
Investigating the TLB Behavior of High-end Scientific
Applications on Commodity Microprocessors

Collin McCurdy
Future Technologies Group

Computer Science and Mathematics

Oak Ridge National Laboratory

cmccurdy@ornl.gov

Alan L. Cox
Department of Computer Science

Rice University

alc@rice.edu

Jeffrey Vetter
Future Technologies Group

Computer Science and Mathematics

Oak Ridge National Laboratory

vetter@ornl.gov

Abstract
The floating point portion of the SPEC CPU suite and the HPC

Challenge suite are widely recognized and utilized as benchmarks

that represent scientific application behavior. In this work we

show that while these benchmark suites may be representative of

the cache behavior of production scientific applications, they do

not accurately represent the TLB behavior of these applications.

Furthermore, we demonstrate that the difference can have a

significant impact on performance. In the first part of the paper we

present results from implementation-independent trace-based

simulations which demonstrate that benchmarks exhibit

significantly different TLB behavior for a range of page sizes than

a representative set of production applications. In the second part

we validate these results on the AMD Opteron implementation of

the x86 architecture, showing that false conclusions about choice

of page size, drawn from benchmark performance, can result in

performance degradations of up to nearly 50% for the production

applications we investigated. 1

1 Introduction
In designing microprocessors and systems to attain good

performance on as wide a range of applications as possible,

architects rely on benchmark suites to represent the behavior

of entire classes of applications. For these purposes, two

benchmark suites in particular, the floating point portion of

the SPEC CPU suite (SPEC-fp) and the HPC Challenge

suite (HPCC), are widely accepted as being representative

of scientific application behavior.

There is a large body of work studying the memory

behavior of the benchmarks in these suites [1-3], including

some comparing benchmark behavior with production

application behavior [4-6]. However, with few exceptions

[7, 8], most of that work has focused on cache behavior,

ignoring the critical role the Translation Lookaside Buffer

(TLB) plays in memory performance. TLBs are vital to

performance because they hide most of the cost of virtual

memory by caching the most recently used page table

entries (PTEs). Because most modern processors feature

multi-level page tables, a single TLB miss can result in

multiple, dependent memory references, a huge

performance hit when each memory reference can take

1
 The submitted manuscript has been authored by a contractor of the U.S.
Government under Contract No. DE-AC05-00OR22725. Accordingly, the

U.S. Government retains a non-exclusive, royalty-free license to publish or

reproduce the published form of this contribution, or allow others to do so,
for U.S. Government purposes.

hundreds of processor cycles [9]. Furthermore, when

processor caches are physically tagged, as most are, every

reference must be translated before the result of a cache

access is guaranteed valid. Thus, a TLB miss results in

multiple trips to memory even when the data referenced is

in the cache.

In this work we demonstrate that while SPEC-fp and HPCC

may be representative of the cache behavior of production

scientific applications, they do not accurately represent the

TLB behavior of these applications. Furthermore, we show

that based on this discrepancy, users might be led to make

the wrong choice of page size for their applications,

potentially resulting in significant degradations in

application performance.

In the first part of the paper we present results from

implementation-independent trace-based simulations.

While the traces are certainly dependent on the x86

instruction-set architecture, the simulations are wholly

independent of any implementation of the architecture. Our

results demonstrate that the benchmark suites exhibit

significantly different TLB behavior for a range of page

sizes than a representative set of applications. Both sets of

benchmarks underestimate, relative to the applications, the

number of 2MB page TLB entries required to achieve a

given TLB hit-rate, while overestimating the number of

4KB page entries to meet the same goals.

In the second part we validate these results on the AMD

Opteron implementation of the x86 architecture. Like many

x86 implementations the Opteron effectively uses two

separate TLBs, with significantly different sizing and

associativity properties, to handle different page sizes. As a

result of these size and associativity differences, the choice

between large and small pages can have a tremendous

impact on this platform.

We show that false conclusions about choice of page size on

this platform, drawn from benchmark performance, can

result in performance degradations of up to nearly 50% for

the applications we investigated. Finally, we demonstrate

how the implementation-independent results can be

combined with TLB and page sizing information about

other x86 implementations to predict whether the

applications will fit within reach of their TLBs.

2 Applications and Benchmarks
In this section, we briefly describe the applications and

benchmarks used in our study.

2.1 SPEC CPU Floating Point Benchmarks
The SPEC CPU suite [10] consists of two sets of

benchmarks; benchmarks in the INT set operate almost

exclusively on integer data, while those in the FP set

primarily operate on floating point data. Because scientific

applications tend to be dominated by floating point

calculations, the floating point benchmarks are associated

with scientific application performance.

