

1. INTRODUCTION
Today, a number of parallel programming languages and

libraries, such as Co-Array Fortran (CAF) [24], Unified Par-
allel C (UPC) [17], Global Arrays (GA) [23], Chapel [10],
and X10 [8], provide high-level language abstractions for the
Partitioned Global Address Space (PGAS) model. In PGAS,
the program heap is distributed across multiple independent
memories. Remote data is accessed via one-sided communi-
cation operations akin to local load/store operations. This
enables threads on one node to access a remote node’s mem-
ory directly. However, the sharing of the address space be-
tween threads necessitates the need for concurrency control

∗This work was performed while the author was a graduate
student at the University of Notre Dame.
†The work was performed while the author was at Cray Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

mechanisms to coordinate and synchronize concurrent ac-
cesses to shared data. As such, locks are the most com-
monly used concurrency control mechanism in these plat-
forms. However, lock-based mechanisms have a number of
programmability and performance challenges [21]. For ex-
ample, optimizing for data locality without considering the
affinity (or lack thereof) of the corresponding locks may be
sub-optimal, since lock operations may themselves require
additional remote communication.

Our work explores programmability and performance ad-
vantages of Transactional Memory (TM) [18] for large-scale
systems (e.g., Cray XT [3], BlueGene/P [2]). Very briefly,
TM mechanisms primarily guarantee that transactions –
code sequences that access shared state – either execute as
a single indivisible operation or retry their operation in case
such guarantees cannot be provided. We focus on software-
based implementations of TM (STM) [25] due to its flexibil-
ity in experimenting with different implementation policies
as well as the lack of hardware support for general transac-
tional operations in today’s systems.

STM is a good fit for distributed systems since the over-
heads of metadata management, even for transactions that
execute within a single node, are hidden by the latency of
communication operations that access remote data. Not sur-
prisingly, researchers have exploredDistributed STM (DSTM)
designs that support the transactional programming model
on such platforms [19, 22, 5, 20, 27, 9]. Unfortunately, to-
day’s DSTM designs do not adequately fulfill the scalabil-
ity and the dynamic multi-threaded multi-node parallelism
requirements of recent PGAS languages (Section 2). Fur-
thermore, today’s DSTM designs require the programmer to
use a library interface to explicitly manage the transactional
state and to identify individual memory operations that ac-
cess the shared data within a transaction. This introduces
enormous burden on the programmer given the distributed
nature of the shared data.

Our work represents the first of its kind effort to address
the language semantics, compiler design, and runtime sup-
port required for implementing distributed concurrency con-
trol mechanisms using scalable DSTM techniques. We un-
dertook our work within Chapel [6, 11], a general-purpose
parallel language being developed by Cray Inc. as part
of DARPA’s High Productivity Computing Systems (HPCS)
program [13]. One of the important features of the Chapel

language is its support for global atomic transactions, which
until this work, have remained unimplemented. Such trans-
actions can be created from a single statement or block of
statements using the atomic keyword:

atomic statement;
Atomic statements can be used to specify transactions that
execute across one or more nodes and intuitively extend
Chapel’s global-view abstraction principles to concurrency
control. Unlike locks, they allow the programmer to write
composable code and to focus only on optimizing data lo-
cality.

1.1 Contributions
This paper makes the following key contributions:

• We define the semantics of the atomic statement global
atomic transactions.

• We demonstrate the first compiler to implement atomic
transactions using DSTM.

• We describe an implementation-independent DSTM
interface that acts as a generalized compiler target and
provides the ability to plug in multiple DSTM imple-
mentations.

• We present one implementation of this interface that
focuses on providing a scalable solution for large-scale
distributed memory systems.

• We demonstrate that our STM design can be scaled to
thousands of nodes, while exhibiting performance that
matches and often exceeds the performance of lock-
based approaches. Our results represent the largest
runs of any DSTM design to date.

Our work has been developed in an open-source manner
and is being maintained as an active branch of the Chapel
open-source repository1. The rest of the paper is orga-
nized as follows. Section 2 overviews the related work in
STMs relevant to this paper. Section 3 uses Chapel code ex-
amples to showcase the programmability benefits of global
atomic transactions over lock-based mechanisms. Section
4 describes the language semantics, compiler design, and
runtime support for global atomic transactions in Chapel.
Section 5 presents the experimental results. We conclude by
describing opportunities for future work in Section 6.

2. RELATED WORK
Today, locks are the most commonly used concurrency

control mechanism in PGAS languages. Locks protect con-
current accesses to shared data using the property of mutual
exclusion, wherein only one task executes the critical section
– code that modifies shared data – corresponding to a given
lock at any given time. However, locks have a number of
programmability and performance limitations. First, locks
protect concurrent accesses to shared data by essentially se-
rializing the execution of all critical sections corresponding
to a given lock. While serialization may be useful and/or
essential in certain cases, it disallows concurrent access to
disjoint data objects protected by the same lock limiting the

1Interested readers can access our work here:
https://chapel.svn.sourceforge.net/svnroot/chapel/
branches/collaborations/gtm

amount of inherent parallelism that can be exploited. Sec-
ond, from a software engineering perspective, locks do not
compose well; the order in which locks are acquired and re-
leased affects the correctness of the program. Finally, in a
distributed memory system optimizing data locality without
considering the affinity (or lack thereof) of the correspond-
ing locks may be sub-optimal, since operations on locks may
require additional remote messages.

Chapel is one of the three languages initiated by the HPCS
program, the other two being X10 [8] and Fortress [4]. Since
their inception all these languages listed the atomic keyword
as part of their language specification, albeit with widely
varying usage and semantics. X10’s atomic statement uses
lock–free and wait-free synchronization mechanisms and not
STM. Further, X10 requires all the memory locations ac-
cessed in the atomic statement to be local to the node on
which the task is executing. Fortress, unlike X10, relies on
STM mechanisms to implement its atomic statement. How-
ever, it is similar to X10 in not allowing remote operations
within its atomic statement. On the other hand, Chapel’s
atomic statements require DSTM capabilities and thus pro-
vide an excellent vehicle for exploring the benefits of TM for
large-scale parallel applications.

Much of today’s work on developing language support for
TM has chiefly focussed on desktop multi-core systems [1,
15, 28, 29]. These efforts have proposed language exten-
sions that enable programmers to intuitively identify trans-
actions, while using a STM runtime library to implement
the high-level language constructs. We build on this wealth
of knowledge but extend it beyond multi-core systems.

