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Abstract—Performance and scaling of biomolecular simulations 

frameworks largely depends on not only the workload 

characteristics of the simulations but also the design of 

underlying processor architecture and interconnection networks. 

Because construction of Teraflops and Petaflops scale prototype 

systems for evaluation alone is impractical and cost-prohibitive, 

architects use analytical models of workloads and architecture 

simulators to guide their design decisions and tradeoffs. To 

address the problem of providing scalable yet precise input for 

network simulators, we have developed a technique to model 

symbolically the communication patterns of production-level 

scientific applications to study workload growth rates and to 

carry out sensitivity analysis. We apply our symbolic modeling 

scheme to the Particle Mesh Ewald (PME) implementation in the 

sander package of the AMBER framework and demonstrate how 

the increase in computation, memory and communication 

requirements impact the performance and scaling of the PME 

method on the next-generation massively-parallel systems. 
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I.  INTRODUCTION  

Scientific discoveries using the massively-parallel 
processing in form of Teraflops-scale supercomputing systems 
and emerging processing devices such as the STI Cell system, 
reconfigurable computing (FPGA) and Graphical Processing 
Units (GPU) accelerators will depend on exploiting these 
technologies effectively for widely-used biomolecular 
simulation packages. Presently, a number of traditional 
simulation packages including AMBER [12] and CHARMM 
[10] achieve limited scaling on high-end massively parallel 
processing systems (MPP). Although numerous studies have 
attempted to report the causes of limited scaling, there is no 
coherent mechanism to systematically model these applications 
in order to quantify and identify workload behavior and 
subsequently to project workload growth and sensitivity for 
future problem and system configurations. This information 
will facilitate architecture and system designers to understand 
the workload requirements of an application efficiently to drive 
Petaflops-scale network simulators without becoming an 
application expert. Moreover, as the complexity of system 
designs increases with the introduction of multicore processors, 
this information will enable system architects to make critical 
design tradeoffs without significantly hurting an application’s 
performance. 

To address these issues of providing scalable yet precise 
input for simulators, we have developed a technique to model 
symbolically the workload behavior of real scientific 
applications. Using an application’s key input parameters, we 
model computation (floating-point operations), memory (load-
store operations) and communication requirements 
symbolically. The symbolic model of an application’s 
communication pattern captures both the individual message 
features, such as message size, and the overall communication 
topology for all messages (i.e., message source and 
destination). The input parameters for the symbolic models are 
application input parameters (e.g., number of atoms) and 
architecture-independent platform parameters (e.g., number of 
processors). Once created, these symbolic equations can then 
be used to generate an exact, synthetic tracefile of any size for 
the specific application under investigation, which can, in turn, 
be used as input to a network simulator [9][16].  The submitted manuscript has been authored by a contractor of the U.S. 

Government under Contract No. DE-AC05-00OR22725. The authors would 
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In this paper, we describe our modeling methodology, and 
evaluate it by prototyping an extension to our symbolic 
modeling framework—Modeling Assertions (MA) [5][6]—that 
generates symbolic models of MPI communication behaviors 
and physical memory requirements. To demonstrate the 
effectiveness of our methodology, we have applied this new 
technique to the AMBER bio-molecular application 
framework. We show that our results can, in fact, help us to 
identify scaling problems in applications before they are ported 
to large-scale platforms. 

A. Background and Related Work 

Researchers have proposed numerous techniques for the 
creation and validation of performance models, ranging from 
fully analytical, manual methods to automatic, architecture-
specific approaches. Some of these performance modeling and 
prediction efforts for large-scale scientific applications on high-
end systems that have been undertaken in the past decade can 
be found in [2][3][8][14][16][17]. Many of these techniques 
serve the overall purpose of modeling but there have been few 
common techniques that have gained widespread acceptance 
across the simulation community for large-scale interconnects.  

B. Paper Outline 

The paper outline is as follows. Section 2 introduces the 
modeling assertion framework and the model construction and 
validation process using the MA API. Section 3 describes the 
PME implementation in the sander package of the AMBER 
framework. Section 4 explains our modeling methodology for 
developing symbolic performance models for PME 
simulations. Performance analysis and projection studies using 
the symbolic models of the PME implementation are presented 
in section 5. Conclusions and plans for future work are 
presented in section 6. 

