
Sensitivity Analysis of Biomolecular Simulations

using Symbolic Models

Sadaf R. Alam, Nikhil Bhatia and Jeffrey S. Vetter

Oak Ridge National Laboratory

Oak Ridge, USA

alamsr,bhatia,vetter@ornl.gov

Abstract—Performance and scaling of biomolecular simulations

frameworks largely depends on not only the workload

characteristics of the simulations but also the design of

underlying processor architecture and interconnection networks.

Because construction of Teraflops and Petaflops scale prototype

systems for evaluation alone is impractical and cost-prohibitive,

architects use analytical models of workloads and architecture

simulators to guide their design decisions and tradeoffs. To

address the problem of providing scalable yet precise input for

network simulators, we have developed a technique to model

symbolically the communication patterns of production-level

scientific applications to study workload growth rates and to

carry out sensitivity analysis. We apply our symbolic modeling

scheme to the Particle Mesh Ewald (PME) implementation in the

sander package of the AMBER framework and demonstrate how

the increase in computation, memory and communication

requirements impact the performance and scaling of the PME

method on the next-generation massively-parallel systems.

Keywords-biomolecular simulations; high performance

computing; performance modeling and prediction; performance

analysis; scalability

I. INTRODUCTION

Scientific discoveries using the massively-parallel
processing in form of Teraflops-scale supercomputing systems
and emerging processing devices such as the STI Cell system,
reconfigurable computing (FPGA) and Graphical Processing
Units (GPU) accelerators will depend on exploiting these
technologies effectively for widely-used biomolecular
simulation packages. Presently, a number of traditional
simulation packages including AMBER [12] and CHARMM
[10] achieve limited scaling on high-end massively parallel
processing systems (MPP). Although numerous studies have
attempted to report the causes of limited scaling, there is no
coherent mechanism to systematically model these applications
in order to quantify and identify workload behavior and
subsequently to project workload growth and sensitivity for
future problem and system configurations. This information
will facilitate architecture and system designers to understand
the workload requirements of an application efficiently to drive
Petaflops-scale network simulators without becoming an
application expert. Moreover, as the complexity of system
designs increases with the introduction of multicore processors,
this information will enable system architects to make critical
design tradeoffs without significantly hurting an application’s
performance.

To address these issues of providing scalable yet precise
input for simulators, we have developed a technique to model
symbolically the workload behavior of real scientific
applications. Using an application’s key input parameters, we
model computation (floating-point operations), memory (load-
store operations) and communication requirements
symbolically. The symbolic model of an application’s
communication pattern captures both the individual message
features, such as message size, and the overall communication
topology for all messages (i.e., message source and
destination). The input parameters for the symbolic models are
application input parameters (e.g., number of atoms) and
architecture-independent platform parameters (e.g., number of
processors). Once created, these symbolic equations can then
be used to generate an exact, synthetic tracefile of any size for
the specific application under investigation, which can, in turn,
be used as input to a network simulator [9][16]. The submitted manuscript has been authored by a contractor of the U.S.

Government under Contract No. DE-AC05-00OR22725. The authors would

like to thank National Center for Computational Sciences (NCCS) for access
to Cray XT3 and support (INCITE award).

In this paper, we describe our modeling methodology, and
evaluate it by prototyping an extension to our symbolic
modeling framework—Modeling Assertions (MA) [5][6]—that
generates symbolic models of MPI communication behaviors
and physical memory requirements. To demonstrate the
effectiveness of our methodology, we have applied this new
technique to the AMBER bio-molecular application
framework. We show that our results can, in fact, help us to
identify scaling problems in applications before they are ported
to large-scale platforms.

A. Background and Related Work

Researchers have proposed numerous techniques for the
creation and validation of performance models, ranging from
fully analytical, manual methods to automatic, architecture-
specific approaches. Some of these performance modeling and
prediction efforts for large-scale scientific applications on high-
end systems that have been undertaken in the past decade can
be found in [2][3][8][14][16][17]. Many of these techniques
serve the overall purpose of modeling but there have been few
common techniques that have gained widespread acceptance
across the simulation community for large-scale interconnects.

B. Paper Outline

The paper outline is as follows. Section 2 introduces the
modeling assertion framework and the model construction and
validation process using the MA API. Section 3 describes the
PME implementation in the sander package of the AMBER
framework. Section 4 explains our modeling methodology for
developing symbolic performance models for PME
simulations. Performance analysis and projection studies using
the symbolic models of the PME implementation are presented
in section 5. Conclusions and plans for future work are
presented in section 6.

