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Abstract. Vector, emerging (homogenous and heterogeneous) multi-core and a 
number of accelerator processing devices potentially offer an order of magni-
tude speedup for scientific applications that are capable of exploiting their 
SIMD execution units over microprocessor execution times. Nevertheless, iden-
tifying, mapping and achieving high performance for a diverse set of scientific 
algorithms is a challenging task, let alone the performance predictions and pro-
jections on these devices. The conventional performance modeling strategies 
are unable to capture the performance characteristics of complex processing 
systems and, therefore, fail to predict achievable runtime performance. More-
over, most efforts involved in developing a performance modeling strategy and 
subsequently a framework for unique and emerging processing devices is pro-
hibitively expensive. In this study, we explore a minimum set of attributes that 
are necessary to capture the performance characteristics of scientific calcula-
tions on the Cray X1E multi-streaming, vector processor. We include a set of 
specialized performance attributes of the X1E system including the degrees of 
multi-streaming and vectorization within our symbolic modeling framework 
called Modeling Assertions (MA). Using our scheme, the performance predic-
tion error rates for a scientific calculation are reduced from over 200% to less 
than 25%. 

1   Introduction 

Computing devices like vector processors [3], homogeneous and heterogeneous 
multi-core processors [1, 2], Field Programmable Gate Arrays (FPGAs) [16], multi-
threaded architecture processors [18] offer the potential of dramatic speedups over 
traditional microprocessor run times for scientific applications. Performance accelera-
tion on these devices is achieved by exploiting the data, instruction and thread level 
parallelism of a program. However, an application needs to be mapped to the appro-
priate computing devices in order to exploit the unique performance enhancing  
features of a target system. Performance modeling studies have been employed to 
investigate and to understand this mapping and the achievable performance of an 
application on a target system. Efforts involved in developing a performance model-
ing strategy for unconventional and emerging systems are prohibitively expensive. 
Nevertheless, the high cost of high-performance computing (HPC) systems and the 
strategic importance of HPC applications make it imperative to predict the perform-
ance of these applications on these machines before their deployment. 
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In this study, we present our performance modeling approach for one such uncon-
ventional HPC architecture: the Cray X1E [3]. A Cray X1E processing unit is com-
posed of vector processors and a complex memory subsystem. Using a technique 
called multi-streaming, groups of four X1E vector processors can cooperate to exe-
cute outer loop iterations; each group of four processors is called a Multi-Streaming 
Processor (MSP). We evaluated our approach within the Modeling Assertions (MA) 
framework [9] that allows a user to express and subsequently develop symbolic per-
formance models of workload requirements in terms of an application’s input parame-
ters. We define and quantitatively validate a minimal set of performance attributes 
that are essential in expressing performance models symbolically and predicting run-
time performance on the X1E system. As a result, we sacrifice neither the generality 
of the symbolic models that are developed for a microprocessor based system nor the 
accuracy of runtime performance predictions. We evaluated our technique using a set 
of programs from the NAS parallel benchmarks [4]. Using our approach, the runtime 
error rates are reduced from over 200% to just below 25% for the programs we con-
sidered.  

The layout of the paper is as follows: Section 2 briefly outlines the related work in 
the area of performance modeling and prediction for scientific HPC applications. 
Background of the Cray X1E vector system and our modeling scheme is presented in 
Section 3. Implementation details are provided in Section 4. Section 5 presents ex-
periments and results. Conclusions and future work are discussed in Section 6. 

2   Related Work 

Several techniques have been proposed and investigated for predicting the perform-
ance of applications on conventional architectures [11, 12, 14, 20]. Here we briefly 
survey the most recent performance modeling efforts. Snavely et. al. [14] predict 
applications’ runtime on conventional processing architectures using an application’s 
memory bandwidth requirements, and processing speed and bandwidth capabilities of 
the target architecture. The technique relies on obtaining application memory access 
patterns by collecting instruction traces for memory reference instructions, usually on 
a traditional microprocessor-based platform. Microprocessor-based modeling tech-
niques have limited applicability for performance modeling of unconventional HPC 
systems due to the unique features of these architectures and the overheads involved 
in collecting and analyzing huge amount of trace data. Vendors of unconventional 
architectures may not provide any memory tracing toolkit for ISA level tracing; no 
such support is available on the X1E. Yang et. al. [20] describe a technique based on 
partial execution of an application on existing systems and then extrapolation of the 
results for unconventional architectures. Typically the extrapolation does not take into 
consideration the unique architectural features that enhance performance on these 
unconventional architectures, thereby inducing very high runtime error rates. A simi-
lar but exhaustive performance modeling approach is presented by Kerbyson et. al. 
[12], which involves manually developing an expert human knowledge base of the 
applications as well as the target systems. Our scheme combines a code developer’s 
symbolic representation of an application and runtime hardware counter information 
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and systematically feeds back execution-time information to improve model accuracy 
within the MA framework. 

