
An Application Specific Memory Characterization Technique for
Co-processor Accelerators

Sadaf R Alam and Jeffrey S Vetter

Oak Ridge National Laboratory
alamsr,vetter@ornl.gov

Melissa C Smith
Clemson University

smithmc@clemson.edu

Abstract

Commodity accelerator technologies including

reconfigurable devices provide an order of magnitude
performance improvement compared to mainstream
microprocessor systems. A number of compute-
intensive scientific applications, therefore, can
potentially benefit from commodity computing devices
available in the form of co-processor accelerators.
However, there has been little progress in accelerating
production-level scientific applications using these
technologies due to several programming and
performance challenges. One of the key performance
challenges is performance sustainability. While
computation is often accelerated substantially by
accelerator devices, the achievable performance is
significantly lower once the data transfer costs and
overheads are incorporated. We present an
application-specific memory characterization
technique for an FPGA-accelerated system that
enabled us to reduce data transfer overhead by a
factor of five for a production-scale scientific
application. Our proposed technique extends to
applications that exhibit similar memory behavior and
to co-processor accelerator systems that support data
streaming, pipelining, and overlapped execution.

1. Introduction

Commodity accelerator technologies including
reconfigurable devices and graphical processing units
(GPUs) provide an order of magnitude performance
improvement compared to mainstream microprocessor
systems with high power efficiencies. Current GPU
devices for instance offer over 30x compute power for
single-precision floating-point calculations. In
addition, these devices are presently available in the
form of co-processor accelerators, and are expected to
be available in tightly-coupled systems in near future.
AMD Torrenza and Fusion technologies are examples
in which Opteron processor will be connected over the
Hypertransport link [1]. A number of floating-point
intensive scientific applications can potentially benefit

from co-processor accelerators in a power and cost
effective manner as these devices become widely
available. One of the key challenges in exploiting the
performance of these co-processor accelerators is how
to minimize data transfer costs between the host
system and the co-processor devices. While
computation is often accelerated significantly with
accelerator devices, the achievable performance is
substantially lower once the data transfer costs and
overheads are included [20].

In this study, we present an application-specific
memory characterization technique for an FPGA-
accelerated system. This technique enabled us to
reduce data transfer overhead for a scientific
application by over a factor of 5. We classify large
data structures in the application according to their
memory (read and write) characteristics and access
patterns. This classification in turn enabled us to
sustain a speedup of over three for a production level
scientific application called AMBER [2] on a FPGA-
accelerated system by SRC Computers Inc. [7]. Our
proposed technique can be extended to other
applications that exhibit similar memory behavior and
to co-processor accelerator systems that support data
streaming and pipelining, and allow overlapped
execution between the host and the accelerated device.

Outline of the paper is as follows: section 2
provides a background to the accelerated application
and the target system; an overview of related research
is presented in section 3; implementation details and
initial performance assessment is presented in section
4; section 5 explains the application specific memory
characterization scheme and its impact on
performance; and conclusions and future plans are
described in section 6.

2. Background

Numerous applications use molecular dynamics
(MD) calculations for bio-molecular simulations.
These applications include AMBER [2], CHARMM
[12], GROMACS [5], LAMMPS [16], and NAMD
[14]. MD and related techniques can be defined as a

computer simulation methodology where the time
evolution of a set of interacting particles is modeled by
integrating the equation of motion. The underlying MD
technique is based upon the law of classical mechanics,
and most notably Newton’s law, F = ma [15]. The MD
steps performed in AMBER consist of three
calculations: determining the energy of a system and
the forces on atom’s centers, moving the atoms
according to the forces, and adjusting temperature and
pressure. Most MD models treat atoms classically as
points with mass and charge. The atomic points
interact with other atomic points through pair-wise
interactions from chemical bonds, electrostatic
interactions and van der Waals interactions.