II. MODELING ASSERTIONS FRAMEWORK

In order to evaluate our approach of developing symbolic
models with MA, we have designed a prototype framework.
This framework has two main components: an API and a post-
processing toolset. Figure 1 shows the components of the MA
framework.

The MA API is used to annotate the source code. As the
application executes, the runtime system captures important
information in trace files. These trace files are then post-
processed to validate, analyze, and construct models. The post-
processing toolset is a collection of tools or Java classes for
model validation, control-flow model creation and symbolic
model generation. The modeling API is available on Linux
clusters with MPICH, IBM pSeries systems and Cray X1E
vector system [1]. The symbolic model shown in the Figure 1
is generated for the MPI send volume.

Figure 1: Design components of the MA framework

The MA API provides a set of functions to annotate a given

FORTRAN or C code with MPI message-passing
communication library. For example, ma_loop_start, a MA
API function, can be used to mark the start of a loop. Upon
execution, the code instrumented with MA API functions
generates trace files. For parallel applications, one trace file is
generated for each MPI task. The trace files contain traces for
ma_xxx calls and MPI communication events. Most MA calls
require a pair of ma_xxx_start and a ma_xxx_end calls. The
ma_xxx_end traces are primarily used to validate modeling
assertions against the runtime values. The assertions for
hardware counter values, ma_flop_start/stop, invoke the PAPI
hardware counter API [10]. The ma_mpi_xxx assertions on the
other hand are validated by implementing MPI wrapper
functions (PMPI) and by comparing ma_mpi_xxx traces to
PMPI_xxx traces. Additional functions are provided in the MA
API to control the tracing volume, for example, the size of the
trace files, by enabling and disabling the tracing at compile
time and also at runtime. At runtime, the MA runtime system
(MARS) tracks and captures the actual instantiated values as
these variables execute in the application. MARS creates an
internal control flow representation of the calls to the MA
library as these calls are instantiated. It also captures both the
symbolic values and the actual values of the expressions.

III. MOLECULAR DYNAMICS SIMULATIONS IN AMBER

Molecular dynamics (MD) simulations enable the study of
complex, dynamic processes that occur in biological systems.
MD methods are now routinely used to investigate the
structure, dynamics, functions, and thermodynamics of
biological molecules and their complexes. Several commercial
and open source MD software frameworks are in use by a large
community of biologists. AMBER provides a wide range of
MD algorithms. AMBER's main module is known as sander
(for simulated annealing with NMR-derived energy restraints).

A typical bimolecular simulation contains atoms for solute,
ions, and solvent molecules. The force on each atom is
represented as the combination of the contribution from forces

Post-processing toolset

Source code annotation

Model
validation

Symbolic
model

ma_subroutine_start/end
ma_loop_start/end
ma_flop_start/stop

ma_heap/stack_memory
ma_mpi_xxxx

ma_set/unset_tracing

Runtime
system

generate
trace files

send =

niter*(l2npcols*(dp*2)

+l2npcols*(dp)+cgitmax

(l2npcols(dp*na/num_

proc_cols)+dp*na/num_p

roc_cols+l2npcols*(dp)

+l2npcols*(dp))+l2npco

ls*(dp*na/num_proc_col

s)+dp*na/num_proc_cols

+l2npcols*(dp))

Classes of API
calls currently
implemented
and tested

MA API in C
(for Fortran &
C applications

With MPI)

due to atoms that are chemically bonded to it and non-bond
forces due to all other atoms. The potential energy function is:

N

j

N

i

el

N

j

N

i

vdw

dihedral

d

angles

a

bonds

b EEEEEpotentialE
1 11 1

)(

where the first three terms are the bonded terms and the

latter two are referred as non-bonded terms. The non-bond
energy is broken into two contributions: van der Waals and
electrostatic interactions, which involves Fast Fourier
Transform (FFT) calculations.

