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Abstract 

 
Commodity accelerator technologies including 

reconfigurable devices provide an order of magnitude 
performance improvement compared to mainstream 
microprocessor systems. A number of compute-
intensive scientific applications, therefore, can 
potentially benefit from commodity computing devices 
available in the form of co-processor accelerators. 
However, there has been little progress in accelerating 
production-level scientific applications using these 
technologies due to several programming and 
performance challenges. One of the key performance 
challenges is performance sustainability. While 
computation is often accelerated substantially by 
accelerator devices, the achievable performance is 
significantly lower once the data transfer costs and 
overheads are incorporated. We present an 
application-specific memory characterization 
technique for an FPGA-accelerated system that 
enabled us to reduce data transfer overhead by a 
factor of five for a production-scale scientific 
application. Our proposed technique extends to 
applications that exhibit similar memory behavior and 
to co-processor accelerator systems that support data 
streaming, pipelining, and overlapped execution.  
 
1. Introduction 
 

Commodity accelerator technologies including 
reconfigurable devices and graphical processing units 
(GPUs) provide an order of magnitude performance 
improvement compared to mainstream microprocessor 
systems with high power efficiencies. Current GPU 
devices for instance offer over 30x compute power for 
single-precision floating-point calculations. In 
addition, these devices are presently available in the 
form of co-processor accelerators, and are expected to 
be available in tightly-coupled systems in near future. 
AMD Torrenza and Fusion technologies are examples 
in which Opteron processor will be connected over the 
Hypertransport link [1]. A number of floating-point 
intensive scientific applications can potentially benefit 

from co-processor accelerators in a power and cost 
effective manner as these devices become widely 
available. One of the key challenges in exploiting the 
performance of these co-processor accelerators is how 
to minimize data transfer costs between the host 
system and the co-processor devices. While 
computation is often accelerated significantly with 
accelerator devices, the achievable performance is 
substantially lower once the data transfer costs and 
overheads are included [20]. 

In this study, we present an application-specific 
memory characterization technique for an FPGA-
accelerated system. This technique enabled us to 
reduce data transfer overhead for a scientific 
application by over a factor of 5.  We classify large 
data structures in the application according to their 
memory (read and write) characteristics and access 
patterns. This classification in turn enabled us to 
sustain a speedup of over three for a production level 
scientific application called AMBER [2] on a FPGA-
accelerated system by SRC Computers Inc. [7]. Our 
proposed technique can be extended to other 
applications that exhibit similar memory behavior and 
to co-processor accelerator systems that support data 
streaming and pipelining, and allow overlapped 
execution between the host and the accelerated device. 

Outline of the paper is as follows: section 2 
provides a background to the accelerated application 
and the target system; an overview of related research 
is presented in section 3; implementation details and 
initial performance assessment is presented in section 
4; section 5 explains the application specific memory 
characterization scheme and its impact on 
performance; and conclusions and future plans are 
described in section 6. 
 
2. Background 
 

Numerous applications use molecular dynamics 
(MD) calculations for bio-molecular simulations. 
These applications include AMBER [2], CHARMM 
[12], GROMACS [5], LAMMPS [16], and NAMD 
[14]. MD and related techniques can be defined as a 



computer simulation methodology where the time 
evolution of a set of interacting particles is modeled by 
integrating the equation of motion. The underlying MD 
technique is based upon the law of classical mechanics, 
and most notably Newton’s law, F = ma [15]. The MD 
steps performed in AMBER consist of three 
calculations: determining the energy of a system and 
the forces on atom’s centers, moving the atoms 
according to the forces, and adjusting temperature and 
pressure. Most MD models treat atoms classically as 
points with mass and charge. The atomic points 
interact with other atomic points through pair-wise 
interactions from chemical bonds, electrostatic 
interactions and van der Waals interactions. 

A typical biomolecular simulation contains atoms 
for solute, ions, and solvent molecules. The force on 
each atom is represented as the combination of the 
contribution from forces due to atoms that are 
chemically bonded to it and non-bond forces due to all 
other atoms. The simplified overall energy equation is 
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where the first three terms are the bonded terms and 

the latter two are referred to as non-bonded terms. The 
non-bond energy is broken into two contributions: van 
der Waals and electrostatic interactions. The number of 
bonds, bond angles, and bond dihedrals during the 
classical simulations are kept constants. For a medium 
system, there are only a few thousand bonds and 
angles compared to millions of the non-bonded 
interactions; the calculations involving the bonded 
terms are extremely fast on available systems. The 
double sum of the non-bond terms makes the number 
of these calculations scale with an order of N2, where 
N is the number of atoms. Simulation of larger systems 
(larger N) is therefore extremely expensive.  

