
R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 683–694, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Exploration of Performance Attributes for
Symbolic Modeling of Emerging Processing Devices

Sadaf R. Alam, Nikhil Bhatia, and Jeffrey S. Vetter

Oak Ridge National Laboratory,
Oak Ridge, TN 37831, USA

{alamsr,bhatia,vetter}@ornl.gov

Abstract. Vector, emerging (homogenous and heterogeneous) multi-core and a
number of accelerator processing devices potentially offer an order of magni-
tude speedup for scientific applications that are capable of exploiting their
SIMD execution units over microprocessor execution times. Nevertheless, iden-
tifying, mapping and achieving high performance for a diverse set of scientific
algorithms is a challenging task, let alone the performance predictions and pro-
jections on these devices. The conventional performance modeling strategies
are unable to capture the performance characteristics of complex processing
systems and, therefore, fail to predict achievable runtime performance. More-
over, most efforts involved in developing a performance modeling strategy and
subsequently a framework for unique and emerging processing devices is pro-
hibitively expensive. In this study, we explore a minimum set of attributes that
are necessary to capture the performance characteristics of scientific calcula-
tions on the Cray X1E multi-streaming, vector processor. We include a set of
specialized performance attributes of the X1E system including the degrees of
multi-streaming and vectorization within our symbolic modeling framework
called Modeling Assertions (MA). Using our scheme, the performance predic-
tion error rates for a scientific calculation are reduced from over 200% to less
than 25%.

1 Introduction

Computing devices like vector processors [3], homogeneous and heterogeneous
multi-core processors [1, 2], Field Programmable Gate Arrays (FPGAs) [16], multi-
threaded architecture processors [18] offer the potential of dramatic speedups over
traditional microprocessor run times for scientific applications. Performance accelera-
tion on these devices is achieved by exploiting the data, instruction and thread level
parallelism of a program. However, an application needs to be mapped to the appro-
priate computing devices in order to exploit the unique performance enhancing
features of a target system. Performance modeling studies have been employed to
investigate and to understand this mapping and the achievable performance of an
application on a target system. Efforts involved in developing a performance model-
ing strategy for unconventional and emerging systems are prohibitively expensive.
Nevertheless, the high cost of high-performance computing (HPC) systems and the
strategic importance of HPC applications make it imperative to predict the perform-
ance of these applications on these machines before their deployment.

684 S.R. Alam, N. Bhatia, and J.S. Vetter

In this study, we present our performance modeling approach for one such uncon-
ventional HPC architecture: the Cray X1E [3]. A Cray X1E processing unit is com-
posed of vector processors and a complex memory subsystem. Using a technique
called multi-streaming, groups of four X1E vector processors can cooperate to exe-
cute outer loop iterations; each group of four processors is called a Multi-Streaming
Processor (MSP). We evaluated our approach within the Modeling Assertions (MA)
framework [9] that allows a user to express and subsequently develop symbolic per-
formance models of workload requirements in terms of an application’s input parame-
ters. We define and quantitatively validate a minimal set of performance attributes
that are essential in expressing performance models symbolically and predicting run-
time performance on the X1E system. As a result, we sacrifice neither the generality
of the symbolic models that are developed for a microprocessor based system nor the
accuracy of runtime performance predictions. We evaluated our technique using a set
of programs from the NAS parallel benchmarks [4]. Using our approach, the runtime
error rates are reduced from over 200% to just below 25% for the programs we con-
sidered.

The layout of the paper is as follows: Section 2 briefly outlines the related work in
the area of performance modeling and prediction for scientific HPC applications.
Background of the Cray X1E vector system and our modeling scheme is presented in
Section 3. Implementation details are provided in Section 4. Section 5 presents ex-
periments and results. Conclusions and future work are discussed in Section 6.