A typical biomolecular simulation contains atoms
for solute, ions, and solvent molecules. The force on
each atom is represented as the combination of the
contribution from forces due to atoms that are
chemically bonded to it and non-bond forces due to all
other atoms. The simplified overall energy equation is

∑∑∑∑∑

∑∑

= == =
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+−

++=

N

j

N

i ij

iN

j

N

i ij

ij

ij

ij

dihedral

anglesbonds

r
qjq

r
B

r
A

torsionsdf

anglefbondfpotentialE

1 11 1
66)(

)()()(

where the first three terms are the bonded terms and

the latter two are referred to as non-bonded terms. The
non-bond energy is broken into two contributions: van
der Waals and electrostatic interactions. The number of
bonds, bond angles, and bond dihedrals during the
classical simulations are kept constants. For a medium
system, there are only a few thousand bonds and
angles compared to millions of the non-bonded
interactions; the calculations involving the bonded
terms are extremely fast on available systems. The
double sum of the non-bond terms makes the number
of these calculations scale with an order of N2, where
N is the number of atoms. Simulation of larger systems
(larger N) is therefore extremely expensive.

In order to address these aforementioned issues, we
are investigating the acceleration of an MD calculation
called the Particle Mesh Ewald (PME) method on
FPGA-accelerated computing systems using a high-
level language, Fortran—AMBER is implemented in
Fortran and uses message-passing (MPI)
communication infrastructure. Currently, the SRC
MAPstation [7], Cray XD1 [3], SGI RASC [6], DRC
[4] and XtremeData [9] systems are all available with
FPGA devices. DRC and XtremeData systems provide
a very high bandwidth connection to the AMD
Opteron processor over the Hypertransport link [1].
The SRC platforms are the only systems that provide a
coherent programming environment allowing users to
program the FPGA using Fortran and C programming

languages. Since the sander module in AMBER is
written in Fortran 90, we targeted the SRC-6E
MAPstation® taking advantage of the support for
Fortran programming. The Series E MAPstation pairs
a dual 2.8 GHz Xeon® microprocessor with a MAP®
processor consisting of two user-configurable Xilinx®
XC2VP100 FPGA devices [8] running at 100 MHz, a
control processor, and seven 4MB SRAM banks
referred to as On-Board Memory (OBM).

3. Related Work

A number of related efforts to develop MD codes
on reconfigurable hardware platforms have been
reported in the literature. In [13], the authors
implement a basic MD system focused on the motion
updates and the O(N2) force terms (both Coulombic
and L-J forces and multiple atom types) using
hardware design techniques. The authors study the
relationship between precision and quality of MD
simulations and report that it is possible with
reconfigurable devices to trade off unneeded precision
for computing resources. Implementation on a COTS
system yielded accelerations ranging from 31x to 88x
with respect to a PC implementation, depending on the
size of the FPGA and the simulation accuracy.
Similarly, in [11], the authors implemented a novel
single atom type MD system with VHDL on a
Transmogrifier 3 (TM3) system. The focus is on the
implementation of the L-J force calculator with
problem specific implementations. To reduce
complexity, the implementation uses fixed-point
representations varying between 22 and 76 bits for all
values within the MD system. The author’s results
show that this implementation closely tracked the
higher precision software implementation with an error
of less than 1% between consecutive time steps. The
authors extrapolate that with better FPGA memory
organization and faster FPGAs, a speedup of 40x to
100x over a microprocessor implementation can be
achieved.

In [19], the authors use the SRC development suite
Carte® to implement a tightly coupled MD simulation
kernel (not a complete MD software package such as
AMBER) on the SRC-6E MAPstation. Like our
approach, the important tasks of an MD simulation are
analyzed and partitioned such that the most compute-
intensive tasks are executed in the reconfigurable
hardware and the rest are executed on the general-
purpose processor. Even though only a portion of the
simulation is accelerated in the MAP, the single-
precision implementation achieves a 2x speedup over
the software baseline running on the MAPstation host.

Neither [11], [12], nor [19] are concerned with the
problem of accelerating existing, production-level, MD
simulation software nor have they been tested with
more than a few thousand particles. The most closely
related work comes from [18] where the authors
implement a simplified version of an MD algorithm in
NAMD [14], an MD simulation package, on the SRC-
6 MAPstation. While their implementation does trace
the steps involved in porting a large-scale scientific
code to FPGA-enabled systems, they do not cover
memory analysis and characterization methodology
and its impact on achievable performance, which is
presented in this article.