II. MODELING ASSERTIONS FRAMEWORK 

In order to evaluate our approach of developing symbolic 
models with MA, we have designed a prototype framework. 
This framework has two main components: an API and a post-
processing toolset. Figure 1 shows the components of the MA 
framework.  

The MA API is used to annotate the source code. As the 
application executes, the runtime system captures important 
information in trace files. These trace files are then post-
processed to validate, analyze, and construct models. The post-
processing toolset is a collection of tools or Java classes for 
model validation, control-flow model creation and symbolic 
model generation. The modeling API is available on Linux 
clusters with MPICH, IBM pSeries systems and Cray X1E 
vector system [1]. The symbolic model shown in the Figure 1 
is generated for the MPI send volume.  

 

 
Figure 1: Design components of the MA framework 

 
The MA API provides a set of functions to annotate a given 

FORTRAN or C code with MPI message-passing 
communication library. For example, ma_loop_start, a MA 
API function, can be used to mark the start of a loop. Upon 
execution, the code instrumented with MA API functions 
generates trace files. For parallel applications, one trace file is 
generated for each MPI task. The trace files contain traces for 
ma_xxx calls and MPI communication events. Most MA calls 
require a pair of ma_xxx_start and a ma_xxx_end calls. The 
ma_xxx_end traces are primarily used to validate modeling 
assertions against the runtime values. The assertions for 
hardware counter values, ma_flop_start/stop, invoke the PAPI 
hardware counter API [10]. The ma_mpi_xxx assertions on the 
other hand are validated by implementing MPI wrapper 
functions (PMPI) and by comparing ma_mpi_xxx traces to 
PMPI_xxx traces. Additional functions are provided in the MA 
API to control the tracing volume, for example, the size of the 
trace files, by enabling and disabling the tracing at compile 
time and also at runtime. At runtime, the MA runtime system 
(MARS) tracks and captures the actual instantiated values as 
these variables execute in the application. MARS creates an 
internal control flow representation of the calls to the MA 
library as these calls are instantiated.  It also captures both the 
symbolic values and the actual values of the expressions. 

III. MOLECULAR DYNAMICS SIMULATIONS IN AMBER 

Molecular dynamics (MD) simulations enable the study of 
complex, dynamic processes that occur in biological systems. 
MD methods are now routinely used to investigate the 
structure, dynamics, functions, and thermodynamics of 
biological molecules and their complexes. Several commercial 
and open source MD software frameworks are in use by a large 
community of biologists. AMBER provides a wide range of 
MD algorithms. AMBER's main module is known as sander 
(for simulated annealing with NMR-derived energy restraints). 

A typical bimolecular simulation contains atoms for solute, 
ions, and solvent molecules. The force on each atom is 
represented as the combination of the contribution from forces 
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due to atoms that are chemically bonded to it and non-bond 
forces due to all other atoms. The potential energy function is: 
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where the first three terms are the bonded terms and the 

latter two are referred as non-bonded terms. The non-bond 
energy is broken into two contributions: van der Waals and 
electrostatic interactions, which involves Fast Fourier 
Transform (FFT) calculations. 

In practice, MD simulations evaluate potentials using some 
cutoff distance scheme for computational efficiency, where 
each particle interacts with the nearest images of the other N-1 
particle in a sphere of radius Rcutoff. The cutoff limits the 
number of non-bond interactions in the sum to be N*(number 
of atoms in the cutoff sphere) as compared to N*(N-1) 
interactions without the cutoff. For the van der Waals 
interactions, the cutoff error is small, but the electrostatic sum 
has a very large error, 10% or greater, when a 10 Angstroms 
cutoff is introduced. The total non-bond energy, the sum of the 
van der Waals and the electrostatic energies are of comparable 
magnitude near the equilibrium distance, but at 10 Angstroms, 
the electrostatic are  strong while the van der Waals energy are 
negligible. Ignoring the electrostatic interactions that are 
beyond 10 Angstroms can introduce a large error in the energy 
and forces resulting in artificial force magnitudes. The Particle 
Mesh-Ewald (PME) method provides a solution to this 
problem by solving all electrostatic forces; it uses an atom-
based cutoff. PME method reduces the number of non-bonded 
interactions to Nlog(N). 