The majority of today’s DSTM designs rely on software-
based global cache coherency protocols and have not been
demonstrated to scale to the system and application sizes
required by the HPC community [19, 22, 20, 9]. Cluster-
STM [5] and GTM [27] are the only DSTM designs to tar-
get the PGAS model. Cluster-STM identified two important
features required for building DSTM designs: (1) transac-
tional RPCs to optimize for locality, and (2) as in distributed
databases, collocating all the metadata corresponding to a
memory location within the same node responsible for that
location, thus combining the data and metadata request into
a single message. Unfortunately, Cluster-STM supports only
one thread of execution within a node, thus limiting the
maximum number of transactions that can execute concur-
rently at any given time to the total number of static SPMD
processes created at program startup. This limitation not
only impacts the throughput, but also impacts the program-
ming model (only one thread can issue transactional requests
per node) and the interface (node-id is sufficient to identify
caller node). While GTM addressed few of the issues, it
is similar to the other DSTM designs in that it does not
provide any kind of language or compiler support for iden-
tifying transactions. Our work builds on both Cluster-STM
and GTM, and is a collaborative effort between one of the
authors of Cluster-STM and the authors of GTM.

3. ATOMIC STATEMENTS IN CHAPEL
Chapel supports a portable programming model that ab-

stracts the underlying system architecture from the pro-
grammer. It provides high-level language abstractions for
specifying parallelism and locality, and uses runtime mech-
anisms to distribute the data and computation on the tar-
get architecture as necessary. This essentially permits the

1 const D = [0 . .m−1] ;
2 var BD = D dmapped Block (boundingBox=D) ;
3 var T: [BD] int ;

5 T[idx] += val ; // UNSYNC

7 atomic T[idx] += val ; // ATOMIC

9 var lockT : [LD] sync bool ;
10 tmp = lockT [idxLock] ; // SLA

11 T[idx] += val ;
12 lockT [idxLock] = true ;

14 var sT : [BD] sync int ;
15 sT [idx] += val ; // SDA

Figure 1: HPCC Random Access Benchmark

programmer to write portable application software across a
wide-range of parallel architectures – from shared memory
multicore systems to distributed memory clusters.

We present three basic concepts of the Chapel language:
domains, domain maps, and locales. A domain is a first class
representation of an index set over which arrays are defined.
Domain maps specify how indices of a domain are mapped
to actual memory locations. Domain maps determine if ar-
rays are distributed or not. Chapel supports the concept of
locales to allow users “specify and reason about the place-
ment of data and tasks on a target architecture in order to
tune for locality” [11]. For example, on a distributed mem-
ory cluster, a locale refers to the multicore processor node
since tasks executing on a given node pay a larger price to
access remote memory on other nodes relative to accessing
local memory on their own nodes. Thus, domain maps can
be used to describe arrays stored on a single locale or parti-
tioned across multiple locales.

The code listing in Figure 1 demonstrates a simple exam-
ple of updating a single element of a distributed array in
Chapel. This example captures the key computation of the
HPCC Random Access (RA) benchmark [14] (Section 5).
First, we declare a domain D over the set of indices [0..m
-1]. Next, we use a pre-defined domain map, called Block
distribution, to partition the indices of D into approximately
equal sized blocks and distribute it across all the locales
(line 2). Finally, we declare T as an array of integers over
the distributed domain BD, making it a one-dimensional dis-
tributed array of size m. Now, accessing this array is quite
straight-forward and follows the same syntax as accessing a
non-distributed array. Given a random index idx, the dis-
tributed array T can be accessed as follows: T[idx] += idx,
irrespective of the physical locale that holds T[idx] (UN-
SYNC, line 5). This is essentially made possible by Chapel’s
support for domains and domain maps, and is a key concept
for providing a unified global-view abstraction for accessing
distributed data-structures.

Chapel provides language support for concurrency control
to ensure concurrent accesses to shared data are consistent
with each other. For example, Chapel provides synchroniza-
tion variables (or sync variables for short) that have an ad-
ditional bit of metadata, called the full/empty bit (FEB),
in conjunction with regular data values. The additional
bit indicates whether the variable holds meaningful data
(full) or not (empty). Chapel provides synchronized block-

1 on T[idx] do T[idx] += va l ; // UNSYNC

3 on T[idx] do atomic T[idx] += val ; // ATOMIC

5 on lockT [idxLock] { // SLA

6 tmp = lockT [idxLock] ;
7 on T[idx] do T[idx] += val ;
8 lockT [idxLock] = true ;
9 }

11 on sT [idx] do sT [idx] += val ; // SDA

Figure 2: Optimizing for data-locality

ing load and store operations that operate on the data only
if the FEB meets certain pre-conditions. A synchronized
load operation blocks until the FEB is “full”. Once “full,” it
changes it to “empty” and returns the contents of the data
part. A synchronized store operation blocks until the FEB
is “empty”, and only then performs the store operation and
sets the FEB to “full”.

Figure 1 presents two solutions for implementing the re-
quired concurrency control using sync variables. The Sync
Lock Array (SLA) (lines 9− 12) uses an independent array
of locks (lockT). The downside here is that the programmer
has to establish the mapping between the lock array lockT
and the data array T. This requires choosing an appropriate
domain map LD for the lock array (not shown) and calculat-
ing idxLock corresponding to idx. The size of the lock array
must be chosen wisely in order to balance serialization over-
heads (small lock array), space overheads (large lock array),
and lock affinity. For example, extra remote communica-
tion operations will be required if locks and table elements
do not map evenly across locales, negatively impacting per-
formance. The Sync Data Array (SDA) declares sT as an
array of sync variables and relies on the compiler to gen-
erate the appropriate synchronized load or store operation
(line 14/15). However, in addition incurring a large space
overhead, declaring sT as a sync array forces all unsynchro-
nized accesses to use special methods (see [11]).

On the other hand, we can use the atomic statement to
specify the required concurrency control in an intuitive man-
ner (ATOMIC, line 7). Atomic statements provide a generic
concurrency control mechanism for Chapel tasks: they al-
low the programmer to identify code sequences that access
shared data and permit the compiler to select an implemen-
tation based on the details of the code and target architec-
ture. Atomic statements simplify the task of the program-
mer and overcomes the limitations of both SLA and SDA.

Figure 2 uses the on statement to optimize for data locality
by performing the update on the locale that holds the data.
Here the expression following the on statement determines
where the update has to execute. In our case, it is the lo-
cale that holds T[idx]. While UNSYNC (line 1), ATOMIC
(line 3), and SDA (line 5 − 9) are straight-forward to opti-
mize, the programmer is required to consider the lock array
and the data array separately in SLA. This highlights one
of the unique advantages of atomic statements over locks on
distributed systems.

