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Abstract. As heterogeneous computing platforms become more preva-
lent, the programmer must account for complex memory hierarchies in
addition to the difficulties of parallel programming. OpenCL is an open
standard for parallel computing that helps alleviate this difficulty by
providing a portable set of abstractions for device memory hierarchies.
However, OpenCL requires that the programmer explicitly controls data
transfer and device synchronization, two tedious and error-prone tasks.
This paper introduces Maestro, an open source library for data orches-
tration on OpenCL devices. Maestro provides automatic data transfer,
task decomposition across multiple devices, and autotuning of dynamic
execution parameters for some types of problems.

1 Introduction

In our previous work with general purpose computation on graphics processors
(GPGPU) [1, 2], as well as a survey of similar research in the literature [3, 4,
5, 6, 7], we have encountered several recurring problems. First and foremost is
code portability–most GPU programming environments have been proprietary,
requiring code to be completely rewritten in order to run on a different vendor’s
GPU. With the introduction of OpenCL, the same kernel code (code which
executes on the device) can generally be used on any platform, but must be “hand
tuned” for each new device in order to achieve high performance. This manual
optimization of code requires significant time, effort, and expert knowledge of
the target accelerator’s architecture.

Furthermore, the vast majority of results in GPGPU report performance
for only single-GPU implementations, presumably due to the difficulty of task
decomposition and load balancing, the process of breaking a problem into sub-
tasks and dividing the work among multiple devices. These tasks require the
programmer to know the relative processing capability of each device in order to
appropriately partition the problem. If the load is poorly balanced, devices with
insufficient work will be idle while waiting on those with larger portions of work
to finish. Task decomposition also requires that the programmer carefully aggre-
gate output data and perform device synchronization. This prevents OpenCL
code from being portable–when moving to a platform with a different number
of devices, or devices which differ in relative speed, work allocations must be
adjusted.



Typically, GPUs or other compute accelerators are connected to the host
processor via a bus. Many results reported in the literature focus solely on kernel
execution and neglect to include the performance impact of data transfer across
the bus. Poor management of this interconnection bus is the third common
problem we have identified. The bandwidth of the bus is almost always lower than
the memory bandwidth of the device, and suboptimal use of the bus can have
drastic consequences for performance. In some cases, the difference in bandwidth
can be more than an order of magnitude. Consider the popular NVIDIA Tesla
C1060 which has a peak memory bandwidth of 102 gigabytes per second. It is
usually connected to a host processor via a sixteen lane PCIe 2.0 bus, with peak
bandwidth of only eight gigabytes per second.

One common approach to using the bus is the function offload model. In
this model, sequential portions of an application execute on the host processor.
When a parallel section is reached, input data is transferred to the accelerator.
When the accelerator is finished computing, outputs are transferred back to the
host processor. This approach is the simplest to program, but the worst case for
performance. It poorly utilizes system resources–the bus is never active at the
same time as the accelerator.

In order to help solve these problems, we have developed an open source
library called Maestro. Maestro leverages a combination of autotuning, multi-
buffering, and OpenCL’s device interrogation capabilities in an attempt to pro-
vide a portable solution to these problems. Further, we argue that Maestro’s
automated approach is the only practical solution, since the parameter space for
hand tuning OpenCL applications is enormous.

1.1 OpenCL

In December 2008, the Khronos Group introduced OpenCL [8], an open standard
for parallel computing on heterogeneous platforms. OpenCL specifies a language,
based on C99, that allows a programmer to write parallel functions called kernels
which can execute on any OpenCL device, including CPUs, GPUs, or any other
device with a supporting implementation. OpenCL provides support for data
parallelism as well as task parallelism. OpenCL also provides a set of abstractions
for device memory hierarchies and an API for controlling memory allocation and
data transfer.

In OpenCL, parallel kernels are divided into tens of thousands of work items,
which are organized into local work groups. For example, in matrix multiplica-
tion, a single work item might calculate one entry in the solution matrix, and a
local work group might calculate a submatrix of the solution matrix.

2 Overview

Before proceeding to Maestro’s proposed solutions to the observed problems, it
is important to introduce one of the key ideas in Maestro’s design philosophy, a
single, high level task queue.



