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Abstract 
The floating point portion of the SPEC CPU suite and the HPC 

Challenge suite are widely recognized and utilized as benchmarks 

that represent scientific application behavior.  In this work we 

show that while these benchmark suites may be representative of 

the cache behavior of production scientific applications, they do 

not accurately represent the TLB behavior of these applications.  

Furthermore, we demonstrate that the difference can have a 

significant impact on performance.  In the first part of the paper we 

present results from implementation-independent trace-based 

simulations which demonstrate that benchmarks exhibit 

significantly different TLB behavior for a range of page sizes than 

a representative set of production applications.  In the second part 

we validate these results on the AMD Opteron implementation of 

the x86 architecture, showing that false conclusions about choice 

of page size, drawn from benchmark performance, can result in 

performance degradations of up to nearly 50% for the production 

applications we investigated. 1
   

1 Introduction 
In designing microprocessors and systems to attain good 

performance on as wide a range of applications as possible, 

architects rely on benchmark suites to represent the behavior 

of entire classes of applications.  For these purposes, two 

benchmark suites in particular, the floating point portion of 

the SPEC CPU suite (SPEC-fp) and the HPC Challenge 

suite (HPCC), are widely accepted as being representative 

of scientific application behavior. 

There is a large body of work studying the memory 

behavior of the benchmarks in these suites [1-3], including 

some comparing benchmark behavior with production 

application behavior [4-6].  However, with few exceptions 

[7, 8], most of that work has focused on cache behavior, 

ignoring the critical role the Translation Lookaside Buffer 

(TLB) plays in memory performance.  TLBs are vital to 

performance because they hide most of the cost of virtual 

memory by caching the most recently used page table 

entries (PTEs).  Because most modern processors feature 

multi-level page tables, a single TLB miss can result in 

multiple, dependent memory references, a huge 

performance hit when each memory reference can take 
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hundreds of processor cycles [9].  Furthermore, when 

processor caches are physically tagged, as most are, every 

reference must be translated before the result of a cache 

access is guaranteed valid.  Thus, a TLB miss results in 

multiple trips to memory even when the data referenced is 

in the cache. 

In this work we demonstrate that while SPEC-fp and HPCC 

may be representative of the cache behavior of production 

scientific applications, they do not accurately represent the 

TLB behavior of these applications.  Furthermore, we show 

that based on this discrepancy, users might be led to make 

the wrong choice of page size for their applications, 

potentially resulting in significant degradations in 

application performance. 

In the first part of the paper we present results from 

implementation-independent trace-based simulations.  

While the traces are certainly dependent on the x86 

instruction-set architecture, the simulations are wholly 

independent of any implementation of the architecture.  Our 

results demonstrate that the benchmark suites exhibit 

significantly different TLB behavior for a range of page 

sizes than a representative set of applications.  Both sets of 

benchmarks underestimate, relative to the applications, the 

number of 2MB page TLB entries required to achieve a 

given TLB hit-rate, while overestimating the number of 

4KB page entries to meet the same goals. 

In the second part we validate these results on the AMD 

Opteron implementation of the x86 architecture.  Like many 

x86 implementations the Opteron effectively uses two 

separate TLBs, with significantly different sizing and 

associativity properties, to handle different page sizes.  As a 

result of these size and associativity differences, the choice 

between large and small pages can have a tremendous 

impact on this platform.   

We show that false conclusions about choice of page size on 

this platform, drawn from benchmark performance, can 

result in performance degradations of up to nearly 50% for 

the applications we investigated.  Finally, we demonstrate 

how the implementation-independent results can be 

combined with TLB and page sizing information about 

other x86 implementations to predict whether the 

applications will fit within reach of their TLBs.  



 

  

2 Applications and Benchmarks 
In this section, we briefly describe the applications and 

benchmarks used in our study.   

 

2.1 SPEC CPU Floating Point Benchmarks 
The SPEC CPU suite [10] consists of two sets of 

benchmarks; benchmarks in the INT set operate almost 

exclusively on integer data, while those in the FP set 

primarily operate on floating point data.  Because scientific 

applications tend to be dominated by floating point 

calculations, the floating point benchmarks are associated 

with scientific application performance.   

