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Abstract

Noncontiguous I/O access is one of the main access
patterns in parallel and distributed applications. An
I/O architecture EXIO enables Globus, a popular run-
time environment for distributed computing, on RDMA
networks such as InfiniBand. In this paper, we inves-
tigate the benefits of InfiniBand zero-copy RDMA to
noncontiguous I/O on Globus. Our experimental re-
sults demonstrate that, by enabling zero-copy RDMA
on InfiniBand, EXIO significantly improves the perfor-
mance of Globus noncontiguous I/O. Compared to the
packing and unpacking, zero-copy RDMA improve the
bandwidth by up to 2.7 times. Compared to both IPoIB
and 10GigE, it increases the bandwidth by more than
three times. While achieving efficient noncontiguous
I/O, RDMA-based noncontiguous I/O on InfiniBand also
leads to dramatical reduction of CPU utilization on
Globus clients and servers.

1 Introduction

Many geographically distributed high-performance
computing systems and data centers are producing
and/or supplying large volumes of data sets. Such
data often must be transported to storage, visualization
and analysis systems that are remotely located. The
traditional approach of utilizing TCP/IP tools such as
GridFTP [22] and bbcp [2] for data movement on the
wide-area network (WAN) requires sophisticated per-
connection optimizations. Globus [9], as a popular grid-
based run-time environment, uses GridFTP that extends
FTP protocols for data movement on high-bandwidth
wide area networks. With more communication proto-
cols being integrated, an extensible Input/Output (XIO)
system has evolved as the I/O abstraction layer of

Globus. Recently, we have enabled an RDMA-based
data movement protocols EXIO [26] for the Globus run-
time system.

Non-contiguous data communication is a typical pat-
tern in scientific applications. However, the bandwidth
performance on non-contiguous data can be as low as
10% of the achievable bandwidth with contiguous data.
Thus efficient handling of these data types is desirable
to the performance of these scientific applications. Tra-
ditionally, non-contiguous data communication is han-
dled using an array of I/O vectors. For example, TCP/IP
provides a pair of vector send/receive interfaces, i.e.,
readv/writev. To put the actual data on the wire, the un-
derlying communication protocol either packs the data
into a contiguous memory region or repetitively sends
the entire data as separated contiguous fragments. Be-
cause of its importance, some cluster interconnects pro-
vide native support for non-contiguous scatter/gather
data communication. For example, Myrinet provides
scatter/gather support for its IP emulation stack in the
firmware that runs on the Myrinet Network Interface
Cards (NICs); InfiniBand supports scatter/gather in its
NIC hardware. The scatter/gather support provides mul-
tiple advantages: (a) they provide a convenient non-
contiguous data communication interface to the higher
level programming libraries, (b) they pass down more
structural information of the data to the lower-level com-
munication systems, which allows the low level to take
advantage of the best mechanisms available.

EXIO [26] is an I/O architecture that extends Globus
on RDMA networks such as InfiniBand. In this pa-
per, we investigate the benefits of InfiniBand zero-copy
RDMA to noncontiguous I/O for Globus. Our experi-
mental results demonstrate that, by enabling zero-copy
RDMA on InfiniBand, EXIO significantly improves the
performance of Globus noncontiguous I/O. Compared to
IPoIB and 10GigE, it increases the bandwidth by more



than three times. While achieving efficient noncontigu-
ous I/O, RDMA-based noncontiguous I/O on InfiniBand
also leads to dramatical reduction of CPU utilization on
Globus clients and servers.

The rest of the paper is organized as follows. We
describe the design of EXIO in Section 2. Then we de-
scribe the implementation of zero-copy noncontiguous
I/O in Section 3. Experimental results are provided in
Section 4. Section 5 discusses related work. Finally, we
conclude the paper in Section 6.

2 Extended XIO (EXIO) and Contiguous
Data Movement

EXIO is designed as an extended XIO framework
that can enable Globus on RDMA networks. Orig-
inally, Globus [9] Extensible Input/Output (XIO) [1]
maps application I/O requests to individual drivers with-
out introducing extra memory copies. However, XIO
drivers, such as TCP [1] and UDT [10, 3], make use of
legacy TCP/IP-based communication protocols, which
internally employ kernel-level memory copies. To inte-
grate RDMA for high-performance zero-copy I/O in the
Globus Toolkit, EXIO has implemented the following
capabilities: (a) extending XIO to match the communi-
cation characteristics of RDMA networks; (b) establish-
ing RDMA connections inside EXIO; and (c) managing
the progress of RDMA communication protocols. In ad-
dition to supporting RDMA networks, EXIO retains the
other drivers from its precursor XIO. Therefore, it is ca-
pable of supporting data movement on top of the legacy
TCP/IP communication protocols.

