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Abstract

Parallel NFS (pNFS) is touted as an emergent
standard protocol for parallel I/O access in vari-
ous storage environments. Several pNFS prototypes
have been implemented for initial validation and
protocol examination. Previous efforts have focused
on realizing the pNFS protocol to expose the best
bandwidth potential from underlying file and storage
systems. In this presentation, we provide an ini-
tial characterization of two pNFS prototype imple-
mentations, lpNFS (a Lustre-based parallel NFS im-
plementation) and spNFS (another reference imple-
mentation from Network Appliance, Inc.). We show
that both lpNFS and spNFS can faithfully achieve
the primary goal of pNFS, i.e., aggregating I/O
bandwidth from many storage servers. However,
they both face the challenge of scalable metadata
management. Particularly, the throughput of sp-
NFS metadata operations degrades significanlty with
an increasing number of data servers. Even for the
better-performing lpNFS, we discuss its architecture
and propose a direct I/O request flow protocol to
improve its performance.

1 Introduction

Since its inception in the mid-80’s, the Network
File System (NFS) [10] protocol has been ubiqui-
tously accepted as a means for file sharing across a
network of compute nodes and across many operat-
ing systems simultaneously. Parallel NFS (pNFS)
was further introduced as an extension of NFS [10]
to meet the bandwidth demands of these applica-
tions. It aims for this goal by decoupling the data
path of NFS from its control path, thereby enabling
concurrent I/O streams from many client processes

to storage servers.

Compared to existing parallel file systems such as
GPFS [11], Panasas [4], Lustre [15], and PVFS [2],
pNFS stands out as the only open standard that
is currently being developed and endorsed by many
commercial and non-profit organizations. pNFS of-
fers a number of attractive features. First, its ver-
satile layout drivers make it feasible to be built on
any existing I/O and storage protocols as has been
exemplified for PVFS [7], Panasas, and others. Sec-
ond, it provides a smooth, effortless path to migrate
and upgrade existing NFS deployments in order to
improve scalability and performance. Third, recent
efforts have shown that pNFS is a compelling tech-
nology for wide-area storage access [6]. As a result,
pNFS offers a convenient approach to datacenter-
wide file system, or a geographically-distributed file
system.

Several prototypes have been implemented for
initial validation and protocol examination of pNFS.
In particular, a prototype lpNFS [13] (Lustre-based
pNFS) is implemented to export the storage hosted
by Lustre, a common file system at various comput-
ing centers. By nature, when it acquires and exports
data blocks from the underlying file system, pNFS
implementations add processing overhead. Thus,
it is important to examine and analyze the perfor-
mance behavior of representative pNFS implemen-
tations to pinpoint possible design deficiencies and
shed light on future research and developmental di-
rections.

In this presentation, we characterize the per-
formance of two pNFS prototypes: lpNFS and
spNFS (a reference parallel NFS implementation
from Network Appliance, Inc.). Our experiments
were conducted with both sequential and paral-
lel I/O benchmarks, including data-intensive and
metadata-intensive tests. We show that lpNFS



and spNFS can realize the original goal of pNFS
and aggregate bandwidth from multiple storage de-
vices. Both of them can achieve peak read band-
width as allowed by the storage devices, while lp-
NFS provides better write performance. We also
show that lpNFS and spNFS can support data-
intensive scientific applications, such as NAS BT-
IO. However, metadata management is an impor-
tant scalability issue. The metadata performance of
spNFS degrades with an increasing number of data
servers, while lpNFS scales gracefully with more
data servers. Nonetheless, the internal Lustre meta-
data server in lpNFS still faces a known scalability
challenge in handling metadata requests from many
concurrent clients. Since Lustre is a popular file
system in large-scale computing centers, this can
prevent lpNFS from efficiently exporting the stor-
age hosted by Lustre to many concurrent clients.
To address this problem, we exam the internal pro-
tocol of lpNFS and propose an alternative design
that could improve the performance of lpNFS.

The rest of the paper is organized as follows. An
overview is provided on the software architecture of
lpNFS and spNFS in the next section. The exper-
iment results are provided in Sections 3 and 4, for
sequential and parallel I/O tests, respectively. Re-
lated work is discussed in Section 5. We then discuss
the need of a direct flow path for I/O requests in lp-
NFS in Section 6. Finally, we conclude the paper in
Section 7.