The code listing in Figure 3 updates two elements of the
distributed array in an atomic manner and is representative
of a typical bank transaction. This example demonstrates
the benefits of atomic statements in writing composable soft-

1 proc t r a n s f e r (idx : int , va l : int) {
2 on T[idx] do atomic T[idx] += val ;
3 }

5 atomic {
6 t r a n s f e r (idx1 , va l) ;
7 t r a n s f e r (idx2 , −1∗va l) ;
8 }

Figure 3: Bank Transaction

ware. Atomic statements can be composed such that an in-
ner atomic statement is contained within an outer atomic
statement. Further, we can reuse locality optimizations that
are already in place (line 2). On the other hand, lock based
implementations of this kernel are harder to program and
must handle the following cases2: (1) Enforce a global order
in which locks are acquired and released to avoid deadlocks.
(2) Ensure the same lock is not acquired twice. (3) Acquire
both the locks before performing the actual updates, requir-
ing additional remote communication messages. (4) Opti-
mize for the locality of data and corresponding locks sepa-
rately.

4. GLOBAL ATOMIC TRANSACTIONS
Our work represents the first of its kind effort to address

the language semantics, compiler design, and runtime sup-
port required for implementing distributed control mecha-
nisms using scalable DSTM mechanisms. This section de-
scribes our work within the Chapel language and presents
the language semantics (Section 4.1), compiler design (Sec-
tion 4.2), implementation-independent DSTM interface tar-
geted by compiler (Section 4.3), and finally one implemen-
tation of the DSTM interface (Section 4.4).

4.1 Language Semantics
The atomic keyword can be added to a single statement

or a statement block. This creates a new transaction and
begins executing the statement (or statement block) with
transactional semantics on the same locale (Figure 1, line 27).
Atomic transactions can also be created on a specific target
locale using the on statement (Figure 1, line 28). In this case
an atomic transaction is created, executed, and committed
on the target locale specified by the on statement. In effect,
Chapel’s atomic keyword provides the programmer a uni-
fied and intuitive interface to identify global atomic transac-
tions. These transactions may access data on a single locale
or multiple locales depending on where data is distributed
at runtime.

One of two things may occur during the execution of the
transaction. The transaction may execute without conflict-
ing with other transactions. Conflicts arise when two or
more transactions accesses the same data and at least one
of these accesses is a write. In this case, the transaction can
commit its speculative state. On the other hand, transac-
tions may abort due to conflicts. This would rollback the
transaction to where it started and retry its operation. The
language semantics do not enforce any restrictions on when

2Interested readers can check out the different versions here:
https://chapel.svn.sourceforge.net/svnroot/chapel/
branches/collaborations/gtm/test/users/ssridhar/k-
ernels

conflicts are detected and how they are resolved. We now
describe the language semantics in greater detail.

Control Flow. The effect of the atomic keyword extends
beyond the static scope of the block statement. In particu-
lar, it extends to function calls and on statements in its dy-
namic scope. Chapel does not have C/C++ style goto state-
ments. This implies control cannot enter into the atomic
statement block at an arbitrary point. Control flow may
be altered using return, break, and continue statements.
These statements commit the transaction before transferring
control out of the atomic statement. Chapel on statements
can be used inside atomic statements to specify the target
locale on which the transaction has to execute certain oper-
ations to benefit from data locality. At runtime, the target
locale may refer to the same locale on which the current task
is executing or may refer to a remote locale.

Atomicity Guarantees. Our specification guarantees global
atomic transactions will execute in an atomic manner with
respect to each other. This implies we support weak-atomicity
semantics. It is the responsibility of the programmer to en-
sure that shared data accessed inside atomic statements is
not accessed outside atomic statements. This restriction can
be relaxed if such operations are guaranteed to not happen
concurrently, e.g., across program phases separated by, say,
barrier operations. An alternate model for atomicity is the
strong atomicity model where transactions are guaranteed
to execute in an atomic manner with respect to all opera-
tions. Our choice of weak-atomicity is primarily driven by
the performance overheads and implementation challenges
in supporting strong atomicity. We plan to revisit this as-
pect of our design as part of future work.

Nested Atomic Statements. One of the primary benefits
of atomic statements over locks is that they are compos-
able. We currently provide flat-nesting semantics for nested
atomic statements. An abort at any nesting depth within
the transaction returns control to the beginning of the outer-
most transaction. This choice is primarily motivated by the
simplicity of implementation but also by the lack of com-
pelling code examples that require more sophisticated trans-
actional nesting semantics such as closed- and open-nesting
semantics. We allow nesting of on statements and atomic
statements. In case the abort happens within an on state-
ment inside the atomic statement, then the control returns
to the locale that first created the transaction.

Forward Progress. The forward progress property ensures
that threads seeking to modify shared objects will eventually
complete their operations. Our current specification requires
that the underlying implementation be deadlock-free. We
are currently investigating the benefits and applicability of
more sophisticated forward progress guarantees like wait-
freedom, lock-freedom and obstruction freedom.

Word-based vs Object-based STM. Chapel is a statically
typed language. Its rich set of data types include predefined
primitive types, enumerated types, locality types, structured
types (classes, records, unions, tuples), and data parallel
types (ranges, domains, arrays). Early on we decided to
implement a word-based STM given its flexibility in sup-

Chapel-to-C

Compiler

Chapel Compiler

Generated

C Code

Chapel
Internal
Modules

Chapel Runtime Library

(written in C)

Communication, Threading,

Synchronization Libraries

Chapel

Executable

Chapel
Source
Code

Chapel
Standard
Modules

Standard C

Compiler/Linker

Figure 4: Chapel Compiler and Runtime System:
(�) denotes DSTM specific modifications.

porting a wider-range of types than an object-based STM
designs since the latter enforces transactional semantics only
for class objects. We are currently investigating a hybrid
approach for supporting both object-based and word-based
STM.

Parallelism within Transactions. Chapel provides a wide
range high-level abstractions for data and task parallelism.
For example, the programmer can create data-parallel loops
using forall statements, task parallel loops using coforall
, unstructured task parallelism using begin, and structured
task parallelism using cobegin/coforall statements. These
statements create new tasks to execute the specified loop
body or statement block in parallel. Our current proposal
for atomic transactions do not allow parallel task creation
within a transaction. We are currently considering a short-
term solution of automatically serializing parallel constructs
that occur inside atomic statement and warning the pro-
grammer if that’s the case. The primary challenge for sup-
porting parallel task creation within transactions would re-
quire dealing with: (1) Conflicts between parallel tasks cre-
ated inside an atomic statement (2) Defining the semantics
regarding aborts, i.e. whether to abort all the tasks when
one of them aborts. Since transactions are typically designed
to be short-lived (to avoid conflicts), one must also consider
the cost of creating new parallel tasks inside transactions.

Prohibited Operations. In general, we do not permit op-
erations that cannot be executed in isolation, rolled back, or
that interfere with the progress guarantees of atomic trans-
actions. For this reason the following operations are cur-
rently prohibited within atomic transactions: I/O opera-
tions, blocking synchronization operations such as accessing
synchronization variables, and calling external C functions
supported via its extern capability.