Many scientific applications are simulations of physical

processes in which time is discretized and some activity is

modeled and parameters advanced at each timestep. Nearly

all the SPEC floating point benchmarks feature such a

timestep loop and we use the regularity across timesteps to

our advantage to reduce benchmark run-times. We have

identified the timestep loop for each benchmark and the

results we present in the following sections are all averaged

(arithmetic mean) over 10 timesteps.

We obtained most of the results we present and discuss in

the following sections from runs of the 14 floating point

benchmarks from the CPU2000 version of the suite,

operating on the largest (“reference”) input data sets.

However, for completeness, in Section 4.7 we present a full

complement of results for 16 of the 17 floating point

benchmarks from the CPU2006 version of the suite (again,

reference data sets).

2.2 HPCC Benchmarks
HPCC [11] is a collection of benchmarks designed to stress

and measure several aspects of a parallel computing system.

Approximately half the benchmarks are sequential, designed

to test single node performance, while the rest are parallel,

measuring global performance. The benchmarks require

some tuning, in the form of determining an optimal set of

input parameters, in order to get peak performance from a

given platform. We use the same values for our

experimental runs that a National Laboratory supercomputer

center uses for 16 processor performance testing runs on its

Opteron-based Cray XT4, resulting in data sizes of roughly

1GB per processor, half of the available 2GB per processor.

We have chosen four uniprocessor benchmarks for our

experiments (stream, random, fft and dgemm) and all four

multi-processor benchmarks (ptrans, hpl, mpirandom and

mpifft).

In most cases results presented in the following sections are

for the full run of the benchmark. However, due to resource

constraints, we limit the exceedingly long run-time of hpl by

truncating the loop over columns to 100 iterations.

Additionally, we truncate the number of accesses in the

simulated runs of random and mpirandom, presented in

Section 3, to five million. The full benchmark is used in

both cases for the hardware runs of Section 4. Finally, we

summarize multiprocessor results by taking the arithmetic

mean of per-processor results.

2.3 Applications
We have chosen seven applications in production use at a

National Laboratory supercomputer center from three

currently relevant areas of scientific research: climate

modeling (cam [12], pop [13], hycom [14]); fusion (gyro

[15], gtc [16]); and molecular dynamics (amber [17],

lammps [18]).

As with the SPEC-fp benchmarks, we have identified the

timestep loop for each application and the results presented

in the following sections are averaged (arithmetic mean)

over 10 iterations. As with the parallel HPCC benchmarks,

we summarize multiprocessor results by taking the

arithmetic mean of per-processor counts.

Though we performed experiments on a relatively low

processor count (16), we made a concerted effort to choose

data sets for the applications and benchmarks that result in

per-processor memory use representative of larger

production runs.

Table 1 describes the input data set we have chosen for each

application and the per-processor memory requirements

imposed by that data set. All codes are Fortran77 or

Fortran90, with the exception of LAMMPS, which is coded

in C++.

3 Implementation-Independent Results
In this section, we characterize the TLB performance of our

selected benchmark and application suites based on the

results of implementation-independent simulations.

3.1 Methodology
Our simulation tool provides an implementation-

independent measure of both temporal and spatial locality,

at a page granularity, by computing “reuse distances” based

on page addresses of references, as follows: for each page

Table 1: Application inputs and resulting per-processor

memory usage. Note the difference in memory usage

between large- and small-page runs which we attribute

to large-page fragmentation.

Application Input Deck LRG/SM (MB)

CAM T42 132 / 73

POP x1 151 / 107

HYCOM GLBA0.72 484 / 243

GYRO B1-std 318 / 284

GTC a125 306 / 261

AMBER rt 93 / 56

LAMMPS rhodo.scaled 193 / 132

address calculate the number of unique references made

since that address was last referenced, and store the result in

a histogram by incrementing the appropriate bucket count.

As output the tool produces the log-scale histogram

summarizing the reuse distances computed for every

dynamic reference made by the application.

In principle, the tool simply maintains a stack of the last M

unique references (where M is the maximum distance to be

recorded), searches the stack for the current address, and

moves it to the top if found. Our implementation, based on

the description of a similar tool in [19], makes use of a red-

black tree data structure to reduce the computational

complexity of the problem from O(NM) to O(NlogM),

where N is the total number of addresses in the trace.

The tool is driven by Pin [20], a dynamic instrumentation

framework from Intel. We see two major benefits of using

dynamic instrumentation rather than memory traces for

simulation. First, since the trace is generated dynamically,

there are no enormous trace files to generate and store.

Second, Pin significantly simplifies the tracing of parallel

applications, since every instruction, including those in MPI

library functions, is executed by the Pin virtual machine,

just as it would in the uninstrumented application.