Many scientific applications are simulations of physical 

processes in which time is discretized and some activity is 

modeled and parameters advanced at each timestep.  Nearly 

all the SPEC floating point benchmarks feature such a 

timestep loop and we use the regularity across timesteps to 

our advantage to reduce benchmark run-times.  We have 

identified the timestep loop for each benchmark and the 

results we present in the following sections are all averaged 

(arithmetic mean) over 10 timesteps.   

We obtained most of the results we present and discuss in 

the following sections from runs of the 14 floating point 

benchmarks from the CPU2000 version of the suite, 

operating on the largest (“reference”) input data sets.  

However, for completeness, in Section 4.7 we present a full 

complement of results for 16 of the 17 floating point 

benchmarks from the CPU2006 version of the suite (again, 

reference data sets). 

2.2 HPCC Benchmarks 
HPCC [11] is a collection of benchmarks designed to stress 

and measure several aspects of a parallel computing system. 

Approximately half the benchmarks are sequential, designed 

to test single node performance, while the rest are parallel, 

measuring global performance.  The benchmarks require 

some tuning, in the form of determining an optimal set of 

input parameters, in order to get peak performance from a 

given platform.  We use the same values for our 

experimental runs that a National Laboratory supercomputer 

center uses for 16 processor performance testing runs on its 

Opteron-based Cray XT4, resulting in data sizes of roughly 

1GB per processor, half of the available 2GB per processor.  

We have chosen four uniprocessor benchmarks for our 

experiments (stream, random, fft and dgemm) and all four 

multi-processor benchmarks (ptrans, hpl, mpirandom and 

mpifft).   

In most cases results presented in the following sections are 

for the full run of the benchmark.  However, due to resource 

constraints, we limit the exceedingly long run-time of hpl by 

truncating the loop over columns to 100 iterations.  

Additionally, we truncate the number of accesses in the 

simulated runs of random and mpirandom, presented in 

Section 3, to five million.  The full benchmark is used in 

both cases for the hardware runs of Section 4.  Finally, we 

summarize multiprocessor results by taking the arithmetic 

mean of per-processor results. 

2.3 Applications 
We have chosen seven applications in production use at a 

National Laboratory supercomputer center from three 

currently relevant areas of scientific research: climate 

modeling (cam [12], pop [13], hycom [14]); fusion (gyro 

[15], gtc [16]); and molecular dynamics (amber [17], 

lammps [18]). 

As with the SPEC-fp benchmarks, we have identified the 

timestep loop for each application and the results presented 

in the following sections are averaged (arithmetic mean) 

over 10 iterations.  As with the parallel HPCC benchmarks, 

we summarize multiprocessor results by taking the 

arithmetic mean of per-processor counts. 

Though we performed experiments on a relatively low 

processor count (16), we made a concerted effort to choose 

data sets for the applications and benchmarks that result in 

per-processor memory use representative of larger 

production runs.   

Table 1 describes the input data set we have chosen for each 

application and the per-processor memory requirements 

imposed by that data set.  All codes are Fortran77 or 

Fortran90, with the exception of LAMMPS, which is coded 

in C++. 

3 Implementation-Independent Results 
In this section, we characterize the TLB performance of our 

selected benchmark and application suites based on the 

results of implementation-independent simulations.   

3.1 Methodology  
Our simulation tool provides an implementation-

independent measure of both temporal and spatial locality, 

at a page granularity, by computing “reuse distances” based 

on page addresses of references, as follows: for each page 

Table 1: Application inputs and resulting per-processor 

memory usage.  Note the difference in memory usage 

between large- and small-page runs which we attribute 

to large-page fragmentation. 

Application Input Deck LRG/SM (MB) 

CAM T42 132 / 73 

POP x1 151 / 107 

HYCOM GLBA0.72 484 / 243 

GYRO B1-std 318 / 284 

GTC a125 306 / 261 

AMBER rt 93 / 56 

LAMMPS rhodo.scaled 193 / 132 

 



 

  

address calculate the number of unique references made 

since that address was last referenced, and store the result in 

a histogram by incrementing the appropriate bucket count.  

As output the tool produces the log-scale histogram 

summarizing the reuse distances computed for every 

dynamic reference made by the application.   

In principle, the tool simply maintains a stack of the last M 

unique references (where M is the maximum distance to be 

recorded), searches the stack for the current address, and 

moves it to the top if found.  Our implementation, based on 

the description of a similar tool in [19], makes use of a red-

black tree data structure to reduce the computational 

complexity of the problem from O(NM) to O(NlogM), 

where N is the total number of addresses in the trace. 