2.1 High Level Queue

Fig. 1. Task Queue Hierarchies–In the OpenCL task queue hierarchy, the program-
mer must manage a separate task queue for each device. Maestro unifies these into a
single, high-level queue which is independent of the underlying hardware.

In the OpenCL task queue model, the programmer must manage a separate
task queue for each GPU, CPU, or other accelerator in a heterogeneous platform.
This model requires that the programmer has detailed knowledge about which
OpenCL devices are available. Modifications to the code are required to obtain
high performance on a system with a different device configuration.

The Maestro model (contrasted in Figure 1), unifies the disparate, device-
specific queues into a single, high-level task queue. At runtime, Maestro queries
OpenCL to obtain information about the available GPUs or other accelerators
in a given system. Based on this information, Maestro can transfer data and di-
vide work among the available devices automatically. This frees the programmer
from having to synchronize multiple devices and keep track of device specific
information.

3 Problem: Code Portability

OpenCL’s claim to portability relies on its ability to execute kernel code on any
device with a supporting implementation. While this represents a substantial
improvement over proprietary programming environments, some obstacles to
portability remain.

One such obstacle is the organization of local work items. What is the ap-
propriate local work group size for a given kernel? With current hardware, local
work items roughly correspond to device threads. Hence, for GPUs, the rule of
thumb is to start with a sufficiently high multiple of sixteen, e.g. 128 or 256.
However, this heuristic does not guarantee a kernel will execute successfully,



much less exhibit high performance. For example, the OpenCL implementation
in Mac OS X imposes an upper limit on local group size of one for code to exe-
cute on a CPU. Also, while larger group sizes often lead to better performance,
if the kernel is strongly constrained by either register or local memory usage, it
may simply fail to execute on a GPU due to lack of resources.

3.1 Proposed Solution: Autotuning

Since OpenCL can execute on devices which differ so radically in architecture and
computational capabilities, it is difficult to develop simple heuristics with strong
performance guarantees. Hence, Maestro’s optimizations rely solely on empirical
data, instead of any performance model or a priori knowledge. Maestro’s general
strategy for all optimizations can be summarized by the following steps:

1. Estimate based on benchmarks
2. Collect empirical data from execution
3. Optimize based on results
4. While performance continues to improve, repeat steps 2-3

This strategy is used to optimize a variety of parameters including local work
group size, data transfer size, and the division of work among multiple devices.
However, these dynamic execution parameters are only one of the obstacles to
true portability. Another obstacle is the choice of hardware specific kernel opti-
mizations. For instance, some kernel optimizations may result in excellent per-
formance on a GPU, but reduce performance on a CPU. This remains an open
problem. Since the solution will no doubt involve editing kernel source code, it
is beyond the scope of Maestro.

4 Problem: Load Balancing

In order to effectively distribute a kernel among multiple OpenCL devices, a pro-
grammer must keep in mind, at a minimum, each device’s relative performance
on that kernel, the speed of the interconnection bus between host processor and
each device (which can be asymmetric), a strategy for input data distribution to
devices, and a scheme on how to synchronize devices and aggregate output data.
Given that an application can have many kernels, which can very significantly in
performance characteristics (bandwidth bound, compute bound, etc.), it quickly
becomes impractical to tune optimal load balancing for every task by hand.

4.1 Proposed Solution: Benchmarks and Device Interrogation

At install time, Maestro uses benchmarks and the OpenCL device interrogation
API to characterize a system. Peak FLOPS, device memory bandwidth, and bus
bandwidth are measured using benchmarks based on the Scalable Heterogeneous
Computing (SHOC) Benchmark Suite [9]. The results of these benchmarks serve



as the basis, or initial estimation, for the optimization of the distribution of work
among multiple devices.

As a kernel is repeatedly executed, either in an application or Maestro’s
offline tuning methods, Maestro continues to optimize the distribution of work.
After each iteration, Maestro computes the average rate at which each device
completes work items, and updates a running, weighted average. This rate is
specific to each device and kernel combination, and is a practical way to measure
many interacting factors for performance. We examine the convergence to an
optimal distribution of work in Section 6.2.