3.2 Results
In the following subsections, we present two sets of charts

for each suite of benchmarks and applications. The first set,

exemplified by Figure 1, are visual representations of the

raw histogram output of the reuse distance tool, two page

sizes per application. Each histogram bucket along the x-

axis represents a range of distances (16, for example, is

shorthand for “less than 16 and greater than or equal to 8”

and represents distances 8-15) and the value of a bucket

along the y-axis is the percentage of total references whose

reuse distance fell within that range. Note that the y-axis is

log-scale, providing a microscopic view of infrequent but,

as we shall see, important behavior.

The second set of charts, demonstrated in Figure 2, interpret

the reuse distance results, using them to calculate the

number of entries that would be required to ensure that a

Figure 1: Reuse distance data for a representative selection of the floating point SPEC CPU2000 benchmarks.

Figure 2: Based on the reuse distances for the floating point SPEC CPU2000 benchmarks, the number of TLB entries

required to ensure 90%, 99% and 99.9% of references hit, given a page size of 2MB (left) or 4KB (right).

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

wupwise

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000% swim

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

mgrid

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

facerec

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

lucas

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

fma3d

2MB

4KB

1

2

4

8

16

32 2MB

90.0%

99.0%

99.9%

1
2
4
8
16
32
64

128
256
512
1024
2048
4096
8192

16384
32768 4KB

90.0%

99.0%

99.9%

given percentage of references (we have chosen 90%, 99%

and 99.9%) will not miss in the TLB. We calculate this

result by accumulating the histogram results for a given

application, starting at bucket 1 and stopping when the sum

is greater than the desired percentage. The label of the

bucket at which we stop gives the number of entries

required.

To understand how this works, consider the wupwise reuse

distance results for 2MB pages: 56% of all dynamic

references have reuse distance 1 (really “less than 1,” or 0),

36% have reuse distance 2 (<2 and >= 1, or 1), 7.8% have

reuse distance 4 (2-3), and 0.2% have reuse distance 8.

Accumulating these percentages, 56% of references are to

the previous page, and would thus be covered by a single

TLB entry; 92% are to one of the last two pages referenced,

requiring two TLB entries; 99.8% of references are to one of

the last four pages referenced; and 100% of references are to

one of the last eight pages referenced. Eight entries would

therefore be sufficient to ensure the application never

suffers a TLB miss (beyond the initial compulsory misses).

3.2.1 SPEC-fp Benchmarks

Figure 1 and Figure 2 present data collected for the SPEC-fp

benchmarks. The reuse distance charts for the included

benchmarks typify the behavior of all the benchmarks. Note

that the visual signatures for the benchmarks tend toward

similarity, particularly for 4KB pages, featuring periodic

tails, gradual decreases followed by gradual increases.

Only five of the 14 benchmarks require more than eight

2MB entries to cover 99.9% of application references. On

the other hand, more than half the benchmarks would

require at least 1024 4KB entries to cover the same number

of references.

3.2.2 HPCC Benchmarks
Figure 3 and Figure 4 present data collected for the HPCC

benchmarks. In contrast with the SPEC plots, the visual

signatures of the HPCC reuse distance plots vary widely

from benchmarks to benchmark. While the patterns created

by 4KB pages for mpifft and hpl feature some of the

periodicity noted in the SPEC benchmarks, the remaining

benchmarks look distinctly different. Ptrans, dgemm and

stream all feature high bars to the left of the plot, indicating

extremely high locality, with a few stray bars in the middle

Figure 3: Reuse distances for a representative selection of the HPCC benchmarks.

Figure 4: For the HPCC benchmarks, the number of TLB entries required to ensure 90%, 99%, and 99.9% of references

hit, given a page size of 2MB (left) or 4KB (right).

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

ptrans

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

mpifft

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

hpl

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

dgemm

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

stream

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

random

2MB

4KB

1

2

4

8

16

32

64

128

256

512 2MB

90.0%

99.0%

99.9%

1

4

16

64

256

1024

4096

16384

65536 4KB

90.0%

99.0%

99.9%

and to the right. These seemingly randomly placed bars are

actually indicative of benchmark behavior. For example,

the stray spike at distance 8K for 4KB pages (and 128 for

2MB pages) in ptrans, which transposes a large two-

dimensional array, is the result of strided memory accesses

as the non-linear dimension is traversed.

The upward slopes of random are also noteworthy, since

they point out an interesting feature of the plots: apparent

gradual increases actually indicate uniformity, due to the

log-based axes. For example, bucket 1024 represents 512

distances (512-1023) while bucket 2048 represents twice as

many distances (1024-2047). If the count at bucket 2048 is

twice that of the bucket at 1024, it means that on average

each distance in the range 512-2047 was seen the same

number of times. By the same token, an apparent gradual

decrease is actually a sharper decrease.