In order to address these aforementioned issues, we 
are investigating the acceleration of an MD calculation 
called the Particle Mesh Ewald (PME) method on 
FPGA-accelerated computing systems using a high-
level language, Fortran—AMBER is implemented in 
Fortran and uses message-passing (MPI) 
communication infrastructure. Currently, the SRC 
MAPstation [7], Cray XD1 [3], SGI RASC [6], DRC 
[4] and XtremeData [9] systems are all available with 
FPGA devices. DRC and XtremeData systems provide 
a very high bandwidth connection to the AMD 
Opteron processor over the Hypertransport link [1]. 
The SRC platforms are the only systems that provide a 
coherent programming environment allowing users to 
program the FPGA using Fortran and C programming 

languages. Since the sander module in AMBER is 
written in Fortran 90, we targeted the SRC-6E 
MAPstation®  taking advantage of the support for 
Fortran programming. The Series E MAPstation pairs 
a dual 2.8 GHz Xeon® microprocessor with a MAP® 
processor consisting of two user-configurable Xilinx® 
XC2VP100 FPGA devices [8] running at 100 MHz, a 
control processor, and seven 4MB SRAM banks 
referred to as On-Board Memory (OBM).  

 
3. Related Work 
 

A number of related efforts to develop MD codes 
on reconfigurable hardware platforms have been 
reported in the literature. In [13], the authors 
implement a basic MD system focused on the motion 
updates and the O(N2) force terms (both Coulombic 
and L-J forces and multiple atom types) using 
hardware design techniques. The authors study the 
relationship between precision and quality of MD 
simulations and report that it is possible with 
reconfigurable devices to trade off unneeded precision 
for computing resources. Implementation on a COTS 
system yielded accelerations ranging from 31x to 88x 
with respect to a PC implementation, depending on the 
size of the FPGA and the simulation accuracy. 
Similarly, in [11], the authors implemented a novel 
single atom type MD system with VHDL on a 
Transmogrifier 3 (TM3) system. The focus is on the 
implementation of the L-J force calculator with 
problem specific implementations. To reduce 
complexity, the implementation uses fixed-point 
representations varying between 22 and 76 bits for all 
values within the MD system. The author’s results 
show that this implementation closely tracked the 
higher precision software implementation with an error 
of less than 1% between consecutive time steps. The 
authors extrapolate that with better FPGA memory 
organization and faster FPGAs, a speedup of 40x to 
100x over a microprocessor implementation can be 
achieved. 

In [19], the authors use the SRC development suite 
Carte® to implement a tightly coupled MD simulation 
kernel (not a complete MD software package such as 
AMBER) on the SRC-6E MAPstation. Like our 
approach, the important tasks of an MD simulation are 
analyzed and partitioned such that the most compute-
intensive tasks are executed in the reconfigurable 
hardware and the rest are executed on the general-
purpose processor. Even though only a portion of the 
simulation is accelerated in the MAP, the single-
precision implementation achieves a 2x speedup over 
the software baseline running on the MAPstation host.  



Neither [11], [12], nor [19] are concerned with the 
problem of accelerating existing, production-level, MD 
simulation software nor have they been tested with 
more than a few thousand particles. The most closely 
related work comes from [18] where the authors 
implement a simplified version of an MD algorithm in 
NAMD [14], an MD simulation package, on the SRC-
6 MAPstation. While their implementation does trace 
the steps involved in porting a large-scale scientific 
code to FPGA-enabled systems, they do not cover 
memory analysis and characterization methodology 
and its impact on achievable performance, which is 
presented in this article. 
 
4. Implementation 
 

The Ewald method in the molecular dynamics (MD) 
calculations expands the simple sum of Coulomb’s 
Law (electrostatic) terms into the sum of direct and 
reciprocal Ewald calculations and a correction 
function. Except for the error correction function, the 
direct sum is identical to the sum in the cutoff method 
that calculates electrostatic potential energy. The 
reciprocal sum is a major part of the electrostatic 
energy that the direct sum misses due to the correction 
factor. The reciprocal sum is approximated using Fast 
Fourier Transform (FFT) with convolutions on the grid 
where charges are interpolated on the grid points. 
Table 1 provides the percentage of execution time (for 
10000 time steps or production-scale simulations) for 
four different protein experiments on an Intel dual 2.8 
GHz Xeon system. The direct sum accounts for over 
80% of execution time. The reciprocal Ewald 
calculation takes less than 13% of the total execution 
time. Taken together, these calculations account for 
over 95% of total execution time on a single processor 
system. 