5 Problem: Suboptimal Use of Interconnection Bus

OpenCL devices are typically connected to the host processor via a relatively
slow interconnection bus. With current hardware, this is normally the PCIe bus.
Since the bandwidth of this bus is dramatically lower than a GPU’s memory
bandwidth, it introduces a nontrivial amount of overhead.

5.1 Proposed Solution: Multibuffering

In order to minimize this overhead, Maestro attempts to overlap computation
and communication as much as possible. Maestro leverages and extends the
traditional technique of double buffering (also known as ping-pong buffering).

Fig. 2. Double Buffering–This figure contrasts the difference between (a) the func-
tion offload model and (b) a very simple case of double buffering. Devices which can
concurrently execute kernels and transfer data are able to hide some communication
time with computation.

Figure 2 illustrates the difference between the function offload model and
double buffered execution. Maestro implements concurrent double buffering to
multiple devices, including optimization of the data chunk size, which we term
multibuffering.



In Maestro’s implementation of multibuffering, the initial data chunk size
is set to the size that resulted in the maximum bus bandwidth measured by
benchmarks at install time. Maestro then varies the chunk size and optimizes
based on observed performance.

However, double buffering cannot be used in all cases. Some OpenCL plat-
forms simply lack the support for concurrent data copy and execution. Further-
more, some algorithms are not practical for use with double buffering. Consider
an algorithm which accesses input data randomly. A work item might require
data at the end of an input buffer which has not yet been transferred to the
accelerator, resulting in an error. In order to accommodate this class of algo-
rithms, Maestro allows the programmer to place certain inputs in a universal
buffer, which is copied to all devices before execution begins. While this does
limit the availability of some performance optimizations, it greatly expands the
number of algorithms which can be supported by Maestro.

6 Results

6.1 Experimental Testbeds

OpenCL Limitations Since OpenCL is still a nascent technology, early soft-
ware implementations impose several restrictions on the composition of test plat-
forms. First, it is not possible to test a system with GPUs from different vendors
due to driver and operating system compatibility issues. Second, CPU support
is not widely available. As such, we attempt to provide results from a com-
prehensive selection of devices, including platforms with homogeneous GPUs,
heterogeneous GPUs, and with an OpenCL-supported CPU and GPU.

Host Configurations

– Krakow Krakow is a dual socket Nehalem based system, with a total of
eight cores running at 2.8Ghz with 24GB of RAM. Krakow also features an
NVIDIA Tesla S1070, configured to use two Tesla T10 processors connected
via a sixteen lane PCIe v2.0 bus. Results are measured using NVIDIA’s GPU
Computing SDK version 3.0.

– Lens Lens is a medium sized cluster primarily used for data visualization
and analysis. Its thirty-two nodes are connected via Infiniband, with each
node containing four AMD quad core Barcelona processors with 64GB of
RAM. Each node also has two GPUs–one NVIDIA Tesla C1060 and one
NVIDIA GeForce 8800GTX, connected to the host processor over a PCIe
1.0 bus with sixteen active lanes. Lens runs Scientific Linux 5.0, and results
were measured using NVIDIA’s GPU computing SDK, version 2.3.

– Lyon Lyon is an dual-socket, single-core 2.0 GHz AMD Opteron 246 system
with a 16-lane PCIe 1.0 bus and 4GB of RAM, housing an ATI Radeon HD
5870 GPU. It runs Ubuntu 9.04 and uses the ATI Stream SDK 2.0 with the
Catalyst 9.12 Hotfix 8.682.2RC1 driver.



Table 1. Comparison of Graphics Processors

GPU Peak FLOPS Mem. Bandwidth Processors Clock Memory

Units GF GB/s # Mhz MB

Tesla C1060/T10 933 102 240 1300 4096
GeForce 8800GTX 518 86 128 1350 768
Radeon HD5870 2720 153 1600 850 1024

Graphics Processors

– NVIDIA G80 Series The NVIDIA G80 architecture combined the ver-
tex and pixel hardware pipelines of traditional graphics processors into a
single category of cores, all of which could be tasked for general-purpose
computation if desired. The NVIDIA 8800GTX has 128 processor cores split
among sixteen multiprocessors. These cores run at 1.35GHz, and are fed
from 768MB of GDDR3 RAM through a 384-bit bus.