3   Background 

3.1   Cray X1/X1E 

The Cray X1E is distributed shared memory system with globally addressable mem-
ory. The primary functional building block of a X1E is a compute module. A compute 
module contains four multichip modules (MCMs), local memory, and System Port 
Channel I/O ports. Each MCM contains two multi-streaming processors (MSPs). 
Each MSP is comprised of 4 single-streaming processors (SSPs) as shown in Fig. 1. 
Each SSP contains two deeply-pipelined vector units running at 1.13 GHz and a sin-
gle scalar unit running at 0.565 GHz. All SSPs within a MSP share a 2MB E-cache 
and each SSP has a 16KB Data cache and a 16KB instruction cache.  

 

 

Fig. 1. Inside Cray X1 Multi-streaming processor 

The Cray X1E compilers can exploit the data level parallelisms by vectorizing in-
ner loops so they execute in the vector units of an SSP. The compiler can also paral-
lelize outer loops such that the loop’s iterations can be executed concurrently on each 
of the four SSPs within an MSP. Together, these two features have a theoretical peak 
performance of 18 GFLOPS/MSP. From the memory subsystem point of view, the 
memory hierarchy is different for scalar and vector memory references. Vector mem-
ory references are cached in the E-cache but not in the D-cache. The vector register 
space acts as a level-1 cache for vector memory references. On the other hand, the 
scalar memory references are cached in the E-cache as well as the D-cache. The E-
cache acts a level-2 cache for scalar memory references. 

3.2   The Modeling Assertions (MA) Framework 

Because of the limited applicability of conventional modeling techniques for dealing with 
unconventional architectures, we have devised a modeling scheme that incorporates 
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“application aware” as well as “architecture aware” attributes in model representation. 
We implement our approach using our Modeling Assertions (MA) framework. MA 
allows a user to develop hierarchical, symbolic models of applications using code 
annotation; the MA models can project performance requirements and allow us to 
conduct sensitivity analysis of workload requirements for future and larger problem 
instance of an application [10]. The MA models can be incrementally refined based 
on the empirical data that are obtained from application runs on a target system.  

The MA framework has two main components: an API and a post-processing tool-
set.  Fig. 2 shows the components of the MA framework. The MA API is used to 
annotate the source code. As the application executes, the runtime system captures 
important information in trace files, primarily to compare runtime values for anno-
tated symbolic expressions to actual runtime data in order to validate symbolic mod-
els. These trace files are then post-processed to analyze, and construct models with 
the desired accuracy and resolution. The post-processing toolset is a collection of 
tools or Java classes for model validation, control-flow model creation and symbolic 
model generation. The modeling API is available on Linux clusters with MPICH, 
IBM pSeries systems and Cray X1E vector systems [3]. The symbolic model shown 
in the Fig. 2 is generated for the MPI send volume. The symbolic models can be 
evaluated with MATLAB and Octave tools. 

The MA API provides a set of functions to annotate a given FORTRAN or C code 
with MPI message-passing communication library. For example, ma_loop_start, a 
MA API function, can be used to mark the start of a loop. Upon execution, the code 
instrumented with MA API functions generates trace files. For parallel applications, 
one trace file is generated for each MPI task. The trace files contain traces for ma_xxx 
calls and MPI communication events. Most MA calls require a pair of ma_xxx_start 

 
 

 
Fig. 2. Design components of the MA framework 
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and a ma_xxx_end calls. The ma_xxx_end traces are primarily used to validate mod-
eling assertions against the runtime values. The assertions for hardware counter val-
ues, ma_flop_start/stop, invoke the PAPI hardware counter API [5]. The ma_mpi_xxx 
assertions on the other hand are validated by implementing MPI wrapper functions 
(PMPI) and by comparing ma_mpi_xxx traces to PMPI_xxx traces. Additional func-
tions are provided in the MA API to control the tracing volume, for example, the size 
of the trace files, by enabling and disabling the tracing at compile time and also at 
runtime.  