2.1 EXIO Software Architecture
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Figure 1. Software Architecture of EXIO

Figure 1 shows the software architecture of EXIO
with these extensions. EXIO is designed to work
with all RDMA networks including InfiniBand [11],

iWARP [19] and RDMAoE (RDMA over Ethernet) [21].
The RDMA driver groups functionalities of an RDMA
network into three categories: connection management,
communication progress, and data transfer.

Instead of using system file descriptors to represent
and manage network connections, such as TCP/IP sock-
ets, EXIO provides extensions to support RDMA-based
connections. It removes the existing dependence of XIO
on system file descriptors, and introduces new handles
to identify network connections based on the underlying
networks. In addition, EXIO is expanded with function-
alities to invoke different callback routines for these net-
works. For example, for events from a RDMA network,
a callback routine from the RDMA driver will be called
by EXIO to process RDMA events without EXIO know-
ing the internal details of an RDMA network. Connec-
tion management and communication progress are more
generically designed, intended to work with RDMA-
compliant [18] networks.

2.2 Contiguous Data Movement in EXIO

Based on the aforementioned design of EXIO, we
have implemented Globus on InfiniBand. This imple-
mentation is based on the Globus Toolkit version 4.1.3.
It is developed on top of the latest versions (1.3 and 1.4)
of OFED (OpenFabrics Enterprise Distribution). We
first describe the protocols for contiguous data move-
ment in EXIO.

A number of fixed-size, registered memory buffers
are allocated for data communication. InfiniBand re-
quires data communication to fall in registered memory
regions. To save the registration cost, we enable a reg-
istration cache for memory regions. The left diagram of
Figure 2 shows the transfer of a short message. From
the source memory of the sender, a short message is first
copied into a buffer and then sent across the network. At
the receiver side, it is received into a pre-posted receive
buffer. The incoming message remains in the receive
buffer, until the receiver has posted a matching receive
operation. Then the message is copied into the desti-
nation memory at the receiver. This is also called the
eager protocol because the sender does not wait for the
receiver to become ready on the destination memory.

A rendezvous protocol is designed to transfer long
messages in a zero-copy manner using RDMA write op-
erations. As shown by the right diagram of Figure 2, for
a long message (a message that is longer than a single
memory buffer), a rendezvous request (req) is sent to the
receiver. The receiver returns an acknowledgment (ack)
to the sender when it matches a receive operation with
this request. The sender then sends the long message
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Figure 2. Contiguous Data Movement of EXIO on InfiniBand

with a RDMA write operation. At the completion of
RDMA write, a done message is sent to the receiver for
the completion notification of the entire message. Ex-
cept for three control messages (req, ack, and done), the
actual data for a long message is sent without any inter-
mediate buffering through one zero-copy RDMA write
operation.

3 RDMA-based Noncontiguous I/O for
EXIO

InfiniBand supports scatter/gather in its NIC hard-
ware. It is provided in both InfiniBand channel seman-
tics and memory semantics. In the channel semantics, at
the send side, InfiniBand NIC hardware packs the seg-
ments specified in a send gather descriptor on the fly and
inject the data into the network; at the receiver side, NIC
drains the data from the network, and correspondingly
unpacks, into a list of memory segments as specified in a
receive scatter descriptor. In contrast, the scatter/gather
support available in InfiniBand memory semantics only
operates on local non-contiguous memory. As shown
in Figure 3(a), RDMA write can only gather data from
non-contiguous local memory segments and write into a
remote contiguous memory segment; On the other hand,
RDMA read, as shown in Figure 3(b), can only pull data
from a remote contiguous memory region and scatter
into non-contiguous local memory segments.