4. Implementation

The Ewald method in the molecular dynamics (MD)
calculations expands the simple sum of Coulomb’s
Law (electrostatic) terms into the sum of direct and
reciprocal Ewald calculations and a correction
function. Except for the error correction function, the
direct sum is identical to the sum in the cutoff method
that calculates electrostatic potential energy. The
reciprocal sum is a major part of the electrostatic
energy that the direct sum misses due to the correction
factor. The reciprocal sum is approximated using Fast
Fourier Transform (FFT) with convolutions on the grid
where charges are interpolated on the grid points.
Table 1 provides the percentage of execution time (for
10000 time steps or production-scale simulations) for
four different protein experiments on an Intel dual 2.8
GHz Xeon system. The direct sum accounts for over
80% of execution time. The reciprocal Ewald
calculation takes less than 13% of the total execution
time. Taken together, these calculations account for
over 95% of total execution time on a single processor
system.

Number of
atoms

Direct Ewald
Time (%)

Reciprocal Ewald
Time (%)

23558 82.61 16.66
61641 86.88 12.56
143784 87.12 12.34
194262 86.47 12.92

Table 1: Time spent in the direct and reciprocal
Ewald calculations (% of total execution time).
We further break down the runtime cost in the

Direct Ewald calculation into five functions (see Table
2). Calls to functions f1, f2, and f3 are made once
every time step; calls to f4 depend on the number of
atoms in the system; f5 is called twice as many times
as f4. The functions f4 and f5 are both called from
within f3. Considering the runtime distribution and the
logic capacity of our target FPGA devices, we map f3,
f4 and f5 onto the co-processor accelerators.

Number of
atoms

23558 61641 143784 194262

f1 (% of total) 0.1% 0.1% 0.2% 0.2%
f2 (% of total) 0.4% 0.5% 0.5% 0.5%
f3 (% of total) 82.1% 86.2% 86.4% 85.8%
f4 (% of f3) 86.1% 85.9% 88.4% 88.4%
f5 (% of f4) 18.8% 20.9% 17.9% 17.9%
Table 2: Time spent in the five functions of the

Direct Ewald calculations.

4.1. Mapping Details

The characteristics of FPGA devices allow for
techniques such as deep pipelining, concurrent
execution, and data streaming making them an ideal
target for a diverse range of scientific calculations,
since no other processing device offers a combination
of these capabilities in a flexible manner. We exploit
these features with SRC-6E and Carte constructs to
achieve a higher speedup. We accelerate the direct
Ewald calculation on the FPGA devices. The nested
calls to functions f3, f4, and f5 in the original code are
replaced by a single invocation to a SRC MAP (FPGA
implementation) function that then performs the
calculations of the three functions on the FPGA
devices. The only differences between the original and
FPGA-accelerated implementation (in Fortran) is the
additional calls for data transfers between the host
processor and the on-board memory of the MAP and
the FPGA-specific constructs for parallel execution of
the code blocks.

Figure 1: Control and data paths between the
host processor and the FPGA chips.

A schematic of the co-processor accleration process
is shown in Figure 1. The host processor oversees the
control and data movement between the host and the
FPGA devices. However, once the devices are setup,
the primary FPGA chip invokes the DMA operations.
Since a single pipeline can span multiple FPGA chips,
the data transfers between the FPGA chips are
controlled by the primary FPGA chip. Note that all
control and data transfer calls shown in Figure 1 can
be active simultaneously. In addition, the SRC systems
have multiple data ports; for instance, three 64-bit

elements can be transferred between the two FPGA
chips in a single clock cycle. Additionally, we fully
exploit the six on-board memory banks of the SRC-6E
system. Since there is a latency associated in accessing
a memory bank in consecutive clock cycles,
frequently-used read-only arrays can be replicated on
multiple memory banks. This technique not only
permits consecutive clock cycle reads but also permits
independent access by both FPGA devices.