A. Implementation of the PME Method 

 
A number of strategies have been employed in attempts to 

accelerate the PME calculations on traditional supercomputing 
platforms such that scientists can simulate their experiments at 
native time and length scales. Currently, even the fastest 
computers are 10

4
-10

6
 magnitudes short of what is desired for 

even investigations of a medium-scale simulation. Our analysis 
revealed that the PME algorithm implementation in the sander 
module in the AMBER framework does not scale 128 
processors on the most powerful supercomputers including the 
IBM Blue Gene/L and the Cray XT3 systems [7]. A number of 
researchers have identified the factors that limit the 
performance and scaling of PME algorithms on 
microprocessors and massively-parallel systems [12][13]. 

The Ewald method expands the simple sum of Coulomb’s 
Law (electrostatic) terms into the following terms:  

)()()()( correctionEreciprocalEdirectEticelectrostaE  .  

Except for the error correction function, the direct sum is 
identical to the sum in the cutoff method that calculates 
electrostatic potential energy. The reciprocal sum is a major 
part of the electrostatic energy that the direct sum misses due to 
the correction factor. The reciprocal sum is approximated using 
FFT with convolutions on the grid where charges are 
interpolated on the grid points.. 

IV. SYMBOLIC PERFORMANCE MODELS 

The first step for developing symbolic performance models 
for parallel applications is to identify key application input and 
scaling parameters. After extensive profiling and debugging of 
the application, we identify that the key parameters that 
influence the performance and workload of the biomolecular 
simulations using the PME method in sander include the 
number of atoms, size of the simulation box, types of atoms 
and number of MPI processes. Unlike a number of physical 
simulations, the biolmolecular simulations do not operate on a 
regular multi-dimensional grid that is further divided and 
distributed onto the MPI processes. Instead MD simulations are 
composed of point-to-point calculations that depend on the 
number of atoms and atoms pairs, and regular grid calculations 
based on the FFT grid. 

Size of the FFT grid depends on the dimensions of the unit 
cell (shown in Figure 2). The system preparation step 
(preprocessing step before the MD simulation) determines the 
unit cell dimensions (length of a, b and c) and FFT grid size. 
The number of bonds, bond angles, and bond dihedrals during 
the classical simulations are kept constant. The double sum of 
the non-bond terms makes the number of these calculations 
scale with an order of N

2
, where N is the number of atoms. 

Cutoff radius shown in Figure 2 is used to minimize the non-
bond computation and communication cost. 

The calculations in the preprocessing step are approximated 
in the symbolic performance models, which are confirmed by 
computational biologists who routinely carry out these tasks. 
We consider a cubic unit cell, a=b=c, which is the case in most 
MD simulations. The dimensions of the cube is calculated as 
(number of atoms*const.)1/3. The number of residues are 
always constant (number of atoms/3.25) and types of atoms are 
considered as fixed (=20). The FFT grid size is approximated 
as a*(a mod 8). We validated four input configurations with 
these approximations and the error rate was less than 8% for 
AMBER benchmarks and test cases with up to 300K atoms. 

 

 

Figure 2: A schematic representation of a bio-molecule in 
a unit cell and example of cutoff radius. 

A. Communication Phases 

For the construction of communication model, we divide 
calculations into sub-phases to develop hierarchical, multi-
resolution models of its communication operations.  Unlike 
regular grid based simulations, the number and sizes of 
communication operations per simulation time step per 
processor are not constant. AMBER does not use an MPI 
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Cartesian topology, hence, the sizes for the MPI collective 
operations per processor do not change with the problem size 
or number of atoms. 

AMBER has a collection of programs that can run different 
MD simulations. In this study, we focused on the most widely 
used simulation method, called the explicit solvent simulations, 
which is available in the sander program. It is composed of the 
following calculation phases in our symbolic models: 

 

1. MPI_Init: MPI initialization 

2. MPI_Allreduce: processor setup 

3. MPI_Isend & MPI_Recv: backward and forward FFT 

(force calculations) 