The  tool is driven by Pin [20], a dynamic instrumentation 

framework from Intel.  We see two major benefits of using 

dynamic instrumentation rather than memory traces for 

simulation.  First, since the trace is generated dynamically, 

there are no enormous trace files to generate and store.  

Second, Pin significantly simplifies the tracing of parallel 

applications, since every instruction, including those in MPI 

library functions, is executed by the Pin virtual machine, 

just as it would in the uninstrumented application.  

 

3.2 Results  
In the following subsections, we present two sets of charts 

for each suite of benchmarks and applications.  The first set, 

exemplified by Figure 1, are visual representations of the 

raw histogram output of the reuse distance tool, two page 

sizes per application.  Each histogram bucket along the x-

axis represents a range of distances (16, for example, is 

shorthand for “less than 16 and greater than or equal to 8” 

and represents distances 8-15) and the value of a bucket 

along the y-axis is the percentage of total references whose 

reuse distance fell within that range.  Note that the y-axis is 

log-scale, providing a microscopic view of infrequent but, 

as we shall see, important behavior. 

The second set of charts, demonstrated in Figure 2, interpret 

the reuse distance results, using them to calculate the 

number of entries that would be required to ensure that a 

   

   

Figure 1: Reuse distance data for a representative selection of the floating point SPEC CPU2000 benchmarks. 

  

Figure 2: Based on the reuse distances for the floating point SPEC CPU2000 benchmarks, the number of TLB entries 

required to ensure 90%, 99% and 99.9% of references hit, given a page size of 2MB (left) or 4KB (right). 
 

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

wupwise

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000% swim

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

mgrid

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

facerec

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

lucas

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

fma3d

2MB

4KB

1

2

4

8

16

32 2MB

90.0%

99.0%

99.9%

1
2
4
8
16
32
64

128
256
512
1024
2048
4096
8192

16384
32768 4KB

90.0%

99.0%

99.9%



 

  

given percentage of references (we have chosen 90%, 99% 

and 99.9%) will not miss in the TLB.  We calculate this 

result by accumulating the histogram results for a given 

application, starting at bucket 1 and stopping when the sum 

is greater than the desired percentage.  The label of the 

bucket at which we stop gives the number of entries 

required.   

To understand how this works, consider the wupwise reuse 

distance results for 2MB pages: 56% of all dynamic 

references have reuse distance 1 (really “less than 1,” or 0), 

36% have reuse distance 2 (<2 and >= 1, or 1), 7.8% have 

reuse distance 4 (2-3), and 0.2% have reuse distance 8.  

Accumulating these percentages, 56% of references are to 

the previous page, and would thus be covered by a single 

TLB entry; 92% are to one of the last two pages referenced, 

requiring two TLB entries; 99.8% of references are to one of 

the last four pages referenced; and 100% of references are to 

one of the last eight pages referenced.  Eight entries would 

therefore be sufficient to ensure the application never 

suffers a TLB miss (beyond the initial compulsory misses). 

3.2.1 SPEC-fp Benchmarks 

Figure 1 and Figure 2 present data collected for the SPEC-fp 

benchmarks.  The reuse distance charts for the included 

benchmarks typify the behavior of all the benchmarks.  Note 

that the visual signatures for the benchmarks tend toward 

similarity, particularly for 4KB pages, featuring periodic 

tails, gradual decreases followed by gradual increases. 

Only five of the 14 benchmarks require more than eight 

2MB entries to cover 99.9% of application references.  On 

the other hand, more than half the benchmarks would 

require at least 1024 4KB entries to cover the same number 

of references. 

3.2.2 HPCC Benchmarks 
Figure 3 and Figure 4 present data collected for the HPCC 

benchmarks.  In contrast with the SPEC plots, the visual 

signatures of the HPCC reuse distance plots vary widely 

from benchmarks to benchmark.  While the patterns created 

by 4KB pages for mpifft and hpl feature some of the 

periodicity noted in the SPEC benchmarks, the remaining 

benchmarks look distinctly different.  Ptrans, dgemm and 

stream all feature high bars to the left of the plot, indicating 

extremely high locality, with a few stray bars in the middle 

   

   

Figure 3: Reuse distances for a representative selection of the HPCC benchmarks. 