Deep pipelining techniques on FPGA devices allow
users to describe the parallelism in terms of a
producer-consumer programming paradigm. A
producer-consumer relationship can be between: (1)
host and the primary FPGA chip; (2) primary FPGA
chip and secondary FPGA chip; and (3) parallel
sections within a single FPGA chip. A parallel section
construct in the SRC programming permits task
parallelism, i.e., multiple computation and data transfer
tasks can be executed on a device simultaneously. In
addition to block data transfer, the FPGA devices
allow for streaming data is transfer between the
producer and consumer devices. The data transfer
overheads and latencies, in most cases, can be
concealed using the deep pipelining and streaming
techniques of the FPGA programming, as long as there
is sufficient work (computation) available to hide these
latencies. The performance of a pipeline will be the
latency of the most-expensive (largest latency) parallel
section.

4.2. Performance Analysis

We measured the performance of the FPGA-
accelerated code for two test cases namely jac and
HhaI. The jac benchmark is part of the AMBER
version 8.0 release and it contains 23,558 atoms. HhaI
is a protein-DNA system that contains 61,641 atoms.
The microprocessor-based performance is measured on
the SRC host processor system, described in section 2.
The system imposes a fixed 100 MHz clock frequency
restriction on the FPGA devices. We should also note
that the performance of the FPGA devices on our
target SRC-6E system is not representative of the full
capabilities of the current-generation FPGA devices
(current-generation FPGA devices have more logic and
memory capacity and are capable of operating at
higher frequencies) [21]. Nevertheless, we demonstrate
the potential for FPGA acceleration for an important
class of applications on these devices.

In order to analyze the performance behavior, we
used the SRC-6E performance analysis and debugging
tools to measure the runtime contributions of the key
sections of the accelerated code. Runtimes for three
sections are measured separately: (1) time to setup the

MAP or calling overhead; (2) compute time; and (3)
data transfer times. The time to setup the MAP has an
additional cost (~0.3 milliseconds) for the first
invocation; in subsequent invocations this cost is then
comparable to the cost of the regular Fortran function
calls. The data transfer time includes the time to
receive data from the host and to send results back to
the host. Compute time is the computation time spent
on the two FPGA devices including the time to transfer
data between the two chips.

Our experiments and measurements reveal that the
data transfer overheads offset the performance gains in
a naïve implementation and the penalties are higher for
the larger problem, HhaI. The compute only speedup
increases with the problem size or the number of
atoms, 3.3x and ~4x, respectively. At the same time,
the data transfer overheads increase with the problem
size, thereby reducing the application speedup to less
than one. At this stage, we concluded that the memory
access requirements needed to be characterized in
order to sustain performance on the FPGA devices.

5. Memory Characterization

We considered and evaluated a number of
techniques to reduce the data transfer times. First, data
can be pre-fetched and post-stored to hide data transfer
latencies. Additionally, multi-threading techniques
using pthreads or OpenMP allow users to transfer large
arrays while the compute thread is processing before
the accelerated function is invoked. Second, data
transfers to the FPGA can be pipelined and overlapped
using the streaming directives provided in the SRC
Programming Environment. Although some of these
techniques are applied in the first implementation of
the code, we recognize that further performance
optimization can be achieved by carefully overlapping
and pipelining all array transfers. Finally, algorithm-
specific optimizations can be achieved by
characterizing the memory access behavior in the
accelerated code. We employ the third approach since
it also leverages the other optimization techniques.

There are eight large arrays that are transferred to
the co-processor for acceleration of the PME
calculations. These include image coordinate arrays
(over 7 Kbytes) and force coordinates (~4 Kbytes) for
the jac benchmark. Overall, the naïve implementation
requires transfer of approximately 24 Kbytes per
invocation. On the SRC 6-E system, the sustain
payload bandwidth is 2.8 GBytes/sec (utilizing input
and output 1.4 Gbytes/second bandwidth). Hence, the
data transfer overhead accounted for over two-third of
the total execution time per simulation time step.

5.1. Data Structure Classification

In order to exploit the SRC Programming
Environment data transfer utilities, particularly for
streaming data and overlapping host and accelerated
device execution, we classified the arrays into the
following categories according to their read and write
characteristics and memory access behaviors:
• Initialized once arrays: these arrays a are

initialized typically in the beginning of the
application run. The cost of these arrays is
amortized over a production-scale run.

• Read-only: these arrays are not modified within
the accelerated code. This classification helps in
eliminating output cost.

• Write-only: these arrays are modified by the
accelerated application only. No read cost is
associated with these arrays.