Four 2MB entries eliminate 99.9% of misses for half the

benchmarks, and two entries are sufficient to cover 99% of

references for five of the eight benchmarks. The two

random benchmarks require significantly more entries,

skewing the average.

On the other hand, as with SPEC-fp, 4KB pages require

significantly more entries: all but one benchmark require

4096 entries to cover 99.9% of references.

3.2.3 Applications
The visual signatures of the application reuse distance plots

in Figure 5 are strikingly different from those of both HPCC

and SPEC-fp. Like SPEC-fp, the signatures are much more

regular and uniform than those of HPCC. However, in

contrast with SPEC-fp, the application benchmarks 4KB

bars do not exhibit periodicity but instead feature long

trailing tails. A few benchmarks, most notably gtc, do have

spikes to the right of the plot, but in contrast with SPEC,

they are sudden spikes as opposed to gradual increases.

Also notable is the difference in shape and quantity of the

2MB page bars.

The differences between applications and benchmarks are

even more evident in the second set of plots, Figure 6. For

2MB pages, five of the seven applications require at least 16

entries to provide 99.9% TLB coverage, while only five of

the 14 SPEC-fp benchmarks require more than eight entries.

Figure 5: Reuse distances for a representative selection of the applications.

Figure 6: For applications, the number of TLB entries required to ensure 90%, 99%, and 99.9% of references hit, given a

page size of 2MB (left) or 4KB (right).

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

lammps

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

gtc

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

amber

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

hycom

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

pop

2MB

4KB

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

cam

2MB

4KB

1

2

4

8

16

32

64

128 2MB

90.0%

99.0%

99.9%

1
2
4
8

16
32
64
128
256
512

1024
2048
4096 4KB

90.0%

99.0%

99.9%

The average bar for SPEC-fp indicates that eight 2MB

entries are sufficient to cover 99% of benchmark references,

while the applications require 16 entries to cover the same

percentage of references. This difference is quite significant

for performance on the Opteron processor, which features

only eight 2MB TLB entries, as we shall see in Section 4.

On the other hand, the applications require significantly

fewer 4KB entries than both benchmark suites. Only one

application requires more than 256 4KB entries to ensure

that 99.9% of references hit in the TLB, whereas half the

SPEC-fp benchmarks require 1024, and seven of the eight

HPCC benchmarks require 4096 to achieve the same goal.

3.2.4 Discussion
We have seen that both benchmark suites overestimate the

number of 4KB entries required by the applications for good

TLB performance, while underestimating the number of

2MB entries. Our conclusion must be that the benchmarks

do not accurately represent the TLB behavior of the

applications. In this section we try to understand the

reasons for the discrepancy. Since the HPCC benchmarks

are more micro-benchmark-like, and their memory patterns

are therefore more transparent, we begin by comparing

2MB-page behavior of HPCC versus the applications.

The reuse distance signatures most common in the HPCC

benchmarks feature a small number of high bars to the left

of the graph, with a few stray bars in the center. In contrast,

the application reuse signatures feature much more regularly

distributed bars, starting at a relatively low height to the left

of the graph and gradually tailing off towards the center of

the graph.

For an intuitive mapping from reuse patterns to application

code, consider a code fragment which accesses multiple

large arrays (or, equivalently, different parts of the same

array) in a loop. The more arrays accessed in the loop, the

larger the reuse distance for each array. The reuse pattern of

the HPCC benchmarks is consistent with the observation

that, in general, they perform many operations on few

arrays. In support of this claim, consider the tasks that the

benchmarks perform: hpl computes the LU factorization of

a single matrix; the random benchmarks randomly access a

single array; ptrans transposes a single matrix; the fft codes

transform a single array; dgemm multiplies two matrices;

stream performs operations on two or three arrays.

In contrast, the applications, in modeling complex systems

that require many variables to represent, perform operations

on a large number of arrays at the same time. As a concrete

example, the cnuity module in hycom, which comprises

15% of the total runtime of the application, accesses more

than 40 large arrays in its 20 loop-nests.

While the SPEC-fp benchmarks are more application-like

than the HPCC benchmarks, we conclude that they are not

sufficiently application-like to exhibit the same TLB

behavior.

A similar argument can be made to explain the difference in

behavior with 4KB pages. TLB behavior for a benchmark

that iteratively streams through a few large arrays will be

dominated by compulsory and capacity misses caused by

crossing page boundaries. Assuming eight-byte words, one

out of every 512 references to the array will miss in the

TLB, and 99.9% coverage is impossible to achieve unless

there are sufficient entries to hold every page referenced.