Number of 
atoms 

Direct Ewald 
Time (%) 

Reciprocal Ewald 
Time (%) 

23558 82.61 16.66 
61641 86.88 12.56 
143784 87.12 12.34 
194262 86.47 12.92 

Table 1:  Time spent in the direct and reciprocal 
Ewald calculations (% of total execution time). 
We further break down the runtime cost in the 

Direct Ewald calculation into five functions (see Table 
2). Calls to functions f1, f2, and f3 are made once 
every time step; calls to f4 depend on the number of 
atoms in the system; f5 is called twice as many times 
as f4. The functions f4 and f5 are both called from 
within f3. Considering the runtime distribution and the 
logic capacity of our target FPGA devices, we map f3, 
f4 and f5 onto the co-processor accelerators. 

Number of 
atoms 

23558 61641 143784 194262 

f1 (% of total) 0.1% 0.1% 0.2% 0.2% 
f2 (% of total) 0.4% 0.5% 0.5% 0.5% 
f3 (% of total) 82.1% 86.2% 86.4% 85.8% 
f4 (% of f3) 86.1% 85.9% 88.4% 88.4% 
f5 (% of f4) 18.8% 20.9% 17.9% 17.9% 
Table 2:  Time spent in the five functions of the 

Direct Ewald calculations. 
 
4.1. Mapping Details 
 

The characteristics of FPGA devices allow for 
techniques such as deep pipelining, concurrent 
execution, and data streaming making them an ideal 
target for a diverse range of scientific calculations, 
since no other processing device offers a combination 
of these capabilities in a flexible manner. We exploit 
these features with SRC-6E and Carte constructs to 
achieve a higher speedup. We accelerate the direct 
Ewald calculation on the FPGA devices. The nested 
calls to functions f3, f4, and f5 in the original code are 
replaced by a single invocation to a SRC MAP (FPGA 
implementation) function that then performs the 
calculations of the three functions on the FPGA 
devices. The only differences between the original and 
FPGA-accelerated implementation (in Fortran) is the 
additional calls for data transfers between the host 
processor and the on-board memory of the MAP and 
the FPGA-specific constructs for parallel execution of 
the code blocks.  

 
Figure 1: Control and data paths between the 
host processor and the FPGA chips. 

A schematic of the co-processor accleration process 
is shown in Figure 1. The host processor oversees the 
control and data movement between the host and the 
FPGA devices. However, once the devices are setup, 
the primary FPGA chip invokes the DMA operations. 
Since a single pipeline can span multiple FPGA chips, 
the data transfers between the FPGA chips are 
controlled by the primary FPGA chip. Note that all 
control and data transfer calls shown in Figure 1 can 
be active simultaneously. In addition, the SRC systems 
have multiple data ports; for instance, three 64-bit 



elements can be transferred between the two FPGA 
chips in a single clock cycle. Additionally, we fully 
exploit the six on-board memory banks of the SRC-6E 
system. Since there is a latency associated in accessing 
a memory bank in consecutive clock cycles, 
frequently-used read-only arrays can be replicated on 
multiple memory banks. This technique not only 
permits consecutive clock cycle reads but also permits 
independent access by both FPGA devices.  

Deep pipelining techniques on FPGA devices allow 
users to describe the parallelism in terms of a 
producer-consumer programming paradigm. A 
producer-consumer relationship can be between: (1) 
host and the primary FPGA chip; (2) primary FPGA 
chip and secondary FPGA chip; and (3) parallel 
sections within a single FPGA chip. A parallel section 
construct in the SRC programming permits task 
parallelism, i.e., multiple computation and data transfer 
tasks can be executed on a device simultaneously. In 
addition to block data transfer, the FPGA devices 
allow for streaming data is transfer between the 
producer and consumer devices. The data transfer 
overheads and latencies, in most cases, can be 
concealed using the deep pipelining and streaming 
techniques of the FPGA programming, as long as there 
is sufficient work (computation) available to hide these 
latencies. The performance of a pipeline will be the 
latency of the most-expensive (largest latency) parallel 
section. 
 
4.2. Performance Analysis 
 

We measured the performance of the FPGA-
accelerated code for two test cases namely jac and 
HhaI. The jac benchmark is part of the AMBER 
version 8.0 release and it contains 23,558 atoms. HhaI 
is a protein-DNA system that contains 61,641 atoms. 
The microprocessor-based performance is measured on 
the SRC host processor system, described in section 2. 
The system imposes a fixed 100 MHz clock frequency 
restriction on the FPGA devices. We should also note 
that the performance of the FPGA devices on our 
target SRC-6E system is not representative of the full 
capabilities of the current-generation FPGA devices 
(current-generation FPGA devices have more logic and 
memory capacity and are capable of operating at 
higher frequencies) [21]. Nevertheless, we demonstrate 
the potential for FPGA acceleration for an important 
class of applications on these devices.  