• Read and write: these arrays a re modified not
only in the accelerated code but also in the
calculations performed by the host. Read and write
costs are associated with these arrays.

• Conditional read/write: In MD calculations, not all
arrays are updated at every time step. Typically,
there is a variable that determines when some
arrays will be modified. The host processor can
send the condition variable and the accelerated
code can then determine when a read and write
operation should be invoked.

• Local: local variables in the accelerated
calculations need not be transferred.

• Pre-fetch: this memory access feature allows for
pre-fetching data before the invocation of
accelerated calculation. Hence, this cost is not
included in the data transfer and overhead costs of
the accelerated code.

• Delayed write: like pre-fetch, this cost is hidden.
The accelerated code can send completion signal
to the host prior to sending updated values.

We found all of the above-mentioned classes
represented in the arrays for the direct PME
calculations. Since no existing tool has the capability
of classifying arrays into these categories, we manually
identified and classified arrays, in other words
sampling of variables that are used in the accelerated
calculation. This process involved detailed and tedious
profiling and debugging of the entire application since
data modifications could take place in any part of the
application execution. Furthermore, the categories
enable us to identify overheads that can be eliminated
in an RC implementation. The application code under
consideration is optimized for conventional computing
platforms where arrays may be copied to improve

performance on these platforms; these same copy
semantics cause unnecessary and costly overheads on
RC systems. Therefore, the task of array
characterization is crucial for performance
optimization on RC systems.

The larger arrays (image coordinates) are
conditionally read approximately every 20-25 function
invocations, and these are not written by the FPGA
devices. Hence, we were able to modify the FPGA
function call such that a condition parameter is passed
to the device indicating when to invoke DMA calls to
access the arrays. Furthermore, we found that the large
force arrays are not read elsewhere in the code after the
direct PME calculations; therefore, writing back to the
processor via DMA calls is not required. Moreover, we
identified that not all the arrays are needed before the
start of the three-way nested loop and we can delay the
transfer of these arrays and allow the computation to
proceed by overlapping the loop calculation and
streaming data transfers.

Implementation of the accelerated PME calculation
is further modified according to memory access
classification and characterization. This new
implementation, however, does not include any
modification to the AMBER source code on the host to
exploit additional benefits from multithreading using
pthreads or OpenMP. Only the Fortran source code for
the FPGA-accelerated calculations is modified in order
to reduce the unnecessary data transfer overheads.
Amazingly, the modified code resulted in a very
significant reduction in the data transfer costs; the data
transfer costs that previously accounted for over 70%
of the total execution time, is now less that 5% of the
total execution time resulting in sustained accelerated
performance on the FPGA devices.

5.2. Performance Improvement

In order to estimate the improvement due to
memory characterization, we compare time-to-solution
for the accelerated calculation before and after memory
characterization. The time-to-solution metric is
calculated for a micro-second scale simulation (106
time steps) and is presented for the jac benchmark in
Table 3. Time before memory characterization (with
FPGA-accelerated code) is well over 17x103 days. We
also measure and include time for the non-accelerated
calculations, which is a constant because it is executed
on the host processor for both the host processor and
FPGA-accelerated implementations. We calculate the
performance improvement achieved by overlapping the
‘direct’ and ‘reciprocal’ PME calculations on FPGA
and host respectively. OpenMP constructs within the

AMBER source code could enable us to overlap the
PME calculations (see Table 3).

 Time-to-solution
(after memory
characterization)

Time-to- solution
(after overlapping)

Computation
only

4793 days 3208 days

Setup+compute 4801 days 3214 days
Compute+data
transfer

4868 days 3282 days

Overall 4876 days 3290 days
Host 10417 days

Table 3: Time-to-solution before and after
overlapping the PME calculations with OpenMP.

To comprehend the values in the Table 3, we
estimate time for a nano-second scale simulation
instead of our target micro-second scale simulation. A
nano-second simulation will take over 10 days on the
microprocessor system with dual 2.8 GHz Xeon
system, about 5 days on an FPGA accelerated code,
and just over 3 days by overlapping FPGA and host
execution. It is worthwhile to note that these numbers
are computed for the FPGA devices on the SRC-6E.
Performance potential for the current and future-
generation FPGA devices are discussed in [10].