The relatively low numbers of TLB entries required by the

applications suggests that they are less dominated by such

streaming behavior than the benchmarks.

Another point of contrast between SPEC-fp and the

applications is the periodicity featured in the SPEC-fp reuse

distance plots, in particular periods of gradual increases,

missing from the application plots. We noted earlier, with

reference to random, that gradual increases actually indicate

uniformity of references. More explicitly, in those regions,

the next reference is as likely to be to a page referenced less

recently as to a page referenced more recently, behavior

associated with random access patterns. We conclude,

therefore, that the SPEC-fp benchmarks tend to have more

random memory behavior than the applications.

4 Validation and Performance Impact
The implementation-independent results of the previous

section indicate that both HPCC and SPEC-fp underestimate

the number of 2MB-page TLB entries required for good

application TLB performance, while overestimating the

number of 4KB-page TLB entries required. In this section

we validate these results on the AMD Opteron x86

implementation.

As noted in the introduction AMD’s Opteron processor

effectively uses two separate TLBs, with significantly

different sizing and associativity properties, to handle

different page sizes. As a result of these size and

associativity differences, the choice between large and small

pages can have a tremendous impact on this platform. We

show that making the wrong choice, based on the

performance of the benchmark suites, can lead to significant

performance degradation for the applications we tested.

4.1 Opteron TLBs
The current-generation Opteron effectively services

references to 4KB and 2MB pages from two different TLBs.

The 4KB-page TLB of the Opteron is reasonably sized,

backing up a 32-entry, fully associative, first level TLB with

a much larger (512-entry, 4-way set associative) second

level TLB. The 2MB-page TLB, on the other hand, is very

small, containing only eight entries, and is not backed up by

a second level. Furthermore, while AMD documentation

(including the cpuid instruction) suggests that the 2MB TLB

is fully associative, we have determined, with confirmation

from AMD [21], that it is actually only 4-way set

associative (with two sets).

4.2 Methodology

We used hardware performance counters to measure cycle

counts, instruction counts, TLB miss counts, and L2 cache

miss counts, for application and benchmark runs using both

4KB and 2MB pages on an Opteron-based Cray XT4

located at a National Laboratory. Cray systems provide two

tools which helped with our experiments. The CrayPAT

performance tools library provides an interface to the

Opteron performance counters. We use the library API to

instrument the timestep loops and output performance

counter results at program end. YOD, the program

responsible for loading programs into the compute node

memory and setting up operating conditions, provides a

command line switch to select the desired page size at run

time.

We present two charts for each benchmark and application

suite. The first chart plots TLB misses, expressed as TLB

misses per 1000 instructions. The second plots cycle

counts, normalized to the 2MB-page results. Note that, as

in the previous section, we summarize multiprocessor

results by taking the arithmetic mean of per-processor

results.

4.3 SPEC-fp Results
Figure 7 presents results for the SPEC-fp benchmarks.

Cycle counts indicate that the choice between large and

small pages is essentially a wash for these benchmarks on

this platform. While several benchmarks, lucas and equake

in particular, perform significantly better with 4KB pages,

sixtrack and apsi perform significantly better with 2MB

pages, and the majority of benchmarks are page-size neutral.

The reason for these trends is clear from the TLB miss plots.

The benchmarks that perform better with small pages

feature significantly more TLB misses per instruction for

2MB pages than for 4KB pages. The reverse is true for

benchmarks that perform better with large pages; they all

feature significantly more level one TLB misses for 4KB

pages (whether or not they hit in the L2), than misses for

2MB pages. The benchmarks in the middle tend to have

low miss rates regardless of the choice of page size.

4.4 HPCC Results
Figure 8 provides data for the HPCC Benchmarks. Cycle

counts indicate that large pages are always a better choice

for the sequential benchmarks. Again, the reason is clear

from the TLB miss counts: only random features an

appreciable number of large-page TLB misses. (In fact, it

features more 2MB TLB misses than 4KB TLB misses;

however, the small page run suffers significantly more L2

cache misses due to caching of page table entries. Page

table compression results in many fewer page table entries

and therefore less L2 cache pressure when 2MB pages are

used for this benchmark [22].)

Figure 7: Opteron hardware counter results for SPEC CPU2000. Level one TLB misses (per 1000 instructions, left)

are subdivided into those that hit in the L2 and those that miss (no L2 entries for 2MB pages). Cycles (right) are

normalized to the 2MB result.

Figure 8: Opteron hardware counter results for HPCC benchmarks.