– NVIDIA GT200 Series The NVIDIA Tesla C1060 graphics processor
comprises thirty streaming multiprocessors, each of which contains eight
stream processors for a total of 240 processor cores clocked at 1.3Ghz. Each
multiprocessor has 16KB of shared memory, which can be accessed as quickly
as a register under certain access patterns. The Tesla C1060 has 4GB of
global memory and supplementary cached constant and texture memory.

– ATI Evergreen Series In ATI’s “Terascale Graphics Engine” architecture,
Stream processors are divided into groups of eighty, which are collectively
known as SIMD cores. Each SIMD core contains four texture units, an L1
cache, and has its own control logic. SIMD cores can communicate with each
other via an on-chip global data share. We present results from the Radeon
HD5870 (Cypress XT) which has 1600 cores.

6.2 Test Kernels

We have selected the following five test kernels to evaluate Maestro. These kernels
range in both complexity and performance characteristics. In all results, the same
kernel code is used on each platform, although the problem size is varied. As such,
cross-machine results are not directly comparable, and are instead presented in
normalized form.

– Vector Addition The first test kernel is the simple addition of two one
dimensional vectors, C ← A + B. This kernel is very simple and strongly
bandwidth bound. Both input and output vectors can be multibuffered.

– Synthetic FLOPS The synthetic FLOPS kernel maintains the simplicity
of vector addition, but adds in an extra constant, K, C ← A + B + K. K
is computed using a sufficiently high number of floating point operations to
make the kernel compute bound.



– Vector Outer Product The vector outer product kernel, u⊗ v, takes two
input vectors of length n and m, and creates an output matrix of size n×m.
The outer product reads little input data compared to the generated output,
and does not support multibuffering on any input.

– Molecular Dynamics The MD test kernel is a computation of the Lennard-
Jones potential from molecular dynamics. It is a strongly compute bound,
O(n2) algorithm, which must compare each pair of atoms to compute all con-
tributions to the overall potential energy. It does not support multibuffering
on all inputs.

– S3D We also present results from the key portion of S3D’s Getrates ker-
nel. S3D is a computational chemistry application optimized for GPUs in
our previous work [2]. This kernel is technically compute bound, but also
consumes seven inputs, making it the most balanced of the test kernels.

Fig. 3. Autotuning the local work group size – This figure shows the performance
of the MD kernel on various platforms at different local work group sizes, normalized
to the performance at a group size of 16. Lower runtimes are better.

Local Tuning Results Maestro’s capability for autotuning of local work group
size is shown using the MD kernel in Figure 3. All runtimes are shown in normal-
ized fashion, in this case as a percentage of the runtime on each platform with a
local work group size of 16 (the smallest allowable on several devices). The op-
timal local work group size is highlighted for each platform. Note the variability
and unpredictability of performance due to the sometimes competing demands
of register pressure, memory access patterns, and thread grouping. These results
indicate that a programmer will be unlikely to consistently determine an optimal
work group size at development time. By using Maestro’s autotuning capability,



the developer can focus on writing the kernel code, not on the implications of
local work group size on correctness and performance portability.

Fig. 4. Autotuning the buffer chunk size – This figure shows the performance
on the (a) vector outer product and (b) S3D kernels when splitting the problem into
various size chunks and using multibuffering. Lower runtimes are better. Values are
normalized to the runtime at the 256kB chunk size on each platform.

Multibuffering Results Maestro’s effectiveness when overlapping computa-
tion with communication can be improved by using an optimal buffer chunk
size. Figure 4 shows Maestro’s ability to auto-select the best buffer size on each
platform. We observe in the vector outer product kernel one common situation,
where the largest buffer size performs the best. Of course, the S3D kernel results
show that this is not always the case; here, a smaller buffer size is generally
better. However, note that on Krakow with two Tesla S1070 GPUs, there is an
asymmetry between the two GPUs, with one preferring larger and one preferring
smaller buffer sizes. This result was unusual enough to merit several repeated
experiments for verification. Again, this shows the unpredictability of perfor-
mance, even with what appears to be consistent hardware, and highlights the
need for autotuning.