In practice, MD simulations evaluate potentials using some
cutoff distance scheme for computational efficiency, where
each particle interacts with the nearest images of the other N-1
particle in a sphere of radius Rcutoff. The cutoff limits the
number of non-bond interactions in the sum to be N*(number
of atoms in the cutoff sphere) as compared to N*(N-1)
interactions without the cutoff. For the van der Waals
interactions, the cutoff error is small, but the electrostatic sum
has a very large error, 10% or greater, when a 10 Angstroms
cutoff is introduced. The total non-bond energy, the sum of the
van der Waals and the electrostatic energies are of comparable
magnitude near the equilibrium distance, but at 10 Angstroms,
the electrostatic are strong while the van der Waals energy are
negligible. Ignoring the electrostatic interactions that are
beyond 10 Angstroms can introduce a large error in the energy
and forces resulting in artificial force magnitudes. The Particle
Mesh-Ewald (PME) method provides a solution to this
problem by solving all electrostatic forces; it uses an atom-
based cutoff. PME method reduces the number of non-bonded
interactions to Nlog(N).

A. Implementation of the PME Method

A number of strategies have been employed in attempts to

accelerate the PME calculations on traditional supercomputing
platforms such that scientists can simulate their experiments at
native time and length scales. Currently, even the fastest
computers are 10

4
-10

6
 magnitudes short of what is desired for

even investigations of a medium-scale simulation. Our analysis
revealed that the PME algorithm implementation in the sander
module in the AMBER framework does not scale 128
processors on the most powerful supercomputers including the
IBM Blue Gene/L and the Cray XT3 systems [7]. A number of
researchers have identified the factors that limit the
performance and scaling of PME algorithms on
microprocessors and massively-parallel systems [12][13].

The Ewald method expands the simple sum of Coulomb’s
Law (electrostatic) terms into the following terms:

)()()()(correctionEreciprocalEdirectEticelectrostaE .

Except for the error correction function, the direct sum is
identical to the sum in the cutoff method that calculates
electrostatic potential energy. The reciprocal sum is a major
part of the electrostatic energy that the direct sum misses due to
the correction factor. The reciprocal sum is approximated using
FFT with convolutions on the grid where charges are
interpolated on the grid points..

IV. SYMBOLIC PERFORMANCE MODELS

The first step for developing symbolic performance models
for parallel applications is to identify key application input and
scaling parameters. After extensive profiling and debugging of
the application, we identify that the key parameters that
influence the performance and workload of the biomolecular
simulations using the PME method in sander include the
number of atoms, size of the simulation box, types of atoms
and number of MPI processes. Unlike a number of physical
simulations, the biolmolecular simulations do not operate on a
regular multi-dimensional grid that is further divided and
distributed onto the MPI processes. Instead MD simulations are
composed of point-to-point calculations that depend on the
number of atoms and atoms pairs, and regular grid calculations
based on the FFT grid.

Size of the FFT grid depends on the dimensions of the unit
cell (shown in Figure 2). The system preparation step
(preprocessing step before the MD simulation) determines the
unit cell dimensions (length of a, b and c) and FFT grid size.
The number of bonds, bond angles, and bond dihedrals during
the classical simulations are kept constant. The double sum of
the non-bond terms makes the number of these calculations
scale with an order of N

2
, where N is the number of atoms.

Cutoff radius shown in Figure 2 is used to minimize the non-
bond computation and communication cost.

The calculations in the preprocessing step are approximated
in the symbolic performance models, which are confirmed by
computational biologists who routinely carry out these tasks.
We consider a cubic unit cell, a=b=c, which is the case in most
MD simulations. The dimensions of the cube is calculated as
(number of atoms*const.)1/3. The number of residues are
always constant (number of atoms/3.25) and types of atoms are
considered as fixed (=20). The FFT grid size is approximated
as a*(a mod 8). We validated four input configurations with
these approximations and the error rate was less than 8% for
AMBER benchmarks and test cases with up to 300K atoms.

Figure 2: A schematic representation of a bio-molecule in
a unit cell and example of cutoff radius.

A. Communication Phases

For the construction of communication model, we divide
calculations into sub-phases to develop hierarchical, multi-
resolution models of its communication operations. Unlike
regular grid based simulations, the number and sizes of
communication operations per simulation time step per
processor are not constant. AMBER does not use an MPI

An atom’s cutoff

radius

c

b

a

Cartesian topology, hence, the sizes for the MPI collective
operations per processor do not change with the problem size
or number of atoms.