0

5

10

15

20

25

30

35

4KB-
L2Hit

4KB-
L2Miss

2MB
0%

20%

40%

60%

80%

100%

120%

N
o

rm
al

iz
e

d
 C

yc
le

s

2MB

4KB

0

10

20

30

40

50

60

70

80

4KB-
L2Hit
4KB-
L2Miss
2MB

0%
20%
40%
60%
80%
100%
120%
140%
160%
180%
200%

N
o

rm
al

iz
e

d
 C

yc
le

s

2MB

4KB

Similarly, of the parallel benchmarks, only mpirandom

performs better with small pages due to a relatively high

large-page TLB miss rate. In contrast with the sequential

version of random, TLB performance is dominated by linear

accesses to send and receive buffers in the parallel

implementation, and the number of such buffers exceeds the

number of large-page TLB entries.

Based on the data from Figure 4, we would expect the

small-page TLB performance of ptrans to be significantly

worse, since the 4KB chart indicates that the benchmark

requires a minimum of 8K entries to cover even 90% of

references. The discrepancy is due to the enormous amount

of communication implied by a parallel transpose; the

simulator performs significantly fewer memory operations

in a spin-loop waiting for messages to arrive than does

hardware.

4.5 Application Results
Figure 9 provides data for application runs. In stark contrast

with both benchmark suites, the cycle counts insist that it is

always better to choose small pages for this set of

applications, in most cases by a rather large margin.

 Again, the TLB miss counts reveal why: in all cases, the

2MB-page counts are significantly higher than the 4KB-

page L2 TLB miss counts (almost non-existent), and the

4KB misses that hit in the L2 do not compensate.

Interestingly, and again in stark contrast with the SPEC-fp

TLB results, the small-page behavior mirrors the large-page

behavior: applications with a large number of 2MB-page

misses tend to also exhibit more 4KB-page (L1) misses,

suggesting that the causes of the misses are similar for large

pages and small pages

4.6 Discussion
The results from the previous subsections serve two

purposes. First, they validate the implementation-

Figure 9: Opteron hardware counter results for applications (see Figure 7 for details).

Figure 10: Implementation-independent (above) and Opteron hardware counter (below) results for SPEC CPU2006.

0

5

10

15

20

25

30

lammps gtc hycom amber gyro cam pop

4KB-
L2Hit

4KB-
L2Miss

2MB
0%

20%

40%

60%

80%

100%

120%

N
o

rm
al

iz
e

d
 C

yc
le

s

2MB

4KB

1

2

4

8

16

32

64 2MB

90%

99%

99.9%

1

4

16

64

256

1024

4096

16384

65536 4KB

90%

99%

99.9%

0

5

10

15

20

25

30

35

40

45

4KB-
L2Hit
4KB-
L2Miss
2MB

0%

20%

40%

60%

80%

100%

120%

N
o

rm
al

iz
e

d
 C

yc
le

s

2MB

4KB

independent simulations. The TLB miss-rates show that, as

predicted, both sets of benchmarks overestimate the benefit

of large pages for the applications on the Opteron platform.

In particular, while the SPEC-fp results suggest that the

choice between large and small pages does not matter, the

HPCC results clearly push in the direction of large pages.

Second, the results in Figure 9 demonstrate the perils of

extrapolating the TLB behavior of applications from the

behavior of the benchmarks on the Opteron platform: all

applications perform worse with large pages; all but two

applications suffer a performance degradation of at least

4%, while gtc and lammps each suffer a performance

degradation of more than 25%. The benchmarks and the

applications behave differently, and the difference matters.

4.7 SPEC CPU2006
Due to space constraints, we present and only briefly

discuss implementation-independent and Opteron hardware

counter results for 16 of the 17 floating point CPU2006

benchmarks in Figure 10. The implementation-independent

results show that the 2MB-page performance of the

CPU2006 benchmarks is more like the applications than the

CPU2000 benchmarks. For example, the average

requirement to satisfy 99% of CPU2006 references is 16

entries as opposed to eight. However, the 4KB page

behavior of CPU2006 is even less similar to the applications

than CPU2000: while CPU2000 requires an average of 8K

entries to satisfy 99.9% of references, CPU2006 requires

32K. As a result, the CPU2006 relative performance for

runs using 4KB and 2MB pages does not differ substantially

from CPU2000.

5 Other x86 Implementations
Finally, we demonstrate how the implementation-

independent results of Section 3 can be used to predict

application TLB behavior on TLB designs in other x86

implementations. For example, according to the latest

available documentation [23], AMD has increased the

number of 2MB L1 TLB entries to 48 (from 8) in the new

Barcelona implementation. Based on Figure 9 we would

expect 48 TLB entries to be more than sufficient to hold

most pages referenced by the applications, since all but

hycom require at most 16 entries to ensure that 99.9% of

references hit in the TLB.