2 Related Work

Several techniques have been proposed and investigated for predicting the perform-
ance of applications on conventional architectures [11, 12, 14, 20]. Here we briefly
survey the most recent performance modeling efforts. Snavely et. al. [14] predict
applications’ runtime on conventional processing architectures using an application’s
memory bandwidth requirements, and processing speed and bandwidth capabilities of
the target architecture. The technique relies on obtaining application memory access
patterns by collecting instruction traces for memory reference instructions, usually on
a traditional microprocessor-based platform. Microprocessor-based modeling tech-
niques have limited applicability for performance modeling of unconventional HPC
systems due to the unique features of these architectures and the overheads involved
in collecting and analyzing huge amount of trace data. Vendors of unconventional
architectures may not provide any memory tracing toolkit for ISA level tracing; no
such support is available on the X1E. Yang et. al. [20] describe a technique based on
partial execution of an application on existing systems and then extrapolation of the
results for unconventional architectures. Typically the extrapolation does not take into
consideration the unique architectural features that enhance performance on these
unconventional architectures, thereby inducing very high runtime error rates. A simi-
lar but exhaustive performance modeling approach is presented by Kerbyson et. al.
[12], which involves manually developing an expert human knowledge base of the
applications as well as the target systems. Our scheme combines a code developer’s
symbolic representation of an application and runtime hardware counter information

 An Exploration of Performance Attributes for Symbolic Modeling 685

and systematically feeds back execution-time information to improve model accuracy
within the MA framework.

3 Background

3.1 Cray X1/X1E

The Cray X1E is distributed shared memory system with globally addressable mem-
ory. The primary functional building block of a X1E is a compute module. A compute
module contains four multichip modules (MCMs), local memory, and System Port
Channel I/O ports. Each MCM contains two multi-streaming processors (MSPs).
Each MSP is comprised of 4 single-streaming processors (SSPs) as shown in Fig. 1.
Each SSP contains two deeply-pipelined vector units running at 1.13 GHz and a sin-
gle scalar unit running at 0.565 GHz. All SSPs within a MSP share a 2MB E-cache
and each SSP has a 16KB Data cache and a 16KB instruction cache.

Fig. 1. Inside Cray X1 Multi-streaming processor

The Cray X1E compilers can exploit the data level parallelisms by vectorizing in-
ner loops so they execute in the vector units of an SSP. The compiler can also paral-
lelize outer loops such that the loop’s iterations can be executed concurrently on each
of the four SSPs within an MSP. Together, these two features have a theoretical peak
performance of 18 GFLOPS/MSP. From the memory subsystem point of view, the
memory hierarchy is different for scalar and vector memory references. Vector mem-
ory references are cached in the E-cache but not in the D-cache. The vector register
space acts as a level-1 cache for vector memory references. On the other hand, the
scalar memory references are cached in the E-cache as well as the D-cache. The E-
cache acts a level-2 cache for scalar memory references.

3.2 The Modeling Assertions (MA) Framework

Because of the limited applicability of conventional modeling techniques for dealing with
unconventional architectures, we have devised a modeling scheme that incorporates

0.5 MB
$

0.5 MB
$

0.5 MB
$

0.5 MB
$

686 S.R. Alam, N. Bhatia, and J.S. Vetter

“application aware” as well as “architecture aware” attributes in model representation.
We implement our approach using our Modeling Assertions (MA) framework. MA
allows a user to develop hierarchical, symbolic models of applications using code
annotation; the MA models can project performance requirements and allow us to
conduct sensitivity analysis of workload requirements for future and larger problem
instance of an application [10]. The MA models can be incrementally refined based
on the empirical data that are obtained from application runs on a target system.

The MA framework has two main components: an API and a post-processing tool-
set. Fig. 2 shows the components of the MA framework. The MA API is used to
annotate the source code. As the application executes, the runtime system captures
important information in trace files, primarily to compare runtime values for anno-
tated symbolic expressions to actual runtime data in order to validate symbolic mod-
els. These trace files are then post-processed to analyze, and construct models with
the desired accuracy and resolution. The post-processing toolset is a collection of
tools or Java classes for model validation, control-flow model creation and symbolic
model generation. The modeling API is available on Linux clusters with MPICH,
IBM pSeries systems and Cray X1E vector systems [3]. The symbolic model shown
in the Fig. 2 is generated for the MPI send volume. The symbolic models can be
evaluated with MATLAB and Octave tools.