  

Figure 4: For the HPCC benchmarks, the number of TLB entries required to ensure 90%, 99%, and 99.9% of references 

hit, given a page size of 2MB (left) or 4KB (right). 
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and to the right.  These seemingly randomly placed bars are 

actually indicative of benchmark behavior.  For example, 

the stray spike at distance 8K for 4KB pages (and 128 for 

2MB pages) in ptrans, which transposes a large two-

dimensional array, is the result of strided memory accesses 

as the non-linear dimension is traversed.   

The upward slopes of random are also noteworthy, since 

they point out an interesting feature of the plots: apparent 

gradual increases actually indicate uniformity, due to the 

log-based axes.  For example, bucket 1024 represents 512 

distances (512-1023) while bucket 2048 represents twice as 

many distances (1024-2047).  If the count at bucket 2048 is 

twice that of the bucket at 1024, it means that on average 

each distance in the range 512-2047 was seen the same 

number of times.  By the same token, an apparent gradual 

decrease is actually a sharper decrease.   

Four 2MB entries eliminate 99.9% of misses for half the 

benchmarks, and two entries are sufficient to cover 99% of 

references for five of the eight benchmarks.  The two 

random benchmarks require significantly more entries, 

skewing the average. 

On the other hand, as with SPEC-fp, 4KB pages require 

significantly more entries: all but one benchmark require 

4096 entries to cover 99.9% of references. 

3.2.3 Applications 
The visual signatures of the application reuse distance plots 

in Figure 5 are strikingly different from those of both HPCC 

and SPEC-fp.  Like SPEC-fp, the signatures are much more 

regular and uniform than those of HPCC.  However, in 

contrast with SPEC-fp, the application benchmarks 4KB 

bars do not exhibit periodicity but instead feature long 

trailing tails.  A few benchmarks, most notably gtc, do have 

spikes to the right of the plot, but in contrast with SPEC, 

they are sudden spikes as opposed to gradual increases.  

Also notable is the difference in shape and quantity of the 

2MB page bars. 

The differences between applications and benchmarks are 

even more evident in the second set of plots, Figure 6.  For 

2MB pages, five of the seven applications require at least 16 

entries to provide 99.9% TLB coverage, while only five of 

the 14 SPEC-fp benchmarks require more than eight entries.   

   

   

Figure 5:  Reuse distances for a representative selection of the applications. 

  

Figure 6: For applications, the number of TLB entries required to ensure 90%, 99%, and 99.9% of references hit, given a 

page size of 2MB (left) or 4KB (right). 
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The average bar for SPEC-fp indicates that eight 2MB 

entries are sufficient to cover 99% of benchmark references, 

while the applications require 16 entries to cover the same 

percentage of references.  This difference is quite significant 

for performance on the Opteron processor, which features 

only eight 2MB TLB entries, as we shall see in Section 4. 

On the other hand, the applications require significantly 

fewer 4KB entries than both benchmark suites.  Only one 

application requires more than 256 4KB entries to ensure 

that 99.9% of references hit in the TLB, whereas half the 

SPEC-fp benchmarks require 1024, and seven of the eight 

HPCC benchmarks require 4096 to achieve the same goal. 

3.2.4 Discussion 
We have seen that both benchmark suites overestimate the 

number of 4KB entries required by the applications for good 

TLB performance, while underestimating the number of 

2MB entries.  Our conclusion must be that the benchmarks 

do not accurately represent the TLB behavior of the 

applications.  In this section we try to understand the 

reasons for the discrepancy.  Since the HPCC benchmarks 

are more micro-benchmark-like, and their memory patterns 

are therefore more transparent, we begin by comparing 

2MB-page behavior of HPCC versus the applications. 

The reuse distance signatures most common in the HPCC 

benchmarks feature a small number of high bars to the left 

of the graph, with a few stray bars in the center.  In contrast, 

the application reuse signatures feature much more regularly 

distributed bars, starting at a relatively low height to the left 

of the graph and gradually tailing off towards the center of 

the graph. 