AMBER has a collection of programs that can run different
MD simulations. In this study, we focused on the most widely
used simulation method, called the explicit solvent simulations,
which is available in the sander program. It is composed of the
following calculation phases in our symbolic models:

1. MPI_Init: MPI initialization

2. MPI_Allreduce: processor setup

3. MPI_Isend & MPI_Recv: backward and forward FFT

(force calculations)

4. MPI_Allreduce: adjust force

5. MPI_Sendrecv: sum forces

6. MPI_Sendrecv: distribute coordinates

In the FFT communication phase, each processor

communicates with all other processors in the system in a
round-robin fashion. Hence, the overall message volume and
count increases almost linearly with the processor count. In
sum forces and distribute coordinate phases, the
communication takes place with log2(number of processor). A
masking scheme is used to select the destination and source
processors for the point-to-point messages. This scheme has
been incorporated and represented in the symbolic models and
trace files contain the MPI rank of the communicating pairs.
Moreover, the message sizes in phase 5 and 6 vary during a
simulation run. We developed symbolic models for these
phases with fixed message size, which is an average of the
smallest message and the largest sizes that are exchanged in
these phases. The largest message size does not change with
processor count, while the smallest one scales linearly with the
processor count. These sizes are validated at runtime. The
collective operation, MPI_Allreduce, message sizes do not
depend on the problem size, therefore, the collective message
volume grows linearly with the problem size. However, the
collective message sizes vary in different phases of
communication.

V. WORKLOAD PROJECTIONS USING SYMBOLIC MODELS

We considered three test cases for our experiments:

 Small: 20,000 atoms

 Medium: 200,000 atoms

 Large: 2,000,000 atoms

Typically, these test cases represent small, medium and
large scale systems that are simulated on the high-end
supercomputing platforms.

A. Growth Rates in MPI Communication

Because we identified that the message counts will increase
with the processor count, we first conducted experiments to
identify the rate with which the message count and message
volume per processor are changing. Figure 3 shows results for

point-to-point and collective MPI operations message count
and message volume per processor. Note that the message
count increases almost exponentially with the number of
processors. In other words, as the number of MPI tasks
increases, individual MPI tasks exchange a relatively large
number of small messages with other MPI tasks in the
communicator.

0.1

1

10

100

1000

4 8 16 32 64 128 256 512

Number of MPI Tasks

In
c

re
a

s
e

 w
it

h
 r

e
s

p
e

c
t

to
 a

 2
 M

P
I

ta
s

k
 r

u
n

Message count Message volume

Figure 3: Message count and volume scaling per
processor for 200,000 atoms simulations

The distribution of MPI point-to-point (P2P) message
volume is shown in Figure 4. We generated trace files for two
simulation time steps. In practice, simulations are run for
thousands or tens of thousands of time steps. Nevertheless, an
identical sequence of operations is repeated in each time step.
In our symbolic models however, we not only capture the
message distribution and patterns but also the source and
destination ranks for individual messages. The former is shown
in Figure 4 but the latter is not, which can be viewed in graphic
tools like VAMPIR MPI tracing utilities. As shown in Figure 4,
the message volume in phase 3 scales with the number of
processors but it increases in phase 5 and 6. Our analysis of
Figure 3 and Figure 4 suggest that the increasing message
count per processor is a key factor in increasing the message
volume per processor and overall message volume these
simulations.

Number of processors

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

3.E+07

1 2 3 4 5 6 7

Phase

P
2

P
 S

e
n

t

32 64 128 256 512

Figure 4: Variation of P2P volume per processor in strong
scaling mode with 200,000 atoms

We also studied the sensitivity of message volume to the
input parameter, the number of atoms. Figure 5 shows results
from the trace data generated by the symbolic models. The
number of MPI tasks is kept fixed for these experiments (32
processors). We observe that the message volume in FFT
calculations increases at a much slower rate than the message
volumes in the last two communication phases. From Figure 4
and Figure 5, we conclude that the last two phases of
communication are likely to be the communication bottlenecks
as we scale simulations to large problem sizes and number of
processors.

Figure 5: P2P message volume sensitivity to number of
atoms

In order to confirm the projection results for MPI

communication growth rates in the PME implementation in
sander, we measured and analyzed the actual runtime data that
is collected on two contemporary, high-end massively parallel
processing (MPP) systems, Cray XT3 [4] and IBM Blue
Gene/L [15], the fastest supercomputer in the world, and a
POWER4 based cluster system, IBM p690. We ran a medium
scale test case, HhaI; this system is a model for protein-DNA
complex (enzyme m5C-methyltransferase M. HhaI with its
target DNA sequence), in explicit solvent and counter-ions to
allow the system to be charge neutral. This model consists of
61,641 atoms with explicit treatment of solvent using TIP3P
water model.