4.2 Compiler support
The first step in the compilation process of a Chapel pro-

gram involves the Chapel-to-C compiler (Figure 4). As the
name suggests, it is a source-to-source compiler and converts
the input Chapel program into C language code. It is imple-
mented as a sequence of passes and starts with building an
intermediate representation (IR) of the input source code.
This representation is modified by the subsequent compiler
passes eventually resulting in the C language code. To-
day the officially released Chapel compiler parses the state-
ment(s) contained within the atomic keyword but ignores

the keyword itself. In our branch of the compiler sources,
we added a new compiler pass that is primarily responsi-
ble for processing the statements following the atomic key-
word. Additionally, we enhanced the code generation pass
to target the implementation-independent DSTM interface
(Section 4.3) when generating code for atomic transactions.
Very briefly, our new compiler pass transforms the IR as
follows:

• Inserts transaction begin and commit calls to mark
the scope of the atomic block statement. Also inserts
transaction commit calls within this scope in order
handle break, continue, and return statements.

• Replaces non-transactional memory operations that ac-
cess shared data with transactional equivalents. This
includes both local and remote memory operations.

• Creates a clone of all the functions that appear within
the static scope of the atomic block statement, and
recursively handle all the memory and function calls
in the entire body of cloned functions.

Function cloning is necessary to accommodate invocation
of the same function from both inside and outside atomic
statements. There are two types of function calls that need
to be handled. First regular function calls that get called
directly. This is the only category that is encountered in
most compilers that support atomic transactions. The sec-
ond category, unique to Chapel, is functions that are invoked
through the transactional RPC mechanism and is used to
implement on statements. In this case, the compiler clones
the function that is to be invoked and additionally generates
code that relies on the runtime’s RPC invocation capabilities
to call this function within a transaction.

4.3 High-level STM Interface
The next step in the compilation process involves link-

ing the generated C code with Chapel’s runtime library
(Figure 4). Chapel’s runtime implements the Partitioned
Global Address Space (PGAS) model and maintains a shared
heap on each locale. It is responsible for bootstrapping the
Chapel program across multiple locales, handling intra-node
task management, and implementing inter-locale communi-
cation capabilities. Many of the runtime’s capabilities lever-
age existing third-party libraries for their implementation.
Chapel’s runtime exports a high-level implementation inde-
pendent interface that is targeted by the Chapel-to-C com-
plier’s code-generation pass. This interface acts a glue be-
tween the Chapel-to-C compiler and the actual runtime im-
plementation. For example, the runtime’s communication
layer supports one one-sided operations and RPC mecha-
nisms in a portable manner and has been be implemented
using GASNet, MPI, or PVM.

We added an implementation independent STM interface
to the runtime interface that is supplied to the compiler.
Our new STM interface is general enough to allow different
STM implementations. All these methods use the transac-
tion descriptor to identify the transaction. We require any
implementation of this interface to be thread-safe in order
to be invoked by more than one thread on a given locale.
For space reasons, we only list the overall functionality of
this interface:

• Create (TX CREATE) and destroy (TX DESTROY)
transaction descriptors.

• Begin (TX BEGIN), commit (TX COMMIT), and abort
transactions (TX ABORT).

• Transactional load (TX LOAD) and transactional store
(TX STORE) for performing multi-word load and store
of local data with transactional semantics.

• Transactional malloc (TX MALLOC) and transactional
free (TX FREE). Memory allocated using the trans-
actional malloc procedure is automatically freed on
an abort and memory freed using transactional free
is made visible globally only on a successful commit.

• Transactional get (TX GET) and transactional put
(TX PUT) for performing multi-word one-sided get
and put of remote data with transactional semantics.

• Transactional RPC (TX FORK) for supporting on state-
ments inside atomic transactions.

4.4 GTM2: STM Runtime Implementation
There are numerous algorithms and strategies to imple-

ment Chapel’s implementation-independent STM interface
we proposed in the last section. In this section, we present a
prototype distributed STM implementation of this interface
called Global Transactional Memory 2 (GTM2). GTM2 is
build specifically for Chapel’s runtime system and uses the
runtime’s communication, task, thread, and memory inter-
face in its implementation.

GTM2 maintains a variety of metadata information for
guaranteeing the necessary transactional semantics. This
includes: per-node shared metadata, transaction descriptor,
and per-node shared transaction descriptor table.

The per-node shared metadata, typically referred to as
ownership records (ORecs), is checked as part of every trans-
actional load, store, get, or put operation to determine the
status of the memory location being accessed. Each hash-
table entry stores metadata for some unique set of memory
locations that is determined by a mapping function. Each
entry stores a 63-bit version number and a 1-bit write flag.
The write flag is set according to the eager acquire policy
for transactional store and put operations (described below).
The transaction descriptor is private to a given transac-
tion and stores the following metadata pertaining to that
transaction: the transaction’s status, read/write set, nest-
ing level, list of remote nodes on which the transaction has
accessed data, and lists that track dynamic memory man-
agement.

Each node maintains a shared transaction descriptor table
to enable transactions to create and maintain metadata in a
distributed manner across different nodes. This allows us to
slice the transaction descriptor across the different nodes in-
stead of sending the metadata as part of each request. This
approach was originally advocated by distributed databases
and has been used in other distributed STMs as well [5].
Thus, we maintain the metadata pertaining to a given node
on that node itself. In other words, when transactions access
data on other nodes, they maintain a transaction descriptor
on each of those nodes to hold their private metadata and
rely on the ORecs on those nodes to store the shared meta-
data.

The core STM algorithm of GTM2 is based on a word-
based, read versioning, deferred update, and eager acquire
scheme. It borrows from TinySTM [16] and TL2 [12], two
of the most popular multicore STM libraries. With read

versioning, version numbers are used to track the status of
memory locations between the time of the first read and each
subsequent access (another read, store, get, put, or com-
mit). Concurrent store/put/commit operations from other
transactions, with which the reads conflict, are identified by
tracking changes to these version numbers. With deferred
update, each transaction maintains a private write buffer to
temporarily hold the new values of transactional store/put
operations until the transaction commits. With eager ac-
quire, transactional store/put operations acquire exclusive
ownership in order to avoid future conflicts. The implemen-
tation consists of two components, namely local-stm and
remote-stm. The local-stm component handles operations
that are purely local to the locale executing the transac-
tion, while the remote-stm component handles operations
that require remote communication. We now describe our
implementation in greater detail.

4.4.1 Local-STM

In GTM2, beginning a new transaction is always a local
operation. It uses setjmp to take a snapshot of the thread’s
state and increments the nesting level if it is the outermost
transaction. Since we support flat-nesting, encountering a
nested TX BEGIN does not require any additional action.