For an intuitive mapping from reuse patterns to application 

code, consider a code fragment which accesses multiple 

large arrays (or, equivalently, different parts of the same 

array) in a loop.  The more arrays accessed in the loop, the 

larger the reuse distance for each array.  The reuse pattern of 

the HPCC benchmarks is consistent with the observation 

that, in general, they perform many operations on few 

arrays.  In support of this claim, consider the tasks that the 

benchmarks perform: hpl computes the LU factorization of 

a single matrix; the random benchmarks randomly access a 

single array; ptrans transposes a single matrix; the fft codes 

transform a single array; dgemm multiplies two matrices; 

stream performs operations on two or three arrays. 

In contrast, the applications, in modeling complex systems 

that require many variables to represent, perform operations 

on a large number of arrays at the same time.  As a concrete 

example, the cnuity module in hycom, which comprises 

15% of the total runtime of the application, accesses more 

than 40 large arrays in its 20 loop-nests. 

While the SPEC-fp benchmarks are more application-like 

than the HPCC benchmarks, we conclude that they are not 

sufficiently application-like to exhibit the same TLB 

behavior. 

A similar argument can be made to explain the difference in 

behavior with 4KB pages.  TLB behavior for a benchmark 

that iteratively streams through a few large arrays will be 

dominated by compulsory and capacity misses caused by 

crossing page boundaries.  Assuming eight-byte words, one 

out of every 512 references to the array will miss in the 

TLB, and 99.9% coverage is impossible to achieve unless 

there are sufficient entries to hold every page referenced.  

The relatively low numbers of TLB entries required by the 

applications suggests that they are less dominated by such 

streaming behavior than the benchmarks. 

Another point of contrast between SPEC-fp and the 

applications is the periodicity featured in the SPEC-fp reuse 

distance plots, in particular periods of gradual increases, 

missing from the application plots.  We noted earlier, with 

reference to random, that gradual increases actually indicate 

uniformity of references.  More explicitly, in those regions, 

the next reference is as likely to be to a page referenced less 

recently as to a page referenced more recently, behavior 

associated with random access patterns.  We conclude, 

therefore, that the SPEC-fp benchmarks tend to have more 

random memory behavior than the applications. 

4 Validation and Performance Impact 
The implementation-independent results of the previous 

section indicate that both HPCC and SPEC-fp underestimate 

the number of 2MB-page TLB entries required for good 

application TLB performance, while overestimating the 

number of 4KB-page TLB entries required.  In this section 

we validate these results on the AMD Opteron x86 

implementation. 

As noted in the introduction AMD’s Opteron processor 

effectively uses two separate TLBs, with significantly 

different sizing and associativity properties, to handle 

different page sizes.  As a result of these size and 

associativity differences, the choice between large and small 

pages can have a tremendous impact on this platform.  We 

show that making the wrong choice, based on the 

performance of the benchmark suites, can lead to significant 

performance degradation for the applications we tested. 

4.1 Opteron TLBs 
The current-generation Opteron effectively services 

references to 4KB and 2MB pages from two different TLBs.  

The 4KB-page TLB of the Opteron is reasonably sized, 

backing up a 32-entry, fully associative, first level TLB with 

a much larger (512-entry, 4-way set associative) second 

level TLB.  The 2MB-page TLB, on the other hand, is very 

small, containing only eight entries, and is not backed up by 

a second level.  Furthermore, while AMD documentation 

(including the cpuid instruction) suggests that the 2MB TLB 

is fully associative, we have determined, with confirmation 

from AMD [21], that it is actually only 4-way set 

associative (with two sets). 

4.2 Methodology  



 

  

We used hardware performance counters to measure cycle 

counts, instruction counts, TLB miss counts, and L2 cache 

miss counts, for application and benchmark runs using both 

4KB and 2MB pages on an Opteron-based Cray XT4 

located at a National Laboratory.  Cray systems provide two 

tools which helped with our experiments.  The CrayPAT 

performance tools library provides an interface to the 

Opteron performance counters.  We use the library API to 

instrument the timestep loops and output performance 

counter results at program end.  YOD, the program 

responsible for loading programs into the compute node 

memory and setting up operating conditions, provides a 

command line switch to select the desired page size at run 

time. 

We present two charts for each benchmark and application 

suite.  The first chart plots TLB misses, expressed as TLB 

misses per 1000 instructions.  The second plots cycle 

counts, normalized to the 2MB-page results.  Note that, as 

in the previous section, we summarize multiprocessor 

results by taking the arithmetic mean of per-processor 

results. 