At runtime, the MA runtime system (MARS) tracks and captures the actual instan-
tiated values as they execute in the application. MARS creates an internal control 
flow representation of the calls to the MA library as they are executed. It also captures 
both the symbolic values and the actual values of the expressions. The validation of 
an MA performance model is a two-stage process. When a model is initially being 
created, validation plays an important role in guiding the resolution of the model at 
various phases in the application. Later, the same model and validation technique can 
be used to validate against historical data and across the parameter space. Moreover, 
since models can be constructed and validated at multiple resolution levels, a user can 
keep track of error rate propagation from low level calculations to higher, functional 
levels. This process allows a user to refine the model resolution level and to identify 
possible causes of large error rates in model projections. 

4   Implementation 

We extended our MA framework not only to quantify X1E architectural optimizations 
but also to include a new set of performance metrics or attributes. Since metrics like 
memory bandwidth requirements cannot be formulated for a complex architecture 
without empirical information, we capture this information using standard memory 
benchmarks [7, 17]. To validate and to estimate runtime for our application from the 
data collected by the MA runtime system, we devise a set of mathematical expres-
sions to formulate the degree with which these new metrics influence the runtime. 
The modifications to the MA framework for the X1E system include: a loopmark 
listing analyzer, X1E processor performance attributes, X1E memory bandwidth at-
tributes analysis, and an infrastructure for runtime performance model validation and 
prediction. 

4.1   Loopmark Listings Analyzer 

The Cray X1E Fortran and C/C++ compilers generate text reports called loopmark 
listings that contain information about optimizations performed when compiling a 
program, such as whether a given loop was vectorized and multi-streamed. Loopmark 
listing generated for the most time-consuming loop from the NAS Conjugate Gradient 
(CG) serial benchmark: 

 
583.  1 M----------<          do j=1, lastrow-firstrow+1 
584.  1 M                        sum = 0.d0 
585.  1 M V-------<             do k=rowstr (j), rowstr (j+1)-1 
586.  1 M V                        sum = sum + a (k)*p (colidx(k)) 
587.  1 M V------->             enddo 
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588.  1 M                        q(j) = sum 
589.  1 M---------->          enddo 

 
To support our modeling approach, we have created a loopmark analyzer that can 

generate an analysis file. The tuples (shown below) indicate whether a loop has been 
multi-streamed (mflag=1) and/or vectorized (vflag=1). We introduce an abstract defi-
nition that includes both flags, which we call the “MV” score of a loop. 

 
id: 17 func: conj_grad beginl: 583 endl: 589 mflag: 1 vflag: 0 
id: 18 func: conj_grad beginl: 585 endl: 587 mflag: 1 vflag: 1 

4.2   X1E Performance Attributes 

Based on the information gathered from our loopmark listing analyzer, we introduce 
“architecture aware” metrics within the MA framework for predicting application run 
times on the X1E. Our first metric is the average vector length (AVL). Each Cray 
X1E SSP has two vector units; both contain vector registers that can hold 64 double-
precision floating point elements, so the AVL is at most 64. 

The peak memory bandwidth can be obtained if all 64 registers are utilized. In 
other words, if AVL for a loop is less than 64, it will be unable to utilize the peak 
memory bandwidth. Our performance models incorporate this penalty if AVL is less 
than AVLmax. The AVL of a loop can be computed using the loop bounds of a fully 
vectorized loop. The loop bounds of critical loops can be symbolically expressed as 
functions of input parameters of an application. Therefore, we can express AVL in the 
form of MA annotations. For example, the AVL of the CG loop shown above is: 
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In addition to AVL, there are certain performance attributes like memory band-
width requirements that depend on an application’s intrinsic properties. For instance, 
memory access patterns of critical loops determine spatial and temporal locality of a 
loop block and its demand for memory bandwidth. The achievable bandwidth de-
pends on architectural complexities such as sizes and bandwidths of caches and the 
main memory. On the X1E, these architectural complexities in turn depend on com-
piler generated optimizations as specified by a loop’s MV score. The peak memory 
bandwidth for multi-streamed vector memory references on Cray X1E is ~34 GB/s 
and for multi-streamed scalar memory references is ~4.5 GB/s.  

Due to the lack of sufficient memory tracing tools for the Cray X1E system and a 
unique memory subsystem hierarchy for scalar and vector memory operations, we 
quantify an application’s memory bandwidth through empirical methods. We use 
profile information of an application obtained from various performance tools like 
TAU [8], KOJAK [14] and CrayPAT (Performance Analysis Toolkit) [5] to make 
calculated assumptions about a loop’s memory bandwidth. 