The MA API provides a set of functions to annotate a given FORTRAN or C code
with MPI message-passing communication library. For example, ma_loop_start, a
MA API function, can be used to mark the start of a loop. Upon execution, the code
instrumented with MA API functions generates trace files. For parallel applications,
one trace file is generated for each MPI task. The trace files contain traces for ma_xxx
calls and MPI communication events. Most MA calls require a pair of ma_xxx_start

Fig. 2. Design components of the MA framework

Post-processing toolset

Source code annotation

Model
validation

Symbolic
model

ma_subroutine_start/end
ma_loop_start/end
ma_flop_start/stop
ma_heap/stack_memory
ma_mpi_xxxx
ma_set/unset_tracing

Runtime
system
generate
trace files

send = ni-
ter*(l2npcols*(dp*2)+l
2npcols*(dp)+cgitmax*(
l2npcols*(dp*na/num_pr
oc_cols)+dp*na/num_pro
c_cols+l2npcols*(dp)+l
2npcols*(dp))+l2npcols
*(dp*na/num_proc_cols)
+dp*na/num_proc_cols+l
2npcols*(dp))

Classes of API
calls currently
implemented
and tested

MA API in C
(for Fortran &
C applications

With MPI)

 An Exploration of Performance Attributes for Symbolic Modeling 687

and a ma_xxx_end calls. The ma_xxx_end traces are primarily used to validate mod-
eling assertions against the runtime values. The assertions for hardware counter val-
ues, ma_flop_start/stop, invoke the PAPI hardware counter API [5]. The ma_mpi_xxx
assertions on the other hand are validated by implementing MPI wrapper functions
(PMPI) and by comparing ma_mpi_xxx traces to PMPI_xxx traces. Additional func-
tions are provided in the MA API to control the tracing volume, for example, the size
of the trace files, by enabling and disabling the tracing at compile time and also at
runtime.

At runtime, the MA runtime system (MARS) tracks and captures the actual instan-
tiated values as they execute in the application. MARS creates an internal control
flow representation of the calls to the MA library as they are executed. It also captures
both the symbolic values and the actual values of the expressions. The validation of
an MA performance model is a two-stage process. When a model is initially being
created, validation plays an important role in guiding the resolution of the model at
various phases in the application. Later, the same model and validation technique can
be used to validate against historical data and across the parameter space. Moreover,
since models can be constructed and validated at multiple resolution levels, a user can
keep track of error rate propagation from low level calculations to higher, functional
levels. This process allows a user to refine the model resolution level and to identify
possible causes of large error rates in model projections.

4 Implementation

We extended our MA framework not only to quantify X1E architectural optimizations
but also to include a new set of performance metrics or attributes. Since metrics like
memory bandwidth requirements cannot be formulated for a complex architecture
without empirical information, we capture this information using standard memory
benchmarks [7, 17]. To validate and to estimate runtime for our application from the
data collected by the MA runtime system, we devise a set of mathematical expres-
sions to formulate the degree with which these new metrics influence the runtime.
The modifications to the MA framework for the X1E system include: a loopmark
listing analyzer, X1E processor performance attributes, X1E memory bandwidth at-
tributes analysis, and an infrastructure for runtime performance model validation and
prediction.

4.1 Loopmark Listings Analyzer

The Cray X1E Fortran and C/C++ compilers generate text reports called loopmark
listings that contain information about optimizations performed when compiling a
program, such as whether a given loop was vectorized and multi-streamed. Loopmark
listing generated for the most time-consuming loop from the NAS Conjugate Gradient
(CG) serial benchmark:

583. 1 M----------< do j=1, lastrow-firstrow+1
584. 1 M sum = 0.d0
585. 1 M V-------< do k=rowstr (j), rowstr (j+1)-1
586. 1 M V sum = sum + a (k)*p (colidx(k))
587. 1 M V-------> enddo

688 S.R. Alam, N. Bhatia, and J.S. Vetter

588. 1 M q(j) = sum
589. 1 M----------> enddo

To support our modeling approach, we have created a loopmark analyzer that can

generate an analysis file. The tuples (shown below) indicate whether a loop has been
multi-streamed (mflag=1) and/or vectorized (vflag=1). We introduce an abstract defi-
nition that includes both flags, which we call the “MV” score of a loop.