EXIO was designed with two different methods for
noncontiguous I/O. In the first method, noncontiguous
I/O was implemented through data packing and unpack-
ing, in which data segments are packed into a contigu-
ous memory region on the sender side. The packed data
are then sent over to another contiguous memory re-
gion at the receiver side, wherein they are scattered to
the list of targeted memory segments. In the second
method, EXIO takes advantage of the NIC-level sup-

port to pack/unpack non-contiguous segments on the fly.
As an initial study, our implementation makes use of
zero-copy RDMA write for Globus noncontiguous I/O.
Figure 4 shows the diagram of Globus noncontiguous
I/O using zero-copy RDMA write on InfiniBand. Since
RDMA write only gathers local segments and deliver
data into a single segment in the remote memory, we
invoke an RDMA write operation for each destination
segment. Data segments in the source memory are se-
quentially distributed into these destination segments.
These RDMA write operations are posted together and
followed by an RDMA send operation to notify the re-
mote side about the completion of data transfer.
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Figure 4. Globus Noncontiguous I/O using
Zero-copy RDMA Write

4 Performance Evaluation

Our experiments were conducted on a cluster of
nodes with 2.1 GHz 64-bit quad-core Intel Harpertown
processors. Each node is equipped with 8x PCI-Express
Gen 2.0 bus. These nodes run Linux 2.6.18 kernels.
They are equipped with Myricom 10-Gigabit Ethernet
(10GigE) cards. For InfiniBand experiments, we used
a pair of nodes that are equipped with InfiniBand QDR
(quad data rate) cards, which are connected to a Mel-
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Figure 3. InfiniBand Scatter/Gather Support in its Memory Semantics

lanox 36-port QDR switch. IB QDR has a peak band-
width of 32Gbps. The InfiniBand software stack called
OpenFabrics Enterprise Distribution (OFED), versions
1.4, was used in our experiments.

4.1 Performance Benefi ts of Zero-copy RDMA
Scatter/Gather to Noncontiguous I/O

We developed a bandwidth benchmark to measure
the performance of Globus noncontiguous I/O opera-
tions. The data-transfer bandwidth was measured when
a client (sender) sends 2000 messages to the server (re-
ceiver). Each message was divided into 16 segments,
separated by 1MB apart. In all tests, 50 initial iterations
were executed before measurements were taken.

Figure 5 shows the bandwidth of noncontiguous I/O
in EXIO on the InfiniBand network, using two differ-
ent methods as described in Section 3. Compared to
the packing/unpacking method, zero-copy RDMA im-
proves the bandwidth for noncontiguous I/O by up to
three times. Due to the high demand on memory band-
width, the packing/unpacking method was peaked at
1500 MB/sec, and then tailed off for messages bigger
than 2MB. To show the effectiveness of noncontigu-
ous I/O, we also measured the bandwidth of transfer-
ring contiguous messages of the same size. As shown
in the figure, our zero-copy noncontiguous I/O is able to
achieve the performance close to that of contiguous I/O.
Among all the message sizes, the efficiency stays above
70%, and more than 95% for large messages.

4.2 Comparisons to IPoIBand 10-GigaBit Eth-
ernet

Using the same bandwidth program, we evaluated
the performance of Globus on different networks. The
Myricom 10GigE cards were used in this experiment.
We also compared the performance of RDMA-based

noncontiguous I/O to the emulated IP implementation
IPoIB, using the default connected mode.

Figure 6 shows the bandwidth performance of non-
contiguous I/O on different networks. 10GigE cards
were enabled with interrupt coalescing for best band-
width results. IPoIB can reach a peak bandwidth of
971 MB/sec; 10GigE of 1181 MB/sec; while RDMA
improves the peak bandwidth 2906 MB/sec. For small-
and mid-range messages, RDMA-based noncontiguous
I/O performs worse than both 10GigE and IPoIB. This
is because the costs of additional processing in RDMA.

4.3 CPU Utilization

Another significant strength of RDMA is its benefit in
reducing the CPU involvement in network communica-
tion. We extended the bandwidth test with the capability
to report CPU utilization. To this purpose, we increased
the number of messages from 2000 to 100,000. This
prolonged bandwidth test does not improve the band-
width numbers much, but it allows us to measure the
CPU utilization for every message size. We recorded
the TSC (time stamp counter) before and after the mea-
surement of each message size. Then we recorded the
increment of CPU utilization during the same period.
The ratio of these two was taken as the percentage of
CPU utilization. This measurement was conducted on
both the sender side and the receiver side.