Mutli-GPU Results One of Maestro’s strengths is its ability to automatically
partition computation between multiple devices. To determine the proportion of
work for each device, it initially uses an estimate based on benchmarks run at
install time, but will quickly iterate to an improved load distribution based on
the imbalance for a specific kernel. Figure 5 shows for the S3D and MD kernels
the proportion of total time spent on each device. Note that there is generally
an initial load imbalance which can be significant, and that even well balanced
hardware is not immune. Maestro’s ability to automatically detect and account
for load imbalance makes efficient use of the resources available on any platform.



Fig. 5. Autotuning the load balance – This figure shows the load imbalance on
the (a) S3D and (b) MD kernels, both before and after tuning the work distribution
for the specific kernel. Longer yellow bars show a larger load imbalance.

Combined Results Maestro’s autotuning has an offline and an online compo-
nent. At install time, Maestro makes an initial guess for local work group size,
buffering chunk size, and workload partitioning for all kernels based on values
which are measured using benchmarks.

However, Maestro can do much better, running an autotuning process to
optimize all of these factors, often resulting in significant improvements. Figure 6
shows the results of Maestro’s autotuning for specific kernels relative to its initial
estimate for these parameters. In (a) we see the single-GPU results, showing the
combined speedup both from tuning the local work group size and applying
double buffering with a tuned chunk size, showing improvement up to 1.60×.
In (b) we see the multi-GPU results, showing the combined speedup both from
tuning the local work group size and applying a tuned workload partitioning,
showing speedups of up to 1.8×.

This autotuning can occur outside full application runs. Kernels of particu-
lar interest can be placed in a unit test and executed several times to provide
Maestro with performance data (measured internally via OpenCL’s event API)
for coarse-grained adjustments. This step is not required, since the same op-
timizations can be performed online, but reduces the number of online kernel
executions with suboptimal performance.

7 Related Work

An excellent overview of the history of GPGPU is given in [10]. Typically,
work in this area has been primarily focused on case studies, which describe
the process of accelerating applications or algorithms which require extremely
high performance[3, 4, 5, 6, 7, 1, 2]. These applications are typically modified to
use graphics processors, STI Cell, or field programmable gate arrays (FPGAs).



Fig. 6. Combined autotuning results – (a) Shows the combined benefit of auto-
tuning both the local work group size the double buffering chunk size for a single GPU
of the test platforms. (b) Shows the combined benefit of autotuning both the local
work group size and the multi-GPU load imbalance using both devices (GPU+GPU
or GPU+CPU) of the test platforms. Longer bars are better.

These studies serve as motivation for Maestro, as many of them help illustrate
the aforementioned common problems.

Autotuning on GPU-based systems is beginning to gain some popularity. For
example, Venkatasubramanian et. al. have explored autotuning stencil kernels
for multi-CPU and multi-GPU environments [11]. Maestro is distinguished from
this work because it uses autotuning for the optimization of data transfers and
execution parameters, rather than the kernel code itself.

8 Conclusions

In this paper, we have presented Maestro, a library for data orchestration and
tuning on OpenCL devices. We have shown a number of ways in which achieving
the best performance, and sometimes even correctness, is a daunting task for
programmers. For example, we showed that the choice of a viable, let alone
optimal local work group size for OpenCL kernels cannot be accomplished with
simple rules of thumb. We showed that multibuffering, a technique nontrivial to
incorporate in OpenCL code, is further complicated by the problem- and device-
specific nature of choosing an optimal buffer chunk size. And we showed that
even in what appear to be well-balanced hardware configurations, load balancing
between multiple GPUs can require careful division of the workload.

Combined, this leads to a space of performance and correctness parameters
which is immense. By not only supporting double buffering and problem par-
titioning for existing OpenCL kernels, but also applying autotuning techniques
to find the high performance areas of this parameter space with little developer



effort, Maestro leads to improved performance, improved program portability,
and improved programmer productivity.
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