For comparison, Intel’s Core2 Duo implementation [24]

features 16 “L0” and 32 L1 2MB entries, again apparently

sufficient to hold 99.9% of references for most applications.

However, in this case, allowance must be made for conflicts

introduced by the low (4-way) associativity of the TLBs.

6 Related Work
Multiple page sizes have been available in selected

computer architectures since the 1980s, prompting a great

deal of work examining the need for, and the tradeoffs

inherent in the use of, multiple page sizes [25-27]. The

focus of much of the work has been on operating system

policies that make optimal use of available page sizes.

The Swiss National Supercomputing Center examined the

large-page/small-page tradeoff on the Opteron-based Cray

XT4, and pointed out a discrepancy between the page size

indicated by HPCC Benchmarks and that required by

applications [28]. Our work builds on this finding, and

provides insights into the reasons for the discrepancy.

As noted in the introduction, there has been a great deal of

work seeking to understand the memory behavior of the

benchmarks in SPEC-fp and HPCC [1-3], including some

comparing benchmark behavior with production application

behavior [4-6]. Most, however, focuses on cache

performance. Two exceptions are [7] which explicitly

looks at the TLB behavior of all the CPU2000 benchmarks,

and [8] which provides an in-depth examination of the

concept of virtual memory overhead on a narrow set of

applications (GCC and Vortex).

Finally, the use of address-trace simulation to understand

paging behavior of applications dates back to Mattson et al.

in 1970 [29]. That work introduces a stack-based data

structure very similar to the reuse distance tool we used for

the experiments presented in Section 3.

7 Conclusion
We have demonstrated that while two widely utilized

benchmark suites, SPEC CPU and HPCC, may be

representative of the cache behavior of production scientific

applications, they do not accurately represent TLB behavior

that can be vital to the performance of these applications.

In the first part of the paper we presented results from

implementation-independent trace-based simulations,

demonstrating that both sets of benchmarks simultaneously

underestimate the number of 2MB entries and overestimate

the number of 4KB entries required to achieve a given

application TLB hit-rate.

In the second part we validated these results with runs using

performance counters to measure TLB misses and cycle

counts on AMD Opteron processors. We further

demonstrated how to use the validated implementation-

independent results, combined with TLB and page sizing

information to make predictions about the TLB performance

of other implementations.

However, the most valuable finding of this work is that

extrapolating from SPEC and HPCC benchmark TLB

performance can lead to false conclusions about application

behavior, the result of which can be a performance

degradation of up to nearly 50% for the applications we

investigated. We hope that this finding will draw attention

to the need for benchmarks that accurately model

application TLB behavior, and propose implementation-

independent reuse distance measurements as a tool for

finding such benchmarks.

Acknowledgements
Under the auspices of the INCITE project "Performance

Engineering and Analysis Consortium End Station," this

research used resources of the National Center for

Computational Sciences at Oak Ridge National Laboratory,

which is supported by the Office of Science of the

Department of Energy under Contract DE-ASC05-

00OR22725. We also wish to thank Sandia National

Laboratory for granting us access to computational

resources, and particularly Suzanne Kelly and Dennis Dinge

for their help.

References
[1] S. Sair and M. Charney, "Memory Behavior of the

SPEC'2000 Benchmark Suite," IBM Thomas J. Watson

Research Center, Technical Report RC-21852, 2000.

[2] A. Jaleel, "Memory Characterization of Workloads Using

Instrumentation-Driven Simulation,"

http://www.glue.umd.edu/~ajaleel/workload, 2007.

[3] J. Weinberg, M. O. McCracken, E. Strohmaier, and A.

Snavely, "Quantifying Locality In The Memory Access

Patterns of HPC Applications," in Proceedings of the 2005

ACM/IEEE conference on Supercomputing, 2005

[4] K. Rupnow, A. Rodrigues, K. Underwood, and K. Compton,

"Scientific applications vs. SPEC-FP: a comparison of

program behavior," in Proceedings of the 20th annual

international conference on Supercomputing, 2006

[5] R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov,

"Characteristics of workloads used in high performance and

technical computing," in Proceedings of the 21st annual

international conference on Supercomputing, 2007

[6] L. C. Carrington, M. Laurenzano, A. Snavely, R. L.