Figure 7 shows the comparison of Globus CPU uti-
lization on top of 10GigE, IPoIB and RDMA. Figures 6
can be referred to for the corresponding bandwidth num-
bers. For small messages, the receiver on 10GigE and
InfiniBand RDMA utilized 100% CPU or even higher
(due to the use of another CPU), while the sender gener-
ally used less than 100% CPU to keep the receiver busy.
In the case of IPoIB, both the sender and receiver CPUs
are not fully utilized when communicating small seg-
ments for noncontiguous I/O. As the message size in-
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Figure 5. Noncontiguous I/O with Zero-copy RDMA Scatter/Gather
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creases, the bandwidth test becomes mostly communi-
cation bound. In the cases of IPoIB and 10GigE, the net-
work is fast enough to keep the CPU busy. The receiver
side CPU is particularly saturated because of heavier
processing overhead. The sender side needs only 40%
and 60% CPU, respectively for IPoIB and 10GigE, to
keep the receiver busy. In contrast, Globus with RDMA
uses much less CPU on both the sender and the receiver
sides, while at the same time it is able to transmit non-
contiguous segments to achieve effective utilization of
the network bandwidth (c.f. 4.1).

5 Related Work

Leveraging RDMA from high speed networks for
high-performance data movement has been very popular
in various programming models and storage paradigms.
Liu et al. [14] designed RDMA-based MPI over Infini-
Band. Zhou et al. [27] studied the benefits of VIA net-
works in database storage. DeBergalis et al. [8] im-
plemented a file system DAFS on top of VIA. Imple-
mentations of PVFS [16] on top of RDMA networks
such as InfiniBand and Quadrics were described in [23]
and [24], respectively. Callaghan et al. [4] provided
an initial implementation NFS over RDMA (NFSoR-
DMA) on Solaris. An implementation of NFSoRDMA
was made available for Linux [20] systems. RDMA has
also been exploited for data movement in SCSI-based
storage protocols including efforts from academia and
industry [12, 6, 7]. Our recent work [26] complements
these efforts to enable RDMA for grid-oriented applica-
tions. This work continues our earlier effort to inves-
tigate the benefits of RDMA to noncontiguous I/O in
Globus [9].

Enabling high-performance and grid-computing ap-
plications using RDMA recently attracted a lot of in-
terests, both in terms of infrastructure deployment and
research investigation. A group of researchers from
Oak Ridge National Laboratory extensively studied the
performance of InfiniBand-based communication pro-
tocols, programming models as well as storage proto-
cols across long-distance OC192 connections on Ultra-
Science Net [5, 25, 17]. Their work revealed the strength
of InfiniBand across long distance. Narravula et al. [15]
studied the performance of different HPC middleware
across simulated long-distance InfiniBand connections.
Together, these efforts revealed the performance impact
of different network parameters and reliability configu-
rations for InfiniBand on WAN. Recently, Lai et al. [13]
designed an efficient FTP protocol for high performance
data-transfer by exploiting a communication library Ad-

vanced Data Transfer Service (ADTS) over InfiniBand.
We designed an extended I/O (EXIO) system [26] to in-
tegrate RDMA into the Globus environment [9]. In this
work, we focus on the performance of an important I/O
pattern, noncontiguous I/O.

6 Conclusions

In this paper, we examined the scatter/gather net-
working mechanisms of InfiniBand. Then we devel-
oped an initial RDMA write-based zero-copy support
for Globus noncontiguous I/O. We evaluated the ben-
efits of InfiniBand zero-copy RDMA compared to the
packing and unpacking based method, We also com-
pared the performance of noncontiguous I/O on In-
finiBand RDMA compared to the same on 10 Gigabit
Ethernet and IPoIB. Our experimental results demon-
strate that, by enabling zero-copy RDMA on InfiniBand,
EXIO significantly improves the performance of Globus
noncontiguous I/O. It improves the bandwidth by up to
2.7 times, compared to the packing/unpacking method.
The bandwidth improvement is more than three times,
compared to both IPoIB and 10GigE. While achieving
effective noncontiguous I/O, using InfiniBand RDMA
also dramatically reduces the CPU utilization on Globus
clients and servers.

In future, we plan to support Globus noncontiguous
I/O through other InfiniBand network mechanisms, such
as RDMA read/scatter and scatter/gather in the channel
semantics. In addition, when system access becomes
available, we plan to leverage long-distance RDMA net-
works, such as InfiniBand on UltraScience Net, to carry
out a comprehensive evaluation of Globus on different
networking technologies across long distances. We also
plan to study adaptive mechanisms in selecting the best
networking drivers for optimal performance on different
networks or different combinations of them.
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