In order to analyze the performance behavior, we 
used the SRC-6E performance analysis and debugging 
tools to measure the runtime contributions of the key 
sections of the accelerated code. Runtimes for three 
sections are measured separately: (1) time to setup the 

MAP or calling overhead; (2) compute time; and (3) 
data transfer times. The time to setup the MAP has an 
additional cost (~0.3 milliseconds) for the first 
invocation; in subsequent invocations this cost is then 
comparable to the cost of the regular Fortran function 
calls. The data transfer time includes the time to 
receive data from the host and to send results back to 
the host. Compute time is the computation time spent 
on the two FPGA devices including the time to transfer 
data between the two chips.  

Our experiments and measurements reveal that the 
data transfer overheads offset the performance gains in 
a naïve implementation and the penalties are higher for 
the larger problem, HhaI. The compute only speedup 
increases with the problem size or the number of 
atoms, 3.3x and ~4x, respectively. At the same time, 
the data transfer overheads increase with the problem 
size, thereby reducing the application speedup to less 
than one. At this stage, we concluded that the memory 
access requirements needed to be characterized in 
order to sustain performance on the FPGA devices. 
 
5. Memory Characterization 
 

We considered and evaluated a number of 
techniques to reduce the data transfer times. First, data 
can be pre-fetched and post-stored to hide data transfer 
latencies. Additionally, multi-threading techniques 
using pthreads or OpenMP allow users to transfer large 
arrays while the compute thread is processing before 
the accelerated function is invoked. Second, data 
transfers to the FPGA can be pipelined and overlapped 
using the streaming directives provided in the SRC 
Programming Environment. Although some of these 
techniques are applied in the first implementation of 
the code, we recognize that further performance 
optimization can be achieved by carefully overlapping 
and pipelining all array transfers. Finally, algorithm-
specific optimizations can be achieved by 
characterizing the memory access behavior in the 
accelerated code. We employ the third approach since 
it also leverages the other optimization techniques.  

There are eight large arrays that are transferred to 
the co-processor for acceleration of the PME 
calculations. These include image coordinate arrays 
(over 7 Kbytes) and force coordinates (~4 Kbytes) for 
the jac benchmark. Overall, the naïve implementation 
requires transfer of approximately 24 Kbytes per 
invocation. On the SRC 6-E system, the sustain 
payload bandwidth is 2.8 GBytes/sec (utilizing input 
and output 1.4 Gbytes/second bandwidth). Hence, the 
data transfer overhead accounted for over two-third of 
the total execution time per simulation time step. 



5.1. Data Structure Classification  
 

In order to exploit the SRC Programming 
Environment data transfer utilities, particularly for 
streaming data and overlapping host and accelerated 
device execution, we classified the arrays into the 
following categories according to their read and write 
characteristics and memory access behaviors: 
• Initialized once arrays: these arrays a are 

initialized typically in the beginning of the 
application run. The cost of these arrays is 
amortized over a production-scale run. 

• Read-only: these arrays are not modified within 
the accelerated code. This classification helps in 
eliminating output cost. 

• Write-only: these arrays are modified by the 
accelerated application only. No read cost is 
associated with these arrays. 

• Read and write: these arrays a re modified not 
only in the accelerated code but also in the 
calculations performed by the host. Read and write 
costs are associated with these arrays. 

• Conditional read/write: In MD calculations, not all 
arrays are updated at every time step. Typically, 
there is a variable that determines when some 
arrays will be modified. The host processor can 
send the condition variable and the accelerated 
code can then determine when a read and write 
operation should be invoked.  

• Local: local variables in the accelerated 
calculations need not be transferred. 

• Pre-fetch: this memory access feature allows for 
pre-fetching data before the invocation of 
accelerated calculation. Hence, this cost is not 
included in the data transfer and overhead costs of 
the accelerated code. 

• Delayed write: like pre-fetch, this cost is hidden. 
The accelerated code can send completion signal 
to the host prior to sending updated values. 