GTM2 supports both aligned and non-aligned multi-word
transactional load operations. We present the algorithm for
aligned 8 byte memory words here: (1) Atomically read the
ORec entry corresponding to source address and determine
if the write flag is set. (2) If the write flag is set and a write
set entry corresponding to the source address of the load
then return the latest value from the write set entry. (3) If
the write flag is set and a write set entry is found but not for
the source address then return the value from memory. (4) If
the write flag is set and no entries are found on the write
set for this ORec then it implies some other transaction is
currently owning this ORec. Abort the current transaction
because this signals a conflict. (5) If the write flag is set is
not set, create a new read set entry with the version number
and value read from memory. Return value.

GTM2 supports both aligned and non-aligned multi-word
transactional store operations. We present the algorithm for
aligned 8 byte memory words here: (1) Atomically read the
ORec entry corresponding to the destination address. (2) If
the write flag is set and a write set entry corresponding to
the destination address is found then store the new value
in write set entry. (3) If the write flag is set and a write
set entry is found but not for the destination address of the
store, then create a new write set entry and add it to the
write set with the address of the ORec, version number as
stored in the previous write set entry, value to be stored,
and destination address of the store operation. (4) If the
write flag is set but the transaction’s write set does have a
corresponding entry, abort the transaction since some other
transaction is currently owning this ORec. (5) If the write
flag is not set but a read set entry is found, validate the
read set entry (described below). Abort the transaction if
the read set entry cannot be validated. Otherwise, create a
new write set entry as mentioned in Step 3 and add it to the
write set. (6) If the write flag is not set and we do not have a
read-set entry corresponding to the destination address then
simply create a new write set entry as mentioned in Step 3
and add it to the write set.

The transactional malloc operation proceeds as follows:

allocate the required memory and release it if the transaction
aborts. The transactional free operation proceeds as follows:
add the memory buffer to a list of buffers that are to be
reclaimed on a commit.

The transactional commit operation is only required for
the outermost transaction and happens in two phases. In the
first phase, we acquire a time-stamp that is unique within
the current node and validate the read set. The validation
of the read set proceeds as follows:(1) For each entry in the
read-set, read the ORec entry from memory using the ad-
dress stored in that read-set entry. (2) If the ORec entry has
the write flag set then abort the transaction if this transac-
tion doesn’t own that ORec (absent in its write set). (3) If
there is no write flag set and the version number do not
match then abort the transaction. This basically implies
that some other transaction is currently writing to or has
already updated one of the memory locations that maps to
the same entry in the metadata array. (4) Otherwise, mark
the read set entry as valid. The first phase of the commit
operation succeeds only if the entire write set is validated.

The second phase of the commit operation stores the val-
ues of the write-set entries in the corresponding memory
locations and releases the ORec by writing the time-stamp
obtained in the first commit phase into the ORec. This op-
eration always succeeds.

The local transactional abort operation aborts the trans-
action by setting the transaction’s status to aborted, discards
the read-set, releases the entries in the write set by unset-
ting the write flag in the ORec entries, retries the transaction
from the beginning using longjmp.

4.4.2 Remote-STM

The remote-stm component implements STM procedures
that are remote. Similar to local transactional load and
store operations, we support both aligned and non-aligned
multi-word transactional get (remote load) and put (remote
store) operations. These rely on GASNet’s Active Messages
(AM) capability to invoke RPCs on target locales. It should
be noted that we send only one request to the remote node
irrespective of the alignment and size. For example, the
transactional get algorithm is as follows: (1) Add the target
node to the transaction’s remote node list. (2) Send a GAS-
Net AM to remote node to invoke the get handler. (3) On
the remote node, the get handler first locates the transac-
tion descriptor corresponding to the source transaction that
issued this request. If this is the first request, it creates a
new descriptor and stores it in the shared descriptor array.
(4) The get handler invokes a local transactional load oper-
ation (described in Section 4.4.1) on the remote locale. If
the operation succeeds it returns data to the source node.
Otherwise it sends a message to the source node to abort
the transaction. (5) The source transaction waits for the
target node to send the data. If the data is returned, the
transaction proceeds with the next request. If the operation
fails, then it aborts the transaction.

The transactional put operation is similar to the get op-
eration, but calls a put handler on the target locale. The
put handler invokes the local transactional store operation
described in Section 4.4.1.

The transactional RPC mechanism (TX FORK) is imple-
mented as follows: (1) Add the target node to the transac-
tion’s remote node list. (2) Send an AM to remote node to
invoke fork handler. (3) The fork handler first locates the

transaction descriptor corresponding to the parent transac-
tion that issued this request. If this is the first request, it
creates a new descriptor and stores it in the shared descrip-
tor array. It uses setjmp to store the state in order to jump
back on an abort. (4) The fork handler then executes the
transactional clone on the remote node. In case of an abort,
it uses the longjmp to jump back to the point of setjmp
and then return to the source transaction with a failure sta-
tus. (5) The source transaction continues only if it receives
a success. Otherwise, it aborts the transaction if this is the
top-level transaction. If not, it in turn reverts to the point
of setjmp and in returns a failure status to its source.

When a transaction encounters a conflict and has to be
aborted, it first transfers the control back to the locale that
started the outermost transaction. Once there, the trans-
action invokes the corresponding abort handler on each of
the remote locales on which the transaction executed. The
abort handler essentially discards the read-set, releases the
entries in the write set by unsetting the write flag in the
ORec entries, and returns control back to the calling trans-
action. The final step involves calling the local transactional
abort on the locale which started the outermost transaction.

The transactional commit operation is required by the
outermost transaction. It first invokes commit handlers on
each of the remote locales on which the transaction executed.
These handlers in perform the first phase of the commit op-
eration. The whole transaction aborts if any of these op-
erations fail. Next, the same process is repeated for the
second phase of the commit operation. However, this time
all operations are guaranteed to succeed.

5. EVALUATION
This section evaluates our design using two workloads.

The primary motivation of these experiments is to show
the viability of our design on large-scale systems. It is
worth noting that our results represent the largest runs of
any distributed STM design as well as Chapel programs to
date. All our experiments were performed on the NCCS
Jaguar Cray XT5 system at Oak Ridge National Labora-
tory. The Jaguar XT5 system consists of 18688 compute
nodes, with each node comprising of two 2.5 GHz Hex-core
AMD Istanbul processors with 16GB of DDR2 memory and
a Cray Seastar2+ NIC. Nodes are interconnected in a 3D
torus topology, providing very low latency messaging be-
tween nodes. Chapel’s runtime was configured to use the
GASNet communication library, FIFO tasks layer, and the
Pthreads threading layer. All our workloads were compiled
using Chapel’s −−fast compiler flag.