Campbell, and L. P. Davis, "How Well Can Simple Metrics

Represent the Performance of HPC Applications? ," in

Proceedings of the 2005 ACM/IEEE conference on

Supercomputing, 2005

[7] G. B. Kandiraju and A. Sivasubramaniam, "Characterizing

the d-TLB behavior of SPEC CPU2000 benchmarks," in

Proceedings of the 2002 ACM SIGMETRICS international

conference on Measurement and modeling of computer

systems, 2002

[8] B. L. Jacob and T. N. Mudge, "A look at several memory

management units, TLB-refill mechanisms, and page table

organizations," in Proceedings of the eighth international

conference on Architectural support for programming

languages and operating systems San Jose, California,

United States: ACM Press, 1998.

[9] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne,

"Accelerating Two-Dimensional Page Walks for Virtualized

Systems," in Architectural Support for Programming

Languages and Operating Systems (ASPLOS'08), 2008.

[10] "SPEC - Standard Performance Evaluation Corporation,"

http://www.spec.org, 2008.

[11] P. Luszczek, et al., "Introduction to the HPC Challenge

Benchmark Suite," Lawrence Berkeley National Laboratory,

Technical Report LBNL-57493, 2005.

[12] W. D. Collins, et al., "The Formulation and Atmospheric

Simulation of the Community Atmosphere Model Version 3

(CAM3)," Journal of Climate, vol. 19, 2006.

[13] P. W. Jones, P. H. Worley, Y. Yoshida, J. B. White, III, and

J. Levesque, "Practical performance portability in the Parallel

Ocean Program (POP): Research Articles," Concurr.

Comput. : Pract. Exper., vol. 17, pp. 1317-1327, 2005.

[14] A. J. Wallcraft, E. J. Metzger, H. E. Hurlburt, E. P.

Chassignet, Z. D. Garraffo, and O. M. Smedstad, "Global

Ocean Prediction Using HYCOM," in Proceedings of the

2005 Users Group Conference on 2005 Users Group

Conference: IEEE Computer Society, 2005.

[15] J. Candy and R. E. Waltz, "An Eulerian gyrokinetic-Maxwell

solver," J. Comput. Phys., vol. 186, pp. 545-581, 2003.

[16] S. Ethier, W. M. Tang, and Z. Lin, "Gyrokinetic particle-in-

cell simulations of plasma microturbulence on advanced

computing platforms," Journal of Physics: Conference

Series, vol. 16, pp. 1-15, 2005.

[17] D. A. Pearlman, et al., "AMBER, a package of computer

programs for applying molecular mechanics, normal mode

analysis, molecular dynamics and free energy calculations to

simulate the structural and energetic properties of

molecules," Computer Physics Communications, vol. 91, pp.

1-41, 1995.

[18] S. Plimpton, "Fast Parallel Algorithms for Short-Range

Molecular Dynamics," Sandia National Laboratory,

Technical Report SAND91-1144, 1993.

[19] J. Yu, S. Baghsorkhi, and M. Snir, "A New Locality Metric

and Case Studies for HPCS Benchmarks," University of

Illinois, Urbana Champagne, Technical Report DCS-R-2005-

2564, 2005.

[20] C.-K. Luk, et al., "Pin: building customized program analysis

tools with dynamic instrumentation," in Proceedings of the

2005 ACM SIGPLAN conference on Programming language

design and implementation Chicago, IL, USA: ACM Press,

2005.

[21] AMD, Personal Communication, 2006.

[22] A. Cox, "Superpage support for FreeBSD 7.0-CURRENT,"

http://www.cs.rice.edu/~alc/superpages/, 2007.

[23] Software Optimization Guide for AMD Family 10h

Processors: Advanced Micro Devices, 2007.

[24] J. Doweck, "Inside the Core™ Microarchitecture," in Hot

Chips 18, 2006.

[25] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and B. N.

Bershad, "Reducing TLB and memory overhead using online

superpage promotion," in Proceedings of the 22nd annual

international symposium on Computer architecture S.

Margherita Ligure, Italy: ACM Press, 1995.

[26] M. Talluri, S. Kong, M. D. Hill, and D. A. Patterson,

"Tradeoffs in supporting two page sizes," in Proceedings of

the 19th annual international symposium on Computer

architecture Queensland, Australia: ACM Press, 1992.

[27] J. Navarro, S. Iyer, P. Druschel, and A. Cox, "Practical,

transparent operating system support for superpages," in

Proceedings of the 5th symposium on Operating systems

design and implementation Boston, Massachusetts: ACM

Press, 2002.

[28] N. Stringfellow, "The Effect of Page Size and TLB Entries

on Application Performance," in Proceedings of the 48th

Cray User Group Meeting, 2006.

[29] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,

"Evaluation techniques for storage hierarchies," IBM Systems

Journal, vol. 9, 1970.

http://www.glue.umd.edu/~ajaleel/workload
http://www.spec.org/
http://www.cs.rice.edu/~alc/superpages/