0

100

200

300

400

500

600

700

800

1 2 4 8 16 32 64 128 256 512 1024 2048

Number of Processors

p
s
e
c
/d

a
y

BGL

Cray XT3

IBM p690

Figure 6: AMBER (PME method) scaling in the strong
scaling mode with a 62K atoms system.

The results in pico-second per simulation day are shown in

Figure 6. We observe that although the performance
characteristics of the simulations vary across the different
platforms, the scaling is limited to 64-128 processors on all
systems. The cluster system, which has a relatively low-
bandwidth network, shows the worst scaling. These results
confirm our workload projections that an exponential increase
in communication volume in the PME implementation in
sander could restrict the scaling of the application to a few tens
of the processor, even for high-end systems that offer relatively
higher network bandwidths as compared to small to medium
scale cluster systems. Our findings about the scaling behavior
of the explicit solvent calculations in AMBER explain the
performance results presented in earlier studies [7][12]. Using
symbolic models, we showed the growth rate in volume and
distribution of MPI messages. These results enable us to
identify that the force sum and coordinate distribution phases
of calculation are the key limiting factor in application scaling.
These factors in turn limit the scaling beyond 64 MPI tasks on
distributed-memory parallel systems.

B. Sensitivity Analysis at Petascale

In addition to investigating the growth rates in
communication volume, which is essential to understand the
scaling of the applications on parallel systems, we study other
critical workload parameters that would enable computational
biologists to quantify and articulate their workload
requirements for computer architects and system designers.
The two workload parameters that we study are the physical
memory requirements, and MPI message count and volume per
processing core for a Petaflops-scale parallel system, which
could have a million processing units.

The results of the performance projection experiments are
shown in Figure 7. Note that we use a log scale for plotting the
memory capacity (bytes), message volume (bytes) and message
count (number of messages) for the small, medium and large
scale test cases. We analyze not only the increase in workload
requirements as a function of the input parameter but also how
a workload parameter scales to a very large number of
processors.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

Number of cores

Memory (20K atoms) Memory (200K atoms) Memory (2M atoms)

Message size (20K atoms) Message size (200K atoms) Message size (2M atoms)

Message count (20K atoms) Message count (200K atoms) Message count (2M atoms)

Figure 7: Sensitivity analysis for workload requirements of the PME implementation in sander for Petaflops scale systems

For the physical memory requirements, we note that a 100
folds increase in the number of atoms results in approximately
65 folds increase in physical memory volume on a single
processing core. However, the memory requirements on a
million cores only have marginal differences for the three test
cases. We therefore conclude that the memory requirements do
not scale linearly with the number of parallel execution units,
mainly due to redundant data structures that reside on each
processing core or MPI task.

Similarly, we compare the MPI message volume for the
three workload configurations. For the simulations runs with
two MPI tasks or two cores, we note that a 100 folds increase
in the number of atoms result in approximately 97 folds
increase in the MPI message volume. At the same time
however, as we scale the simulations to a million cores, we
note that the rate of increase in the MPI message volume is
reduced to a factor of two. Again, the MPI message volume per
processor does not decrease proportionally to the number of
cores. Instead, as we note earlier, the individual message sizes
gets smaller however the message volume, which we discuss
next, limit the overall reduction in message volume for
individual MPI tasks.

Finally, we study the MPI message counts at the Petaflops
scale simulation. Although the number of messages per
processors does not grow with increase in workload
parameters, there is exponential growth in the number of
messages an MPI task or core generates as we increase the
number of MPI tasks. On a million cores run, we measure that
there will be 200,000 folds increase in the number of MPI
messages, both collective and point-to-point, as compared to a
simulation experiment with two MPI tasks.

VI. CONCLUSIONS AND FUTURE PLANS

Using a symbolic modeling scheme in the Modeling
Assertions (MA) framework, we have shown that we can not
only capture the workload characteristics of a production-level
application but also project workload growth rates for future
problems and system sizes. The workload growth rates and
sensitivity data generated by symbolic models have been
confirmed by actual measurements on parallel systems and
independent studies. We plan to develop and validate symbolic
models for additional platform-independent parameters
including the floating-point operations and memory access
operations. Furthermore, one of the key aims of our ongoing
research efforts is to model scalable biomolecular frameworks
including LAMMPS [19] and NAMD [20]. We plan to carry
out performance projections on existing and future MPP
platforms and emerging, unconventional processing
architectures.