On a Cray X1E, the maximum bandwidth per SSP is 8.5 GB/s. This bandwidth is 
obtained by running a unit-strided memory benchmark called “Stream” which ex-
ploits the spatial locality to obtain maximum available bandwidth [7]. The minimum 
bandwidth per SSP is 2.5 GB/s, which is obtained by running a random access  
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memory benchmark called “Random Access” which spans through the memory by 
accessing random locations.  The average or mixed bandwidth, a combination of 
stream and random memory access patterns, we considered as 5.5 GB/s. 

5   Model Validation Results 

After collecting the empirical performance data and characterizing performance at-
tributes of the X1E processor, we formulate performance validation and runtime per-
formance prediction techniques. MA performance attributes are validated with X1E 
hardware counter values. The X1E provides native counters to measure AVL, Loads 
and Stores (both vector and scalar), and floating point operations (vector and scalar). 
We use the PAPI library to capture these counter values. 

We explain the validation process using the NAS SP, a simulated Computational 
Fluid Dynamics (CFD) application. The workload configurations can be changed by 
using different problem classes. The MA model for SP is represented in terms of an 
input parameter (problem_size), number of iterations, the number of MPI tasks that 
determines some derived parameters like the square-root of number of processors in 
the SP benchmark to simplify model representations. The SP benchmarks follow a 
Single Program Multiple Data (SPMD) programming paradigm. Hence, the workload 
and memory mapping and distribution per processor not only depend on the key input 
parameters but also on the number of MPI tasks. 

5.1   Model Parameters 

From the input parameters, problem_size, niter and nprocs, we compute two criti-
cal derived parameters: ncells and size for individual MPI tasks. A code listing 
example for SP with extended MA annotation is shown below: 

 
23.         call maf_vec_loop_start(1,“tzetar”,“size^2*(size-1)*26”, 
(size**2)*(size-1)*26,” (size^2)*(size-1)*16”, (size**2)*(size-
1)*16,”(size-1)/(size/64+1)”, (size-1)/(size/64+1),3)  
24.  M-------<        do    k = start(3,c), cell_size(3,c)-end(3,c)-1 
25.  M 2-----<           do    j = start(2,c), cell_size(2,c)-end(2,c)-1 
26.  M 2 Vs--<              do    i = start(1,c), cell_size(1,c)-
end(1,c)-1 
27.  M 2 Vs 
28.  M 2 Vs                    xvel = us(i,j,k,c) 
29.  M 2 Vs                    yvel = vs(i,j,k,c) 
 

In this example, tzetar is the loop identifier, which is followed by symbolic ex-
pressions for vector load-store operations. Note that the two identical expressions is 
not an error but represent symbolic expression written in the trace file and another one 
is evaluated by the runtime system. The next two expressions represent vector float-
ing-point operations. We then include AVL calculations and finally the MV score. 
Note that these workload parameters are represented in terms of a handful input pa-
rameters of the SP calculations. 
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5.2   Hardware Counter Measurements 

The MA runtime system generates trace files that contain output for 
ma_vec_loop_start and ma_vec_loop_stop annotations when the instrumented  
application executes on the target X1E platform. This output file contents are: 

 
MA:2:ma_vec_loop_start:tzetar:(size^2)*(size-1)*26:1179360: 

(size^2)*(size-1)*16: 725760:(size-1)/(size/64+1):35.000000:3  
MA:2:ma_vec_loop_stop:tzetar:1:244916:151434:1123632:708816: 

8:177196:33.351922:0:2421:445 
 
The runtime system empirically measure and report the hardware counter values in 

the following order in the ma_vec_loop_stop output: MA trace identifier, context 
depth of the call, MA API identifier, loop name, loop id, number of cycles, stalled 
cycles, vector flops, vector load-store operations, vector load stride, vector load allo-
cated, vector length, scalar floating-point operations, scalar load-store operations, and 
data cache miss. Note that the values generated in ma_vec_loop_stop confirm results 
of our symbolic models. For instance, the number of FP operations, predicted from 
the model for Class W problem configurations with a single MPI tasks is expected to 
be 725,760 operations. The actual measurement shows that it is 708,816 operations. 
Similarly, the AVL computed using symbolic models (35) for the loop count and MV 
score confirms the measured value (33.35).  Fig. 3 shows the error rates for hardware 
counter values for four different input configurations of the SP calculations with one 
and 4 MPI tasks. Note that the error rates are less than 10% for most cases. The error 
rates are higher for smaller workload configuration, class W, since these calculations 
are unable to saturate the CrayX1E MSP units. The percentage error rates for pre-
dicted and measured values are computed as: 
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Fig. 3. Error rate calculations for MA model predictions as compared to runtime data 