4. MPI_Allreduce: adjust force 

5. MPI_Sendrecv: sum forces 

6. MPI_Sendrecv: distribute coordinates 

 
In the FFT communication phase, each processor 

communicates with all other processors in the system in a 
round-robin fashion. Hence, the overall message volume and 
count increases almost linearly with the processor count. In 
sum forces and distribute coordinate phases, the 
communication takes place with log2(number of processor). A 
masking scheme is used to select the destination and source 
processors for the point-to-point messages.  This scheme has 
been incorporated and represented in the symbolic models and 
trace files contain the MPI rank of the communicating pairs. 
Moreover, the message sizes in phase 5 and 6 vary during a 
simulation run. We developed symbolic models for these 
phases with fixed message size, which is an average of the 
smallest message and the largest sizes that are exchanged in 
these phases. The largest message size does not change with 
processor count, while the smallest one scales linearly with the 
processor count. These sizes are validated at runtime. The 
collective operation, MPI_Allreduce, message sizes do not 
depend on the problem size, therefore, the collective message 
volume grows linearly with the problem size. However, the 
collective message sizes vary in different phases of 
communication. 

V. WORKLOAD PROJECTIONS USING SYMBOLIC MODELS 

 
We considered three test cases for our experiments: 

 Small: 20,000 atoms 

 Medium: 200,000 atoms 

 Large: 2,000,000 atoms 
 

Typically, these test cases represent small, medium and 
large scale systems that are simulated on the high-end 
supercomputing platforms. 

A.  Growth Rates in MPI Communication 

Because we identified that the message counts will increase 
with the processor count, we first conducted experiments to 
identify the rate with which the message count and message 
volume per processor are changing. Figure 3 shows results for 

point-to-point and collective MPI operations message count 
and message volume per processor. Note that the message 
count increases almost exponentially with the number of 
processors. In other words, as the number of MPI tasks 
increases, individual MPI tasks exchange a relatively large 
number of small messages with other MPI tasks in the 
communicator. 
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Figure 3: Message count and volume scaling per 
processor for 200,000 atoms simulations 

 

The distribution of MPI point-to-point (P2P) message 
volume is shown in Figure 4. We generated trace files for two 
simulation time steps. In practice, simulations are run for 
thousands or tens of thousands of time steps. Nevertheless, an 
identical sequence of operations is repeated in each time step. 
In our symbolic models however, we not only capture the 
message distribution and patterns but also the source and 
destination ranks for individual messages. The former is shown 
in Figure 4 but the latter is not, which can be viewed in graphic 
tools like VAMPIR MPI tracing utilities. As shown in Figure 4, 
the message volume in phase 3 scales with the number of 
processors but it increases in phase 5 and 6. Our analysis of 
Figure 3 and Figure 4 suggest that the increasing message 
count per processor is a key factor in increasing the message 
volume per processor and overall message volume these 
simulations. 
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Figure 4: Variation of P2P volume per processor in strong 
scaling mode with 200,000 atoms 



We also studied the sensitivity of message volume to the 
input parameter, the number of atoms. Figure 5 shows results 
from the trace data generated by the symbolic models. The 
number of MPI tasks is kept fixed for these experiments (32 
processors). We observe that the message volume in FFT 
calculations increases at a much slower rate than the message 
volumes in the last two communication phases. From Figure 4 
and Figure 5, we conclude that the last two phases of 
communication are likely to be the communication bottlenecks 
as we scale simulations to large problem sizes and number of 
processors. 

 

 
Figure 5: P2P message volume sensitivity to number of 
atoms  

 
In order to confirm the projection results for MPI 

communication growth rates in the PME implementation in 
sander, we measured and analyzed the actual runtime data that 
is collected on two contemporary, high-end massively parallel 
processing (MPP) systems, Cray XT3 [4] and IBM Blue 
Gene/L [15], the fastest supercomputer in the world, and a 
POWER4 based cluster system, IBM p690. We ran a medium 
scale test case, HhaI; this system is a model for protein-DNA 
complex (enzyme m5C-methyltransferase M. HhaI with its 
target DNA sequence), in explicit solvent and counter-ions to 
allow the system to be charge neutral. This model consists of 
61,641 atoms with explicit treatment of solvent using TIP3P 
water model.  
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Figure 6: AMBER (PME method) scaling in the strong 
scaling mode with a 62K atoms system. 