2 Prototype pNFS Implementations:
lpNFS and spNFS

In parallel NFS, a metadata server uses a control
protocol to manage data servers, while clients per-
form I/O to data servers according to the storage
protocol. Figures 1 and 2 show the software ar-
chitectures of lpNFS and spNFS, respectively. The
lpNFS prototype [13] leverages the existing Lus-
tre control protocol for managing data servers. As
shown in Figure 1, lpNFS Metadata server (MDS)
includes co-located Lustre client and MDS. When
receiving a client request, the lpNFS MDS trans-
lates the intended control and/or management op-
eration to Lustre client and Lustre MDS for execu-
tion. For the storage protocol, lpNFS avoids the use
of a Lustre-specific layout driver at its clients. This
is because such a layout driver requires a co-located
Lustre client to translate I/O requests from a pNFS
client, and limits the availability of Lustre storage

to only Lustre-capable clients. Instead, the stor-
age protocol of lpNFS uses the ubiquitous NFS file
protocol. An lpNFS data server is co-located with
a Lustre client and Lustre Object Storage Server
(OSS). They work together to complete the I/O op-
erations.

The spNFS prototype leverages as much as pos-
sible from the existing NFS code base and the local
disk file system for a reference pNFS implementa-
tion. As shown in Figure 2, the data servers are
NFS data servers with locally attached ext3 disk file
system. The main component of spNFS is its con-
trol protocol (marked as “spnfs”) that integrates all
ext3 local file systems into a parallel NFS file system
namespace.

3 Sequential I/O Benchmarks

The implementation of lpNFS is developed on
top of a pNFS source tree, Linux-2.6.25-pNFS from
linux-nfs.org, and a base Lustre release, version
1.6.5. The spNFS (simple parallel NFS) is avail-
able from linux-nfs.org. Our performance charac-
terization includes both data and metadata opera-
tions. The experiments were conducted on a clus-
ter of Clara VXB-7520J blades: each with dual In-
tel Xeon 3.4 GHz processors, 2MB cache, 800MHz
Front Side Bus (FSB), 4GB physical memory, and
a Gigabit Ethernet card connected to PCI-X 100
Mhz bus. On each Lustre OSS, a 80GB, 7200 RPM,
ATA/100 Western Digital hard disk WD800JB is
used for disk storage. All tests were conducted with
one MDS, up to 16 clients, and a varying number of
data servers.

3.1 IOzone

IOzone [1] is a popular sequential I/O benchmark
that measures a broad range of performance char-
acteristics of a file system. A varying number of
threads were used for the sequential I/O tests. IO-
zone record size was set at 16 MB. The total size
of data from all threads was chosen to be 5120 MB,
bigger than the memory size to eliminate client-side
caching effects.

Figure 3 shows the performance of IOzone with
multiple threads on lpNFS and spNFS, using 2 or
4 data servers. For reads, both lpNFS and spNFS
can reach the peak network performance of Gigabit
Ethernet. This is because the spNFS and lpNFS
servers can keep all the data in their buffer caches.
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Figure 3. Performance of IOzone

With an increasing number of threads, lpNFS per-
forms slightly better than spNFS. For writes, both
lpNFS and spNFS achieve better aggregated I/O
bandwidth with more data servers, while lpNFS
performs better than spNFS.

3.2 Fileop

Fileop is a benchmark distributed along with IO-
zone. It tests the performance of a variety meta-
data operations including file creation (create) and
removal (unlink). We measured the performance
of Fileop from a single client to lpNFS and spNFS
with a varying number of data servers. Figure 4
shows the performance of create and unlink opera-
tions. On spNFS, the throughput for both opera-
tions decreases with an increasing number of data
servers. But the metadata throughput on lpNFS
remains mostly constant. This is because spNFS
and lpNFS have different control protocols for meta-
data management. spNFS creates metadata (i.e.
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inodes) on each data server for every file. In con-
trast, lpNFS creates only one inode for each file in
the encapsulated Lustre metadata server. There-
fore, it takes longer for spNFS to create or unlink
files when there are more data servers. However, the
single meta-data server in lpNFS is still a perfor-
mance and scalability bottleneck. This is a known
scalability issue [14] for Lustre when handling re-



quests from many concurrent clients on large-scale
platforms.

4 Parallel I/O Benchmarks

4.1 IOR

We used IOR [9] to measure the performance of
parallel I/O, including concurrent I/O to separate
files or to a shared file. IOR supports a number
of different I/O interfaces, including POSIX, MPI-
IO, and HDF5 [5]. The POSIX interface of IOR
is used to measure the aggregate bandwidth from
concurrent reads or writes, using separated files. All
data were collected through 10 runs and the average
of the best five was taken as the final number. Small
deviations were observed, but not included in these
figures.