id: 17 func: conj_grad beginl: 583 endl: 589 mflag: 1 vflag: 0
id: 18 func: conj_grad beginl: 585 endl: 587 mflag: 1 vflag: 1

4.2 X1E Performance Attributes

Based on the information gathered from our loopmark listing analyzer, we introduce
“architecture aware” metrics within the MA framework for predicting application run
times on the X1E. Our first metric is the average vector length (AVL). Each Cray
X1E SSP has two vector units; both contain vector registers that can hold 64 double-
precision floating point elements, so the AVL is at most 64.

The peak memory bandwidth can be obtained if all 64 registers are utilized. In
other words, if AVL for a loop is less than 64, it will be unable to utilize the peak
memory bandwidth. Our performance models incorporate this penalty if AVL is less
than AVLmax. The AVL of a loop can be computed using the loop bounds of a fully
vectorized loop. The loop bounds of critical loops can be symbolically expressed as
functions of input parameters of an application. Therefore, we can express AVL in the
form of MA annotations. For example, the AVL of the CG loop shown above is:

∑
−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−+=
firstrowlastrow

j jrowstrjrowstrdivceil

jrowstrjrowstr
AVL

1)64)),()1((((

)()1(

In addition to AVL, there are certain performance attributes like memory band-
width requirements that depend on an application’s intrinsic properties. For instance,
memory access patterns of critical loops determine spatial and temporal locality of a
loop block and its demand for memory bandwidth. The achievable bandwidth de-
pends on architectural complexities such as sizes and bandwidths of caches and the
main memory. On the X1E, these architectural complexities in turn depend on com-
piler generated optimizations as specified by a loop’s MV score. The peak memory
bandwidth for multi-streamed vector memory references on Cray X1E is ~34 GB/s
and for multi-streamed scalar memory references is ~4.5 GB/s.

Due to the lack of sufficient memory tracing tools for the Cray X1E system and a
unique memory subsystem hierarchy for scalar and vector memory operations, we
quantify an application’s memory bandwidth through empirical methods. We use
profile information of an application obtained from various performance tools like
TAU [8], KOJAK [14] and CrayPAT (Performance Analysis Toolkit) [5] to make
calculated assumptions about a loop’s memory bandwidth.

On a Cray X1E, the maximum bandwidth per SSP is 8.5 GB/s. This bandwidth is
obtained by running a unit-strided memory benchmark called “Stream” which ex-
ploits the spatial locality to obtain maximum available bandwidth [7]. The minimum
bandwidth per SSP is 2.5 GB/s, which is obtained by running a random access

 An Exploration of Performance Attributes for Symbolic Modeling 689

memory benchmark called “Random Access” which spans through the memory by
accessing random locations. The average or mixed bandwidth, a combination of
stream and random memory access patterns, we considered as 5.5 GB/s.

5 Model Validation Results

After collecting the empirical performance data and characterizing performance at-
tributes of the X1E processor, we formulate performance validation and runtime per-
formance prediction techniques. MA performance attributes are validated with X1E
hardware counter values. The X1E provides native counters to measure AVL, Loads
and Stores (both vector and scalar), and floating point operations (vector and scalar).
We use the PAPI library to capture these counter values.

We explain the validation process using the NAS SP, a simulated Computational
Fluid Dynamics (CFD) application. The workload configurations can be changed by
using different problem classes. The MA model for SP is represented in terms of an
input parameter (problem_size), number of iterations, the number of MPI tasks that
determines some derived parameters like the square-root of number of processors in
the SP benchmark to simplify model representations. The SP benchmarks follow a
Single Program Multiple Data (SPMD) programming paradigm. Hence, the workload
and memory mapping and distribution per processor not only depend on the key input
parameters but also on the number of MPI tasks.