We found all of the above-mentioned classes 
represented in the arrays for the direct PME 
calculations. Since no existing tool has the capability 
of classifying arrays into these categories, we manually 
identified and classified arrays, in other words 
sampling of variables that are used in the accelerated 
calculation. This process involved detailed and tedious 
profiling and debugging of the entire application since 
data modifications could take place in any part of the 
application execution. Furthermore, the categories 
enable us to identify overheads that can be eliminated 
in an RC implementation. The application code under 
consideration is optimized for conventional computing 
platforms where arrays may be copied to improve 

performance on these platforms; these same copy 
semantics cause unnecessary and costly overheads on 
RC systems. Therefore, the task of array 
characterization is crucial for performance 
optimization on RC systems. 

The larger arrays (image coordinates) are 
conditionally read approximately every 20-25 function 
invocations, and these are not written by the FPGA 
devices. Hence, we were able to modify the FPGA 
function call such that a condition parameter is passed 
to the device indicating when to invoke DMA calls to 
access the arrays. Furthermore, we found that the large 
force arrays are not read elsewhere in the code after the 
direct PME calculations; therefore, writing back to the 
processor via DMA calls is not required. Moreover, we 
identified that not all the arrays are needed before the 
start of the three-way nested loop and we can delay the 
transfer of these arrays and allow the computation to 
proceed by overlapping the loop calculation and 
streaming data transfers. 

Implementation of the accelerated PME calculation 
is further modified according to memory access 
classification and characterization. This new 
implementation, however, does not include any 
modification to the AMBER source code on the host to 
exploit additional benefits from multithreading using 
pthreads or OpenMP. Only the Fortran source code for 
the FPGA-accelerated calculations is modified in order 
to reduce the unnecessary data transfer overheads. 
Amazingly, the modified code resulted in a very 
significant reduction in the data transfer costs; the data 
transfer costs that previously accounted for over 70% 
of the total execution time, is now less that 5% of the 
total execution time resulting in sustained accelerated 
performance on the FPGA devices.  
 
5.2. Performance Improvement 
 

In order to estimate the improvement due to 
memory characterization, we compare time-to-solution 
for the accelerated calculation before and after memory 
characterization. The time-to-solution metric is 
calculated for a micro-second scale simulation (106 
time steps) and is presented for the jac benchmark in 
Table 3. Time before memory characterization (with 
FPGA-accelerated code) is well over 17x103 days. We 
also measure and include time for the non-accelerated 
calculations, which is a constant because it is executed 
on the host processor for both the host processor and 
FPGA-accelerated implementations. We calculate the 
performance improvement achieved by overlapping the 
‘direct’ and ‘reciprocal’ PME calculations on FPGA 
and host respectively. OpenMP constructs within the 



AMBER source code could enable us to overlap the 
PME calculations (see Table 3). 

 Time-to-solution 
(after memory 
characterization)  

Time-to- solution 
(after overlapping) 

Computation 
only 

4793 days 3208 days 

Setup+compute 4801 days 3214 days 
Compute+data 
transfer 

4868 days 3282 days 

Overall 4876 days 3290 days 
Host 10417 days 

Table 3:  Time-to-solution before and after 
overlapping the PME calculations with OpenMP. 

To comprehend the values in the Table 3, we 
estimate time for a nano-second scale simulation 
instead of our target micro-second scale simulation. A 
nano-second simulation will take over 10 days on the 
microprocessor system with dual 2.8 GHz Xeon 
system, about 5 days on an FPGA accelerated code, 
and just over 3 days by overlapping FPGA and host 
execution. It is worthwhile to note that these numbers 
are computed for the FPGA devices on the SRC-6E. 
Performance potential for the current and future-
generation FPGA devices are discussed in [10].  
 
6. Conclusions and Future Plans 
 

Using an application-specific memory 
characterization scheme, scientific application 
developers can exploit extremely powerful yet flexible 
devices to perform a diverse range of scientific 
calculations with a familiar high-level programming 
interface and without compromising achievable 
performance. Our results demonstrate that the time-to-
solution of medium-scale biological system 
simulations are reduced by a factor of three as 
compared to the microprocessor runtimes. Trends 
indicate the capabilities of the FPGA devices and other 
accelerator devices are growing at even a faster rate 
than the microprocessors and these co-processor 
accelerator devices will be soon available from major 
microprocessor vendors. We therefore anticipate that a 
large number of scientific applications will 
dramatically benefit from an increased support for 
double-precision floating-point operations and high-
level language interfaces. We recognize that 
performance and programming tools that can facilitate 
the memory characterization scheme presented in this 
paper will be extremely valuable to the scientific code 
developer communities. Moreover, extensions to 
programming models, languages and system software 
stack will be needed in order to express memory access 
behavior in a concise and portable manner for a 
diverse range of co-processor accelerated systems.  
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