5.1 Random Access Kernel
The Random Access (RA) kernel performs a random se-

quence of NU updates on a m element distributed table/ar-
ray T. The updates are done in parallel and require con-
currency control mechanisms to guarantee correctness. This
kernel is based on the RA benchmark in the HPC Chal-
lenge (HPCC) benchmark suite [14]. We use the on state-
ment to optimize for locality as illustrated in Figure 2 and
perform the update operation on the locale that holds the
element being updated. We tested four different implemen-
tations of the RA kernel essentially differing in the con-
currency control mechanism used to protect concurrent up-
dates: atomic transactions (ATOMIC, line 3), sync lock ar-
ray (SLA, line 5 − 9), sync data array (SDA, line 11), and

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 32 64 128 256 512 10242048

E
x

e
c
u

ti
o

n
 T

im
e
 (

s
)

Locales

SLA
SDA

UNSYNC-SDA
MLA

ATOMIC
UNSYNC

(a) Table Size 224 elements per locale

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32 64 128 256 512 10242048

E
x
e

c
u

ti
o

n
 T

im
e
 (

s
)

Locales

SLA
MLA

ATOMIC
UNSYNC

(b) Table Size 228 elements per locale

Figure 5: RA Kernel: Weak Scaling Results

mutex lock array (MLA). The MLA implementation is simi-
lar to SLA but uses mutex operations internal to the Chapel
runtime’s threading layer. On the XT5 system, these locks
are directly implemented using Pthread mutexes. We rely on
Chapel’s extern ability to invoke externally defined C func-
tions. In other words, the mutex initialization, lock, and
unlock procedures are essentially black-boxes to the com-
piler, thus requiring the programmer to manually manage
the storage and communication when accessing these mu-
texes. The on statement ensures we access the mutex on
the locale on which it is allocated on and not remotely. Us-
ing mutex locks internal to the runtime does not guarantee
portability and has been used here only for evaluation pur-
poses.

In addition to this, we also tested the performance of the
unsynchronized version (UNSYNC, line 1) and unsynchro-
nized SDA version (UNSYNC-SDA). The UNSYNC-SDA is
similar to SDA but uses special functions (readXX() and
writeXF()) to perform the operations on synchronization
variables in an unsynchronized manner. These two versions
do not guarantee correctness since some of the updates may
be lost due to the lack of synchronization.

We now present the performance and scalability results for
the RA kernel. Figure 5(a) and 5(b) present the execution
time results for two different table sizes, namely 224 per
locale and 228 per locale. We plot the number of locales
on the x-axis against the execution time for performing the
updates on the y-axis. Both of these perform 218 updates
per locale. As we increase the number of locales, the size
of the table and the total number of updates also increase
by the same factor. The large table size, 228 entries per

locale, matches the problem size used in the Chapel’s 2009
HPC Challenge entry [7]. On the XT5 system, Chapel’s
sync variables are implemented using two Pthread condition
variables, each requiring 48 bytes of storage. Therefore, we
were unable to run the UNSYNC-SDA and SDA versions
given the memory requirements of declaring T as an array
of synchronization variables for the large problem size. For
SLA and MLA, the lock array is 1/8 times the table size.
This ensures that no additional remote communication is
required to access the locks. We verified that serialization
was not an issue given the smaller size of the lock array
relative to the table size.

Overall, we observe that on two or more locales, atomic
transactions (ATOMIC) perform similarly to the unsynchro-
nized case (UNSYNC). This is a significant result and indi-
cates that our STM implementation guarantees correctness
without paying a performance penalty or requiring signifi-
cant changes to the code. This demonstrates that STM is a
good fit for distributed systems since the overheads of meta-
data management, even for transactions that execute within
a single node, are hidden by remote communication latency
introduced by the rest of the program. Further, these results
show that atomic transactions in Chapel perform similarly
to the MLA version but exceed the performance of the SLA
and SDA versions. Even though, sync variables are sup-
ported by the compiler and offer a richer set of semantics
they are implemented using Pthread conditional variables
and thus perform poorly compared to the Pthread mutex
locks used by the MLA version. The Chapel team is cur-
rently considering alternatives that reduce the overheads of
sync variables.

Figure 6 presents detailed statistics for atomic transac-
tions in Figure 5(b). Figure 6(a) presents the percentage
of time spent in creating (CREATE), retrying (FAIL), and
successfully committing (SUCCEED) transactions. We can
make two observations here. First, most transactions exe-
cute without conflicts. Second, creating the transaction de-
scriptor is a costly operation and in some cases exceeds the
time taken to execute the transaction. Currently, Chapel’s
runtime dynamic memory allocator trivially provides thread-
safety, i.e. allowing multiple threads to call the memory al-
locator functions, by using a single lock. This introduces
heavy contention when concurrent tasks attempt to acquire
the same lock to allocate transaction descriptors. We are
currently exploring alternatives that reduce the overheads
of creating a transaction.

Figure 6(b) presents the break-down of time spent in trans-
actions that commit successfully (i.e. SUCCEED compo-
nent in Figure 6(a)). On an average, 70% of the time is
spent in executing local transactional operations (LOCAL)
while the rest is spent in executing non-transactional op-
erations (NON-TX). Since transactions in RA do not per-
form any remote communication they do not spend time in
sending/receiving messages (COMM) or in executing AM
handlers on the remote locales (HANDLER).

Figure 6(c) presents the break-down of LOCAL transac-
tional operations within successful transactions in Figure
6(b). Transactional load operations constitute anywhere
from 80% to 95% of the time spent in transactions that
successfully commit. Each transaction performs as many as
20 load operations to determine the exact location of the
array corresponding to the actual index. As noted in Sec-
tion 3, Chapel arrays are implemented using domains and

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

%
 o

f
T

o
ta

l

Locales

CREATE
FAIL
SUCCEED

(a) Fraction of time spent creating, retry-
ing, and committing transactions

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

%
 o

f
T

o
ta

l

Locales

NON-TX
LOCAL
COMM
HANDLER

(b) Breakdown of time spent in successful
transactions

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

%
 o

f
T

o
ta

l

Locales

LOAD
STORE
MALLOC
FREE
COMMITPH1
COMMITPH2
ABORT

(c) Breakdown of LOCAL transactional
operations

Figure 6: RA Kernel: Detailed statistics for atomic transactions (ATOMIC) in Figure 5(b)

domain maps. When the compiler generates code for access-
ing distributed arrays it also instruments the domain and
domain map data-structures of the array Section 3. In the
general case, we need to instrument these data-structures
since domains and domain maps may grow or shrink over
their lifetimes. However, the RA kernel fixes the domain
and domain map for its entire operation. We are currently
exploring compiler optimizations that avoid instrumenting
these data-structures in such cases.

The size of the read/write set does not vary with the table
size or the number of updates. This is because each transac-
tion always updates one table entry. The average size of the
read-set for a single transaction is 168 bytes, implying the
transaction is performing 21 8-byte load operations. The
average size of the write-set is 8 bytes, implying the trans-
action is performing a single 8-byte store operation. In our
experiments we also studied the effect of number of tasks per
locale, size of lock array, and a break down of transactional
operations. See [26] for more details.