4.3 SPEC-fp Results 
Figure 7 presents results for the SPEC-fp benchmarks.  

Cycle counts indicate that the choice between large and 

small pages is essentially a wash for these benchmarks on 

this platform.  While several benchmarks, lucas and equake 

in particular, perform significantly better with 4KB pages, 

sixtrack and apsi perform significantly better with 2MB 

pages, and the majority of benchmarks are page-size neutral.   

The reason for these trends is clear from the TLB miss plots.  

The benchmarks that perform better with small pages 

feature significantly more TLB misses per instruction for 

2MB pages than for 4KB pages.  The reverse is true for 

benchmarks that perform better with large pages; they all 

feature significantly more level one TLB misses for 4KB 

pages (whether or not they hit in the L2), than misses for 

2MB pages.  The benchmarks in the middle tend to have 

low miss rates regardless of the choice of page size. 

4.4 HPCC Results 
Figure 8 provides data for the HPCC Benchmarks.  Cycle 

counts indicate that large pages are always a better choice 

for the sequential benchmarks.  Again, the reason is clear 

from the TLB miss counts: only random features an 

appreciable number of large-page TLB misses.  (In fact, it 

features more 2MB TLB misses than 4KB TLB misses; 

however, the small page run suffers significantly more L2 

cache misses due to caching of page table entries.  Page 

table compression results in many fewer page table entries 

and therefore less L2 cache pressure when 2MB pages are 

used for this benchmark [22].) 

  

Figure 7: Opteron hardware counter results for SPEC CPU2000.  Level one TLB misses (per 1000 instructions, left) 

are subdivided into those that hit in the L2 and those that miss (no L2 entries for 2MB pages).  Cycles (right) are 

normalized to the 2MB result. 

  

Figure 8: Opteron hardware counter results for HPCC benchmarks. 
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Similarly, of the parallel benchmarks, only mpirandom 

performs better with small pages due to a relatively high 

large-page TLB miss rate.  In contrast with the sequential 

version of random, TLB performance is dominated by linear 

accesses to send and receive buffers in the parallel 

implementation, and the number of such buffers exceeds the 

number of large-page TLB entries. 

Based on the data from Figure 4, we would expect the 

small-page TLB performance of ptrans to be significantly 

worse, since the 4KB chart indicates that the benchmark 

requires a minimum of 8K entries to cover even 90% of 

references.  The discrepancy is due to the enormous amount 

of communication implied by a parallel transpose; the 

simulator performs significantly fewer memory operations 

in a spin-loop waiting for messages to arrive than does 

hardware. 

 

4.5 Application Results 
Figure 9 provides data for application runs.  In stark contrast 

with both benchmark suites, the cycle counts insist that it is 

always better to choose small pages for this set of 

applications, in most cases by a rather large margin. 

 Again, the TLB miss counts reveal why:  in all cases, the 

2MB-page counts are significantly higher than the 4KB-

page L2 TLB miss counts (almost non-existent), and the 

4KB misses that hit in the L2 do not compensate.  

Interestingly, and again in stark contrast with the SPEC-fp 

TLB results, the small-page behavior mirrors the large-page 

behavior: applications with a large number of 2MB-page 

misses tend to also exhibit more 4KB-page (L1) misses, 

suggesting that the causes of the misses are similar for large 

pages and small pages 

4.6 Discussion 
The results from the previous subsections serve two 

purposes.  First, they validate the implementation-

  

Figure 9: Opteron hardware counter results for applications (see Figure 7 for details).  

  

  

Figure 10: Implementation-independent (above) and Opteron hardware counter (below) results for SPEC CPU2006. 
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independent simulations.  The TLB miss-rates show that, as 

predicted, both sets of benchmarks overestimate the benefit 

of large pages for the applications on the Opteron platform.  

In particular, while the SPEC-fp results suggest that the 

choice between large and small pages does not matter, the 

HPCC results clearly push in the direction of large pages. 

Second, the results in Figure 9 demonstrate the perils of 

extrapolating the TLB behavior of applications from the 

behavior of the benchmarks on the Opteron platform: all 

applications perform worse with large pages; all but two 

applications suffer a performance degradation of at least 

4%, while gtc and lammps each suffer a performance 

degradation of more than 25%.  The benchmarks and the 

applications behave differently, and the difference matters. 