5.1 Model Parameters

From the input parameters, problem_size, niter and nprocs, we compute two criti-
cal derived parameters: ncells and size for individual MPI tasks. A code listing
example for SP with extended MA annotation is shown below:

23. call maf_vec_loop_start(1,“tzetar”,“size^2*(size-1)*26”,
(size**2)*(size-1)*26,” (size^2)*(size-1)*16”, (size**2)*(size-
1)*16,”(size-1)/(size/64+1)”, (size-1)/(size/64+1),3)
24. M-------< do k = start(3,c), cell_size(3,c)-end(3,c)-1
25. M 2-----< do j = start(2,c), cell_size(2,c)-end(2,c)-1
26. M 2 Vs--< do i = start(1,c), cell_size(1,c)-
end(1,c)-1
27. M 2 Vs
28. M 2 Vs xvel = us(i,j,k,c)
29. M 2 Vs yvel = vs(i,j,k,c)

In this example, tzetar is the loop identifier, which is followed by symbolic ex-
pressions for vector load-store operations. Note that the two identical expressions is
not an error but represent symbolic expression written in the trace file and another one
is evaluated by the runtime system. The next two expressions represent vector float-
ing-point operations. We then include AVL calculations and finally the MV score.
Note that these workload parameters are represented in terms of a handful input pa-
rameters of the SP calculations.

690 S.R. Alam, N. Bhatia, and J.S. Vetter

5.2 Hardware Counter Measurements

The MA runtime system generates trace files that contain output for
ma_vec_loop_start and ma_vec_loop_stop annotations when the instrumented
application executes on the target X1E platform. This output file contents are:

MA:2:ma_vec_loop_start:tzetar:(size^2)*(size-1)*26:1179360:

(size^2)*(size-1)*16: 725760:(size-1)/(size/64+1):35.000000:3
MA:2:ma_vec_loop_stop:tzetar:1:244916:151434:1123632:708816:

8:177196:33.351922:0:2421:445

The runtime system empirically measure and report the hardware counter values in

the following order in the ma_vec_loop_stop output: MA trace identifier, context
depth of the call, MA API identifier, loop name, loop id, number of cycles, stalled
cycles, vector flops, vector load-store operations, vector load stride, vector load allo-
cated, vector length, scalar floating-point operations, scalar load-store operations, and
data cache miss. Note that the values generated in ma_vec_loop_stop confirm results
of our symbolic models. For instance, the number of FP operations, predicted from
the model for Class W problem configurations with a single MPI tasks is expected to
be 725,760 operations. The actual measurement shows that it is 708,816 operations.
Similarly, the AVL computed using symbolic models (35) for the loop count and MV
score confirms the measured value (33.35). Fig. 3 shows the error rates for hardware
counter values for four different input configurations of the SP calculations with one
and 4 MPI tasks. Note that the error rates are less than 10% for most cases. The error
rates are higher for smaller workload configuration, class W, since these calculations
are unable to saturate the CrayX1E MSP units. The percentage error rates for pre-
dicted and measured values are computed as:

measured

measuredpredicted

Value
ValueValue

error
)(

%
−=

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

W (1) A (1) B (1) C (1) W (4) A (4) B (4) C (4)

Problem Class (MPI Tasks)

P
er

ce
n

ta
g

e
E

rr
o

r

AVL V FP LS V FP OPS

Fig. 3. Error rate calculations for MA model predictions as compared to runtime data

5.4 Runtime Calculations

We compute the execution times according to mathematical formulae that consider
two components of execution time of a loop: first, the time taken to do the floating

 An Exploration of Performance Attributes for Symbolic Modeling 691

point computation; and second, the time taken to access the memory subsystem. On
the Cray X1E system, the two runtime components (shown in Fig 4.) have two repre-
sentations: one for vector and another for scalar execution: Tv and Ts. The memory
access times are Tvm and Tsm, and the compute times are Tvc and Tsc respectively.
These formulae are based on the MV score of a loop. If a loop is vectorized, the run-
time is predicted using the formula for Tv. If the loop is also multi-streamed, the clock
speed is 18GHz; otherwise it is 4.5GHz. If a loop is not vectorized, the runtime is
predicted using the formula for Ts. If the loop is also multi-streamed the clock speed is
2.26 GHz; otherwise it is 0.565 GHz. In the Fig. 8, VFLOPS refers to the vector float-
ing point operations, VLOADS refer to the vector load operations, VSTORES refers to
the vector store operations, SFLOPS refers to the scalar floating point operations,
SLOADS refers to the scalar load and SSTORES refers to the scalar store operations.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