5.4   Runtime Calculations 

We compute the execution times according to mathematical formulae that consider 
two components of execution time of a loop: first, the time taken to do the floating 
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point computation; and second, the time taken to access the memory subsystem. On 
the Cray X1E system, the two runtime components (shown in Fig 4.) have two repre-
sentations: one for vector and another for scalar execution: Tv and Ts. The memory 
access times are Tvm and Tsm, and the compute times are Tvc and Tsc respectively. 
These formulae are based on the MV score of a loop. If a loop is vectorized, the run-
time is predicted using the formula for Tv. If the loop is also multi-streamed, the clock 
speed is 18GHz; otherwise it is 4.5GHz. If a loop is not vectorized, the runtime is 
predicted using the formula for Ts. If the loop is also multi-streamed the clock speed is 
2.26 GHz; otherwise it is 0.565 GHz. In the Fig. 8, VFLOPS refers to the vector float-
ing point operations, VLOADS refer to the vector load operations, VSTORES refers to 
the vector store operations, SFLOPS refers to the scalar floating point operations, 
SLOADS refers to the scalar load and SSTORES refers to the scalar store operations.  
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Fig. 4. Tv is the time for vector processing and Ts is the time for scalar processing 

Using the quantitative information generated by the MA symbolic models, the ex-
pressions to calculate timings, and empirical assumptions about the bandwidth of a 
particular code region, we can predict runtime of that code region on the target sys-
tem. Fig. 5 shows the error rates for predicted runtimes using the MA models with 
Cray X1E attributes and three memory bandwidth values: minimum (2.5 GB/s), aver-
age/mixed (5.5 GB/s) and maximum (8.5 GB/s) per SSP. We show an error bar of 
20% in measured runtimes since the execution times for a given calculation, tzetar 
for this example, vary from one time step iteration to other and during multiple runs. 
We observe that the error rates are substantially higher with the minimum bandwidth 
values across multiple runs. We therefore conclude that the memory access pattern for 
this calculation is not random. The lowest error rates are obtained with highest band-
width ranges, except for the smallest input configurations that are not capable of satu-
rating the X1E execution and memory bandwidth resources. 

After validating the performance model and running performance prediction ex-
periments, we investigate the impact of Cray X1E performance enhancing attributes 
that are introduced in the MA framework. For instance, we take into account the MV 
score and AVL of a given loop in our performance prediction framework and runtime 
prediction. We ran experiment by removing the multi-stream optimization for the 
compiler application by using “-O stream0” compiler flag. Since the model does not 
contain MV information, the runtime prediction is performed without knowledge of 
target resource utilization. Fig. 6 shows error rates for this experiment. As shown in 
the figure, we over-predict runtime because our model and subsequently the runtime 
prediction method are unaware that only one of the 4 SSP units within a Cray X1E 
MSP is utilized for this calculation. Hence, we conclude that there are several advan-
tages of introducing a minimal set of performance enhancing features in the modeling 
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Fig. 5. Error rates for runtime prediction with different memory bandwidth values 
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Fig. 6. Impact on performance prediction for not utilizing system specific attributes 

scheme. These include an improved runtime prediction capability as well as identifi-
cation of potential compile and runtime problems. In this particular example, there are 
no data and control dependencies in a given code, therefore, a code developer can 
assert that this loop is expected to be vectorized and multi-streamed by the X1E com-
piler. Using the MA scheme, we can identify this problem even before we the runtime 
experiments are performed. Since the MA annotations contain user-specified informa-
tion, the code developer can locate the problem quickly and inspect the loopmark 
listing for potential compiler issues. 

6   Conclusions and Future Directions 

We have developed a new performance modeling approach that augments Modeling 
Assertions (MA) with information about the performance-enhancing features of un-
conventional architectures. We demonstrated that our performance modeling ap-
proach enables us to reduce the performance prediction error rates significantly by 
incorporating a minimal set of “architecture aware” attributes in the MA framework. 
Furthermore, we identified that an insight into the understanding of the Cray X1E 
memory hierarchy is critical to performance modeling strategies for this platform.  An 



 An Exploration of Performance Attributes for Symbolic Modeling 693 

inappropriate selection of the achievable memory bandwidth values resulted in error 
rates as high as 250%, but using our modeling approach we observed error rates of 
less than 25% for a representative scientific algorithm. Based on our success in aug-
menting MA annotations for X1E architectural features, we plan to extend the MA 
framework for performance modeling of emerging systems with multi-core processors 
and accelerator devices by identifying and incorporating the target architecture-
specific performance attributes into our modeling framework. 
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