6. Conclusions and Future Plans

Using an application-specific memory
characterization scheme, scientific application
developers can exploit extremely powerful yet flexible
devices to perform a diverse range of scientific
calculations with a familiar high-level programming
interface and without compromising achievable
performance. Our results demonstrate that the time-to-
solution of medium-scale biological system
simulations are reduced by a factor of three as
compared to the microprocessor runtimes. Trends
indicate the capabilities of the FPGA devices and other
accelerator devices are growing at even a faster rate
than the microprocessors and these co-processor
accelerator devices will be soon available from major
microprocessor vendors. We therefore anticipate that a
large number of scientific applications will
dramatically benefit from an increased support for
double-precision floating-point operations and high-
level language interfaces. We recognize that
performance and programming tools that can facilitate
the memory characterization scheme presented in this
paper will be extremely valuable to the scientific code
developer communities. Moreover, extensions to
programming models, languages and system software
stack will be needed in order to express memory access
behavior in a concise and portable manner for a
diverse range of co-processor accelerated systems.

Acknowledgements
The submitted manuscript has been authored by a

contractor of the U.S. Government under Contract No. DE-
AC05-00OR22725. Accordingly, the U.S. Government
retains a non-exclusive, royalty-free license to publish or
reproduce the published form of this contribution, or allow
others to do so, for U.S. Government purposes.

References

[1] “Advanced Micro Devices, Inc.” http://www.amd.com
[2] “AMBER MD Package” http://amber.scripps.edu/
[3] “Cray, Inc.” http://www.cray.com
[4] “DRC Systems” http://www.drccomputer.com/
[5] “GROMACS MD package” http://www.gromacs.org/
[6] "SGI, Inc." http://www.sgi.com
[7] "SRC Computers, Inc." http://www.srccomputers.com
[8] Xilinx, Inc., Virtex-II Platform FPGAs: Complete Data

Sheet, June 2004.
[9] “Xtreme Data Inc.” http://www.xtremedatainc.com/
[10] S. R. Alam, et. al. “Using FPGA Devices to Accelerate

Biomolecular Simulations,” IEEE Computer, Vol. 40,
No. 3, 2007.

[11] N. Azizi, et. al., “Reconfigurable Molecular Dynamics
Simulator,” IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2004.

[12] B. R. Brooks, et. al., “CHARMM: A program for
macromolecular energy, minimization, and dynamics
calculations,” J. of Computational Chemistry, 1983.

[13] Y. Gu, T. et. al. “Accelerating Molecular Dynamics
Simulations With Configurable Circuits,” IEE Proc. on
Computers and Digital Technology, 2006.

[14] L. Kale, et. al. “NAMD2 : Greater scalability for
parallel molecular dynamics,” J. of Comp. Physics, 151,
1999.

[15] A. R. Leach. “Molecular Modeling: Pricinples and
Applications,” Prentice Hall, 2001.

[16] S. J. Plimpton, “fast parallel algorithms for short-range
molecular dynamics,” J. of Comp. Physics, 117, 1995.

[17] K. S. Hemmert and K. D. Underwood, "An Analysis of
the Double-Precision Floating-Point FFT on FPGAs,"
Proc. IEEE FCCM, 2005.

[18] V. Kindratenko and D. Pointer, “A case study in porting
a production scientific supercomputing application to a
reconfigurable computer,” IEEE FCCM, 2006.

[19] R. Scrofano, et. al., “A Hardware/Software Approach to
Molecular Dynamics on Reconfigurable Computers,”
Proc. IEEE FCCM, 2006.

[20] M. C. Smith, et. al., “Scientific Computing Beyond
CPUs: FPGA Implementations of Common Scientific
Kernels,” 8th International MAPLD Conference, 2005.

[21] K. D. Underwood and K. S. Hemmert, “Closing the
GAP: CPU and FPGA Trends in Sustainable Floating-
Point BLAS Performance,” Proc. IEEE FCCM, 2004.

[22] “Xilinx Virtex-IV and Virtex-V Comparison”
http://www.xilinx.com/products/silicon_solutions/fpgas/
virtex/virtex5/overview/v5v4features.htm