⎟
⎠
⎞

⎜
⎝
⎛=

+=

AVLeBW

VSTORESVLOADS
T

GHzGHz

VFLOPS
T

TTT

vm

vc

vcvmv

910

64*8*)(
18/5.4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛=

+=

910*

8*)(

26.2/565.0

eBW

SSTORESSLOADS
T

GHzGHz

SFLOPS
T

TTT

sm

sc

scsms

Fig. 4. Tv is the time for vector processing and Ts is the time for scalar processing

Using the quantitative information generated by the MA symbolic models, the ex-
pressions to calculate timings, and empirical assumptions about the bandwidth of a
particular code region, we can predict runtime of that code region on the target sys-
tem. Fig. 5 shows the error rates for predicted runtimes using the MA models with
Cray X1E attributes and three memory bandwidth values: minimum (2.5 GB/s), aver-
age/mixed (5.5 GB/s) and maximum (8.5 GB/s) per SSP. We show an error bar of
20% in measured runtimes since the execution times for a given calculation, tzetar
for this example, vary from one time step iteration to other and during multiple runs.
We observe that the error rates are substantially higher with the minimum bandwidth
values across multiple runs. We therefore conclude that the memory access pattern for
this calculation is not random. The lowest error rates are obtained with highest band-
width ranges, except for the smallest input configurations that are not capable of satu-
rating the X1E execution and memory bandwidth resources.

After validating the performance model and running performance prediction ex-
periments, we investigate the impact of Cray X1E performance enhancing attributes
that are introduced in the MA framework. For instance, we take into account the MV
score and AVL of a given loop in our performance prediction framework and runtime
prediction. We ran experiment by removing the multi-stream optimization for the
compiler application by using “-O stream0” compiler flag. Since the model does not
contain MV information, the runtime prediction is performed without knowledge of
target resource utilization. Fig. 6 shows error rates for this experiment. As shown in
the figure, we over-predict runtime because our model and subsequently the runtime
prediction method are unaware that only one of the 4 SSP units within a Cray X1E
MSP is utilized for this calculation. Hence, we conclude that there are several advan-
tages of introducing a minimal set of performance enhancing features in the modeling

692 S.R. Alam, N. Bhatia, and J.S. Vetter

Memory Bandwidth

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%

W (1) A (1) B (1) C (1) W (4) A (4) B (4) C (4)

Problem class (MPI tasks)

P
er

ce
n

ta
g

e
er

ro
r

Min Avg Max

Fig. 5. Error rates for runtime prediction with different memory bandwidth values

Memory Bandiwdth

-120%

-100%

-80%

-60%

-40%

-20%

0%

S W A B C

Problem Class

P
er

ce
n

ta
g

e
E

rr
o

r

Min Avg Max

Fig. 6. Impact on performance prediction for not utilizing system specific attributes

scheme. These include an improved runtime prediction capability as well as identifi-
cation of potential compile and runtime problems. In this particular example, there are
no data and control dependencies in a given code, therefore, a code developer can
assert that this loop is expected to be vectorized and multi-streamed by the X1E com-
piler. Using the MA scheme, we can identify this problem even before we the runtime
experiments are performed. Since the MA annotations contain user-specified informa-
tion, the code developer can locate the problem quickly and inspect the loopmark
listing for potential compiler issues.

6 Conclusions and Future Directions

We have developed a new performance modeling approach that augments Modeling
Assertions (MA) with information about the performance-enhancing features of un-
conventional architectures. We demonstrated that our performance modeling ap-
proach enables us to reduce the performance prediction error rates significantly by
incorporating a minimal set of “architecture aware” attributes in the MA framework.
Furthermore, we identified that an insight into the understanding of the Cray X1E
memory hierarchy is critical to performance modeling strategies for this platform. An

 An Exploration of Performance Attributes for Symbolic Modeling 693

inappropriate selection of the achievable memory bandwidth values resulted in error
rates as high as 250%, but using our modeling approach we observed error rates of
less than 25% for a representative scientific algorithm. Based on our success in aug-
menting MA annotations for X1E architectural features, we plan to extend the MA
framework for performance modeling of emerging systems with multi-core processors
and accelerator devices by identifying and incorporating the target architecture-
specific performance attributes into our modeling framework.