 
The results in pico-second per simulation day are shown in 

Figure 6.  We observe that although the performance 
characteristics of the simulations vary across the different 
platforms, the scaling is limited to 64-128 processors on all 
systems. The cluster system, which has a relatively low-
bandwidth network, shows the worst scaling.  These results 
confirm our workload projections that an exponential increase 
in communication volume in the PME implementation in 
sander could restrict the scaling of the application to a few tens 
of the processor, even for high-end systems that offer relatively 
higher network bandwidths as compared to small to medium 
scale cluster systems.  Our findings about the scaling behavior 
of the explicit solvent calculations in AMBER explain the 
performance results presented in earlier studies [7][12].  Using 
symbolic models, we showed the growth rate in volume and 
distribution of MPI messages. These results enable us to 
identify that the force sum and coordinate distribution phases 
of calculation are the key limiting factor in application scaling. 
These factors in turn limit the scaling beyond 64 MPI tasks on 
distributed-memory parallel systems.  

B. Sensitivity Analysis at Petascale 

In addition to investigating the growth rates in 
communication volume, which is essential to understand the 
scaling of the applications on parallel systems, we study other 
critical workload parameters that would enable computational 
biologists to quantify and articulate their workload 
requirements for computer architects and system designers. 
The two workload parameters that we study are the physical 
memory requirements, and MPI message count and volume per 
processing core for a Petaflops-scale parallel system, which 
could have a million processing units. 

The results of the performance projection experiments are 
shown in Figure 7.  Note that we use a log scale for plotting the 
memory capacity (bytes), message volume (bytes) and message 
count (number of messages) for the small, medium and large 
scale test cases. We analyze not only the increase in workload 
requirements as a function of the input parameter but also how 
a workload parameter scales to a very large number of 
processors.  

 



 

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

Number of cores

Memory (20K atoms) Memory (200K atoms) Memory (2M atoms)

Message size (20K atoms) Message size (200K atoms) Message size (2M atoms)

Message count (20K atoms) Message count (200K atoms) Message count (2M atoms)

 
Figure 7: Sensitivity analysis for workload requirements of the PME implementation in sander for Petaflops scale systems 

 

 

 

For the physical memory requirements, we note that a 100 
folds increase in the number of atoms results in approximately 
65 folds increase in physical memory volume on a single 
processing core. However, the memory requirements on a 
million cores only have marginal differences for the three test 
cases. We therefore conclude that the memory requirements do 
not scale linearly with the number of parallel execution units, 
mainly due to redundant data structures that reside on each 
processing core or MPI task. 

Similarly, we compare the MPI message volume for the 
three workload configurations. For the simulations runs with 
two MPI tasks or two cores, we note that a 100 folds increase 
in the number of atoms result in approximately 97 folds 
increase in the MPI message volume. At the same time 
however, as we scale the simulations to a million cores, we 
note that the rate of increase in the MPI message volume is 
reduced to a factor of two. Again, the MPI message volume per 
processor does not decrease proportionally to the number of 
cores. Instead, as we note earlier, the individual message sizes 
gets smaller however the message volume, which we discuss 
next, limit the overall reduction in message volume for 
individual MPI tasks. 

Finally, we study the MPI message counts at the Petaflops 
scale simulation. Although the number of messages per 
processors does not grow with increase in workload 
parameters, there is exponential growth in the number of 
messages an MPI task or core generates as we increase the 
number of MPI tasks. On a million cores run, we measure that 
there will be 200,000 folds increase in the number of MPI 
messages, both collective and point-to-point, as compared to a 
simulation experiment with two MPI tasks. 

VI. CONCLUSIONS AND FUTURE PLANS 

Using a symbolic modeling scheme in the Modeling 
Assertions (MA) framework, we have shown that we can not 
only capture the workload characteristics of a production-level 
application but also project workload growth rates for future 
problems and system sizes.  The workload growth rates and 
sensitivity data generated by symbolic models have been 
confirmed by actual measurements on parallel systems and 
independent studies.  We plan to develop and validate symbolic 
models for additional platform-independent parameters 
including the floating-point operations and memory access 
operations.  Furthermore, one of the key aims of our ongoing 
research efforts is to model scalable biomolecular frameworks 
including LAMMPS [19] and NAMD [20]. We plan to carry 
out performance projections on existing and future MPP 
platforms and emerging, unconventional processing 
architectures. 
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