5.2 Random Access 2 Kernel
The Random Access 2 (RA2) kernel performs a sequence

of NU updates to two random elements of a m element dis-
tributed table/array. The key aspect of this kernel is that
transactions access data and maintain metadata state across
two locales. This kernel represents a typical bank transac-
tion and was first introduced in Section 3 (Figure 3). While
a single update operation may possibly be implemented by
hardware instructions, updating two memory locations on
different locales requires software support underscoring the
importance of this kernel. Similar to RA we tested six dif-
ferent implementations of the RA2 kernel, essentially differ-
ing in the concurrency control mechanism used to protect
concurrent updates: atomic transactions (ATOMIC), mu-
tex lock array (MLA), sync data array (SDA), sync lock
array (SLA), unsynchronized (UNSYNC), and unsynchro-
nized SDA (UNSYNC-SDA).

As mentioned in Section 3, developing the lock-based ver-
sions of the RA2 kernel is not as straightforward as the
ATOMIC version and adds significant burden on the pro-
grammer. To reiterate, lock based implementations of this
kernel are harder to program and must handle the following
cases: (1) Enforce a global order in which locks are acquired
and released to avoid deadlocks. (2) Ensure the same lock
is not acquired twice. (3) Acquire both the locks before

 0

 5

 10

 15

 20

1 2 4 8 16 32 64 128 256 512 10242048
E

x
e
c
u

ti
o

n
 T

im
e
 (

s
)

Locales

SLA
SDA

UNSYNC-SDA
MLA

ATOMIC
UNSYNC

(a) Without optimizing data locality

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 4 8 16 32 64 128 256 512 10242048

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

Locales

SLA
SDA

UNSYNC-SDA
MLA

ATOMIC
UNSYNC

(b) With optimizing data locality

Figure 7: RA2 Kernel: Weak Scaling Results

performing the actual updates, requiring additional remote
communication messages. (4) Optimize for the locality of
data and corresponding locks separately.

Figure 7(a) and Figure 7(b) present the weak-scaling re-
sults for the RA2 benchmark for 223 table size and 213 up-
dates per locale. In general, we can make the following ob-
servations: (1) The ATOMIC version exhibits good weak-
scaling characteristics. (2) The ATOMIC version performs
better than all the three lock-based versions. This is the
result of having to acquire both the locks before performing
the actual updates. (3) Optimizing for locality using the
on statement provides significant improvements to perfor-
mance. (4) The lock-based versions perform poorly because

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

%
 o

f
T

o
ta

l

Locales

CREATE
FAIL
SUCCEED

(a) Fraction of time spent creating, retry-
ing, and committing transactions

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

%
 o

f
T

o
ta

l

Locales

NON-TX
LOCAL
COMM
HANDLER

(b) Breakdown of time spent in successful
transactions

 0

 20

 40

 60

 80

 100

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

%
 o

f
T

o
ta

l

Locales

GET
PUT
FORK
COMMITPH1
COMMITPH2
ABORT

(c) Breakdown of LOCAL transactional
operations

Figure 8: RA2 Kernel: Detailed statistics for atomic transactions (ATOMIC) in Figure 7(a)

they issue separate communication messages to first acquire
remote locks before performing the updates.

Figure 8 presents detailed statistics for atomic transac-
tions in Figure 7(a). Figure 8(a) presents the percentage
of time spent in creating (CREATE), retrying (FAIL), and
successfully committing (SUCCEED) transactions. Figure
8(b) presents the break-down of time spent in transactions
that commit successfully (i.e. SUCCEED fraction in Figure
8(a)). Taken together, one can observe that the majority
of the time spent in atomic transactions is in waiting for
remote communication operations to complete. COMM op-
erations are more expensive since they involve the time it
takes to send the request and wait for the reply to arrive.
On the other hand, HANDLER operations do not include
the communication latency. They measure how long each
node spends executing requests from remote nodes. Trans-
action creation overhead no longer is a significant source of
overhead, except in the single locale case, and is overtaken
by remote communication overheads. Overall, one can ob-
serve that STM is a good fit for distributed systems since
the overheads of metadata management are hidden by over-
heads of communication required to access remote data.

Figure 8(c) presents the breakdown of the individual oper-
ations in the COMM component shown in Figure 8(b). Here,
transactional get operations constitute about 75% of the to-
tal time spent in transactions that successfully commit. The
rest is divided between transactional put (10%) and trans-
actional commit (10%) operations. As already mentioned,
a significant portion of the transactional get operations are
to domain and domain map data-structures. We plan to
reduce this overhead as part of future work.

Similar to RA, the size of the read/write set does not vary
with the table size or the number of updates. A transaction
executing on two different locales maintains a read-set of 484
bytes and 72 bytes on the source locale and the remote locale
respectively. In terms of the write-set, a such a transaction
maintains one 8 byte entry on the locale it was created on
(source locale) and one 8 byte entry on the remote locale. A
transaction executing on a single locale, in cases where both
table indices are on the same locale, has a read-set of 336
bytes and a write-set of 16 bytes (twice that of RA).

6. CONCLUSIONS AND FUTURE WORK
This paper describes the language semantics, compiler de-

sign, and runtime support for implementing atomic transac-

tions in Chapel using Software Transactional Memory (STM).
Atomic transactions in Chapel may be local or remote. We
describe the semantics of atomic transactions and demon-
strate first-of-its-kind compiler support for handling local
and remote atomic transactions. Further, we define an im-
plementation independent STM interface that acts as a com-
piler target and demonstrate a scalable implementation of
this interface. Finally, we demonstrate both programma-
bility and performance benefits of atomic transactions over
locks. Our work has been developed in a open-source man-
ner and is being maintained as an active branch of the
Chapel open-source repository. Interested readers can ac-
cess and download the source code using the link provided
in Section 1.

Overall, we are working towards the goal of making this
work available to the HPC user community as part of future
Chapel releases. We are currently in the process of testing
our design with the HPCS Scalable Synthetic Compact Ap-
plication (SSCA) #2 benchmark. Our initial results look
promising. For example, atomic transactions demonstrate
speedups of 1.19 to 1.45 over lock based implementations for
kernel 2 of the SSCA benchmark, using 4096 graph nodes.
At the time of this writing, we were able to test this only up
to 16 XT5 nodes due to lack of time on the system. We plan
to continue explore this benchmark as part of future work.
We are also planning to refine the semantics of atomic se-
mantics in the context of iterator functions, stack references,
and privatization issues due to array alias (=>) operator as
part of future work.