ACKNOWLEDGEMENTS

The submitted manuscript has been authored by a
contractor of the U.S. Government under Contract No. DE-
AC05-00OR22725. The authors would like to thank National
Center for Computational Sciences (NCCS) for access to Cray
XT3 and support (INCITE award).

REFERENCES

[1] Cray X1E System at ORNL,

 http://info.nccs.gov/resources/phoenix

[2] V. S. Adve, R. Bagrodia et al., “Compiler-supported

Simulation of Highly Scalable Parallel Applications,” Proc.

SC99 (electronic publication), 1999.

[3] V.S. Adve, R. Bagrodia, et al., “POEMS: End-to-End

Performance Design of Large Parallel Adaptive

Computational Systems,” IEEE Trans. Software Engineering,

26(11):1027-48, 2000.

[4] S.R. Alam, R.F. Barrett, et. al. (2007), “An Evaluation of the

ORNL Cray XT3,” J. High Performance Computing

Applications (to appear).

[5] S. R. Alam, and J. S. Vetter, “A Framework to Develop

Symbolic Performance Models of Parallel Applications,” 5th

Int.l Workshop on Performance Modeling, Evaluation, and

Optimization of Parallel and Distributed Systems (PMEO-

PDS). Held in conjunction with IPDPS 2006.

[6] S. R. Alam, and J. S. Vetter, “Hierarchical Model Validation

of Symbolic Performance Models of Scientific Applications,”

Proc. of European Conference on Parallel Processing (Euro-

Par), 2006.

[7] S. R. Alam, P. K. Agarwal, et. al., “Performance

Characterization of Bio-molecular Simulations using

Molecular Dynamics,” Principle and Practices of Parallel

Programming, 2006.

[8] G. S. Almasi, C. Cascaval, et al., “Demonstrating the

scalability of a molecular dynamics application on a Petaflop

computer,” Supercomputing, 2001.

[9] R.M. Badia, J. Labarta, et al., “DIMEMAS: Predicting MPI

applications behavior in Grid environments,” Proc. Workshop

on Grid Applications and Programming Tools (GGF8), 2003.

[10] B. R. Brooks, R. E. Bruccoleri, et al., (1983) “CHARMM: A

Program for Macromolecular Energy, Minimization, and

Dynamics Calculations”, J. Comput. Chem., 4, 187-217.

[11] S. Browne, J Dongarra, et al., “A Portable Programming

Interface for Performance Evaluation on Modern Processors,”

Int. J. of High Performance Computing Applications, Vol. 14,

No. 3, 2000.

[12] D. Case, et. al., “The Amber Biomolecular Simulation

Programs,” J. of Comp. Chemistry: 1668-1688, 2005.

[13] M. Crowley, et. al., “Adventures in Improving the Scaling

and Accuracy of Parallel Molecular Dynamics Program,” J. of

Supercomputing, 11, 1997.

[14] D. J. Kerbyson, H. J. Alme, et al., “Predictive performance

and scalability modeling of a large-scale application,”

Supercomputing, 2001.

[15] M. Ohmacht, R. A. Bergamaschi, et al., “Blue Gene/L

compute chip: Memory and Ethernet subsystem,” IBM

Journal of Research and Development, Vol. 49, No. 2/3,

2005.

[16] S. Scott, D. Abts, J. Kim, and W.J. Dally, “The BlackWidow

High-Radix Clos Network,” in 33rd Annual International

Symposium on Computer Architecture: IEEE Computer

Society, 2006

[17] T. Yang, X. Ma and F. Mueller, “Predicting Parallel

Applications’ Performance Across Platforms using Partial

Execution,” Supercomputing, 2005.

[18] J.S. Vetter and P. Worley, “Asserting Performance

Expectations,” Supercomputing, 2002.

[19] LAMMPS Molecular Dynamics Simulator,

http://lammps.sandia.gov/

[20] NAMD Scalable Molecular Dynamics Code,

http://www.ks.uiuc.edu/Research/namd/

http://lammps.sandia.gov/
http://www.ks.uiuc.edu/Research/namd/