Acknowledgements

The submitted manuscript has been authored by a contractor of the U.S. Government
under Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government re-
tains a non-exclusive, royalty-free license to publish or reproduce the published form
of this contribution, or allow others to do so, for U.S. Government purposes. This
research used resources of the Center for Computational Sciences at Oak Ridge Na-
tional Laboratory, which is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725.

References
1. AMD Dual-Core and Multi-Core Processors, http://www.amdboard.com/dual_core.html
2. The Cell Project at IBM Research, http://www.research.ibm.com/cell/
3. Cray X1E supercomputer, http://www.cray.com/products/x1e/
4. NAS Parallel Benchmarks, http://www.nas.nasa.gov/Software/NPB/
5. Optimizing Applications on Cray X1 Series Systems, available at http://docs.cray.com
6. Performance Application programming Interface (PAPI), http://icl.cs.utk.edu/papi/
7. Stream Memory Benchmark, http://www.streambench.org
8. Tuning and Analysis Utilities (TAU), http://www.cs.uoregon.edu/research/tau/
9. Alam, S.R., Vetter, J.S.: A Framework to Develop Symbolic Performance Models of Par-

allel Applications. In: PMEO-PDS 2006. 5th International Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel and Distributed Systems (2006) (to be
held in conjunction with IPDPS)

10. Alam, S.R., Vetter, J.S.: Hierarchical Model Validation of Symbolic Performance Models
of Scientific Applications. In: European Conference on Parallel Computing (Euro-Par)
(2006)

11. Bailey, D., Snavely, A.: Performance Modeling: Understanding the Present and Prediction
the Future. In: European Conference on Parallel Computing (Euro-Par) (2005)

12. Kerbyson, D.J., et al.: A Comparison Between the Earth Simulator and AlphaServer Sys-
tems using Predictive Application Performance Models. In: International Parallel and Dis-
tributed Processing Symposium (IPDPS) (2003)

13. Luk, C., et al.: Pin: Building Customized Program Analysis Tools with Dynamic Instru-
mentation. In: ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, ACM Press, New York (2005)

14. Mohr, B., Wolf, F.: KOJAK - A Tool Set for Automatic Performance Analysis of Parallel
Applications. In: European Conference on Parallel Computing (EuroPar) (2003)

15. Snavely, A., et al.: A Framework for Application Performance Modeling and Prediction.
In: ACM/IEEE Supercomputing Conference, ACM Press, New York (2002)

694 S.R. Alam, N. Bhatia, and J.S. Vetter

16. Storaasli, O.F., et al.: Cray XD1 Experiences and Comparisons with other FPGA-based
Supercomputer Systems. In: Cray User Group (CUG) Conference (2006)

17. Strohmaier, E., Shan, H.: Apex-MAP: A Global Data Access Benchmark to Analyze HPC
Systems and Parallel Programming Paradigms. In: ACM/IEEE Supercomputing Confer-
ence (2005)

18. Vetter, J.S., et al.: Characterizing Applications on the Cray MTA-2 Multi-threaded Archi-
tecture. In: Cray User Group Conference (2006)

19. Weinberg, J., et al.: Quantifying Locality in the Memory Access Patterns of the HPC Ap-
plications. In: ACM/IEEE Supercomputing Conference (2005)

20. Yang, T., et al.: Predicting Parallel Applications’ Performance Across Platforms using Par-
tial Execution. In: ACM/IEEE Supercomputing Conference (2005)

	An Exploration of Performance Attributes for Symbolic Modeling of Emerging Processing Devices
	Introduction
	Related Work
	Background
	Cray X1/X1E
	The Modeling Assertions (MA) Framework

	Implementation
	Loopmark Listings Analyzer
	X1E Performance Attributes

	Model Validation Results
	Model Parameters
	Hardware Counter Measurements
	Runtime Calculations

	Conclusions and Future Directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