7. ACKNOWLEDGMENTS
The authors would also like to thank Phil Roth for re-

viewing an earlier version of this paper. The work pre-
sented in this paper used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the Depart-
ment of Energy under Contract DE-AC05-00OR22725. This
material is based upon work supported by the Defense Ad-
vanced Research Projects Agency under its Agreement No.
HR0011-07-9-0001.

8. REFERENCES
[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R.

Murphy, B. Saha, and T. Shpeisman. Compiler and
runtime support for efficient Software Transactional
Memory. In PLDI ’06: Proceedings of the 2006 ACM
SIGPLAN conference on Programming language
design and implementation, pages 26–37, New York,
NY, USA, 2006. ACM Press.

[2] S. Alam, R. Barrett, M. Bast, M. Eisenbach,
M. Fahey, J. Kuehn, C. McCurdy, J. Rogers, P. Roth,
R. Sankaran, J. Vetter, P. Worley, and W. Yu. Early
evaluation of ibm bluegene/p. In SC08, Austin, 2008.
ACM/IEEE.

[3] S. R. Alam, R. F. Barrett, M. R. Fahey, J. A. Kuehn,
O. E. Bronson Messer, R. T. Mills, P. C. Roth, J. S.
Vetter, and P. H. Worley. An evaluation of the oak
ridge national laboratory cray xt3. International
Journal of High Performance Computing Applications,
22(1):52–80, 2008.

[4] E. Allan, D. Chase, V. Luchangco, J.-W. Maessen,
S. Ryu, G. L. S. Jr., , and S. Tobin-Hochstadt. The
fortress language specification. Technical Report
Version 0.618, Sun Microsystems, Apr 2005.

[5] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain.
Software transactional memory for large scale clusters.
In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of
parallel programming, pages 247–258, New York, NY,
USA, 2008. ACM.

[6] B. Chamberlain, D. Callahan, and H. Zima. Parallel
Programmability and the Chapel Language. Int. J.
High Perform. Comput. Appl., 21(3):291–312, 2007.

[7] B. L. Chamberlain, S.-E. Choi, S. J. Deitz, and
D. Iten. HPC Challenge Benchmarks in Chapel.
http://chapel.cray.com/hpcc/hpcc09.pdf, 2009.

[8] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming, systems,
languages, and applications, pages 519–538, New York,
NY, USA, 2005. ACM Press.

[9] M. Couceiro, P. Romano, N. Carvalho, and
L. Rodrigues. D2stm: Dependable distributed software
transactional memory. In PRDC ’09: Proc. 15th
Pacific Rim International Symposium on Dependable
Computing, nov 2009.

[10] Cray. The Cascade High Productivity Language.
HIPS, 00:52–60, 2004.

[11] Cray Inc. Chapel Language Specification, 0.785 edition,
2010.

[12] D. Dice, O. Shalev, and N. Shavit. Transactional
locking ii. In Proc. of the 20th International
Symposium on Distributed Computing (DISC 2006),
pages 194–208, 2006.

[13] J. Dongarra, R. Graybill, W. Harrod, B. Lucas,
E. Lusk, P. Luszczek, J. McMahon, A. Snavely,
J. Vetter, K. Yelick, S. Alam, R. Campbell,
L. Carrington, T.-Y. Chen, O. Khalili, J. Meredith,
and M. Tikir. DARPA’s HPCS Program: History,
Models, Tools, Languages. In Advances in Computers,

M.V. Zelkowitz, Ed., volume 72. Elsevier, 2008.
[14] J. J. Dongarra and P. Luszczek. Introduction to the

hpcchallenge benchmark suite. Technical Report
ICL-UT-05-01, Innovative Computing Laboratory,
University of Tennessee-Knoxville, 2005.

[15] P. Felber, C. Fetzer, U. Müller, T. Riegel,
M. Süßkraut, and H. Sturzrehm. Transactifying
applications using an open compiler framework. In
TRANSACT, August 2007.

[16] P. Felber, C. Fetzer, and T. Riegel. Dynamic
performance tuning of word-based software
transactional memory. In PPoPP ’08: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, pages 237–246,
New York, NY, USA, 2008. ACM.

[17] T. E. Ghazawi, W. Carlson, T. Sterling, and
K. Yelick. UPC: Distributed Shared Memory
Programming. Wiley, 2005.

[18] M. Herlihy and J. E. B. Moss. Transactional Memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International
Symposium on Computer Architecture (ISCA), pages
289–300. ACM Press, 1993.

[19] M. Herlihy and Y. Sun. Distributed transactional
memory for metric-space networks. In P. Fraigniaud,
editor, DISC, volume 3724 of Lecture Notes in
Computer Science, pages 324–338. Springer, 2005.

[20] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján,
C. Kirkham, and I. Watson. Distm: A software
transactional memory framework for clusters. In ICPP
’08: Proceedings of the 37th IEEE International
Conference on Parallel Processing. IEEE Computer
Society Press, September 2008.

[21] J. R. Larus and R. Rajwar. Transactional Memory.
Morgan Claypool, 2006.

[22] K. Manassiev, M. Mihailescu, and C. Amza.
Exploiting distributed version concurrency in a
transactional memory cluster. In PPoPP ’06:
Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel
programming, pages 198–208, New York, NY, USA,
2006. ACM Press.

[23] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan,
H. Trease, and E. Aprà. Advances, applications and
performance of the global arrays shared memory
programming toolkit. Int. J. High Perform. Comput.
Appl., 20(2):203–231, 2006.

[24] R. W. Numrich and J. Reid. Co-array fortran for
parallel programming. SIGPLAN Fortran Forum,
17(2):1–31, 1998.

[25] N. Shavit and D. Touitou. Software Transactional
Memory. In Proceedings of the 14th ACM Symposium
on Principles of Distributed Computing, pages
204–213. ACM, Aug 1995.

[26] S. Sridharan. Compiler and Runtime Techniques for
Software Transactional Memory in Partitioned Global
Address Space Languages and Runtime Libraries. PhD
thesis, University of Notre Dame, 2018.

[27] S. Sridharan, J. Vetter, and P. Kogge. Scalable
software transactional memory for global address
space architectures. Technical report, ORNL FT
Technical Report Series, 2009.

[28] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R.
Adl-Tabatabai. Code generation and optimization for
transactional memory constructs in an unmanaged
language. In CGO ’07: Proceedings of the
International Symposium on Code Generation and
Optimization, pages 34–48, Washington, DC, USA,
2007. IEEE Computer Society.

[29] P. Wu, M. M. Michael, C. von Praun, T. Nakaike,
R. Bordawekar, H. W. Cain, C. Cascaval,
S. Chatterjee, S. Chiras, R. Hou, M. Mergen, X. Shen,
M. F. Spear, H. Y. Wang, and K. Wang. Compiler and
runtime techniques for software transactional memory
optimization. Concurr. Comput. : Pract. Exper.,
21(1):7–23, 2009.