4.7 SPEC CPU2006 
Due to space constraints, we present and only briefly 

discuss implementation-independent and Opteron hardware 

counter results for 16 of the 17 floating point CPU2006 

benchmarks in Figure 10.  The implementation-independent 

results show that the 2MB-page performance of the 

CPU2006 benchmarks is more like the applications than the 

CPU2000 benchmarks.  For example, the average 

requirement to satisfy 99% of CPU2006 references is 16 

entries as opposed to eight.  However, the 4KB page 

behavior of CPU2006 is even less similar to the applications 

than CPU2000: while CPU2000 requires an average of 8K 

entries to satisfy 99.9% of references, CPU2006 requires 

32K.  As a result, the CPU2006 relative performance for 

runs using 4KB and 2MB pages does not differ substantially 

from CPU2000. 

5 Other x86 Implementations 
Finally, we demonstrate how the implementation-

independent results of Section 3 can be used to predict 

application TLB behavior on TLB designs in other x86 

implementations.  For example, according to the latest 

available documentation [23], AMD has increased the 

number of 2MB L1 TLB entries to 48 (from 8) in the new 

Barcelona implementation.  Based on Figure 9 we would 

expect 48 TLB entries to be more than sufficient to hold 

most pages referenced by the applications, since all but 

hycom require at most 16 entries to ensure that 99.9% of 

references hit in the TLB.   

For comparison, Intel’s Core2 Duo implementation [24] 

features 16 “L0” and 32 L1 2MB entries, again apparently 

sufficient to hold 99.9% of references for most applications.  

However, in this case, allowance must be made for conflicts 

introduced by the low (4-way) associativity of the TLBs. 

6 Related Work 
Multiple page sizes have been available in selected 

computer architectures since the 1980s, prompting a great 

deal of work examining the need for, and the tradeoffs 

inherent in the use of, multiple page sizes [25-27].  The 

focus of much of the work has been on operating system 

policies that make optimal use of available page sizes. 

The Swiss National Supercomputing Center examined the 

large-page/small-page tradeoff on the Opteron-based Cray 

XT4, and pointed out a discrepancy between the page size 

indicated by HPCC Benchmarks and that required by 

applications [28].  Our work builds on this finding, and 

provides insights into the reasons for the discrepancy.   

As noted in the introduction, there has been a great deal of 

work seeking to understand the memory behavior of the 

benchmarks in SPEC-fp and HPCC [1-3], including some 

comparing benchmark behavior with production application 

behavior [4-6].  Most, however, focuses on cache 

performance.  Two exceptions are [7] which  explicitly 

looks at the TLB behavior of all the CPU2000 benchmarks, 

and [8]  which provides an in-depth examination of the 

concept of virtual memory overhead on a narrow set of 

applications (GCC and Vortex).  

Finally, the use of address-trace simulation to understand 

paging behavior of applications dates back to Mattson et al. 

in 1970 [29]. That work introduces a stack-based data 

structure very similar to the reuse distance tool we used for 

the experiments presented in Section 3. 

7 Conclusion 
We have demonstrated that while two widely utilized 

benchmark suites, SPEC CPU and HPCC, may be 

representative of the cache behavior of production scientific 

applications, they do not accurately represent TLB behavior 

that can be vital to the performance of these applications.   

In the first part of the paper we presented results from 

implementation-independent trace-based simulations, 

demonstrating that both sets of benchmarks simultaneously 

underestimate the number of 2MB entries and overestimate 

the number of 4KB entries required to achieve a given 

application TLB hit-rate. 

In the second part we validated these results with runs using 

performance counters to measure TLB misses and cycle 

counts on AMD Opteron processors.  We further 

demonstrated how to use the validated implementation-

independent results, combined with TLB and page sizing 

information to make predictions about the TLB performance 

of other implementations. 

However, the most valuable finding of this work is that 

extrapolating from SPEC and HPCC benchmark TLB 

performance can lead to false conclusions about application 

behavior, the result of which can be a performance 

degradation of up to nearly 50% for the applications we 

investigated.  We hope that this finding will draw attention 

to the need for benchmarks that accurately model 

application TLB behavior, and propose implementation-

independent reuse distance measurements as a tool for 

finding such benchmarks. 
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