We measured the parallel I/O performance us-
ing four data servers. The data size was chosen
as 512 MB per process, and the transfer size as 16
MB. Figure 5 shows the parallel I/O performance
of lpNFS, compared to spNFS. The aggregate read
bandwidth of lpNFS and spNFS both reached 450
MB/sec, close to the aggregate link bandwidth of
four data servers. The write performance of lpNFS
is significantly better than that of spNFS. This sug-
gests that, compared to the storage hosted by reg-
ular local disk file systems, it is beneficial to export
storage from the high performance Lustre file sys-
tem to parallel clients.

4.2 NAS BT-IO

Scientific applications can have very diverse I/O
access patterns. We used the NAS BT-IO bench-
mark [12] as a representative application. We mea-
sured the performance of NAS BT-IO on lpNFS and
spNFS with four data servers. Figure 6 shows the
performance of BT-IO, classes A and B, using a
varying number of client processes. lpNFS consis-
tently performs better than spNFS for Class A and
Class B. With an increasing number of processes,
the aggregated BT-IO bandwidth decreases. This is
because, when the file size of NAS BT-IO remains
the same, more processes lead to finer-grained data
patterns. Therefore, more time is spent at the MPI-
IO layer to perform data aggregation in collective
I/O.
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5 Related Work

Multiple research efforts have investigated pNFS
over the recent years. Hildebrand et al. [3] first
demonstrated a prototype of pNFS over PVFS in
2005. Using this prototype, Hildebrand et al. [8]
also investigated how to improve the overall perfor-
mance of pNFS by enabling different I/O paths for
small and large write requests. Further efforts from
the same team demonstrated the direct-pNFS archi-
tecture using PVFS [7]. There has been continuous
interest in pNFS from a number of storage vendors:
Panasas has undertaken the task of developing an
object-based layout driver; EMC, the task of block-
based layout driver; and, Network Appliance, the
task of file-based layout driver. Some early proto-
types are already available for adventurous users. In
particular, the simple parallel NFS (spNFS) used in
this paper is developed by Network Appliance, Inc.
Our earlier work [13] provided an efficient pNFS im-
plementation on top of Lustre and supported trans-
parent pNFS clients to storage hosted by Lustre file
system. This work focuses on the characterization
of two prototype pNFS implementations and lpNFS
and spNFS. We examine the performance of both
metadata and data, and then describe an alterna-
tive design that can improve metadata access in lp-
NFS.

6 Discussion

As described earlier, there is a metadata scalabil-
ity challenge faced by the pNFS implementations.
It is very important to exam these prototype pNFS
implementations for scalable pNFS on large-scale
platforms. Particularly, we focus on lpNFS due to
its better performance and relevance to Lustre, a
widely deployed file system in leadership comput-
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ing centers.

The current design of lpNFS has an inherent de-
ficiency in handling large amount of metadata. As
shown in Figure 7, I/O requests (data and meta-
data) have to go through up to five steps before
finally completed at the storage devices. First, a
client fetches NFS file handles (FH) from the MDS.
Second, it presents the FH to an individual data
server for I/O. Third, the NFS data server uses the
FH for data access on the locally mounted Lustre file
system. Fourth, the client has to fetch and trans-
late the FH to a Lustre Object ID by interacting
with the Lustre MDS (located within lpNFS MDS).
Finally, disk I/O can take place at the data server.
Among the five, Steps 3 and 4 are purely artifacts
due to the export of an entire Lustre file system
stack from the lpNFS data server.

In view of the prolonged path for I/O handling,
we propose a direct flow path for I/O requests in
lpNFS. As shown in Figure 8, the new design com-

pletely avoids the Lustre client and the Lustre MDS
for I/O request handling at the data server. To
make that possible, the lpNFS layout operations
shall be capable of returning a file layout that con-
tains the native Lustre Object IDs (OID). With
these OIDs , an lpNFS client then presents an I/O
request (with a corresponding OID wrapped inside)
to the corresponding lpNFS data server. Using this
OID, the lpNFS data server can directly access data
blocks from Lustre OSS. This design greatly simpli-
fies the processing of lpNFS I/O operations. We are
currently in the process of implementing the pro-
posed optimization.

7 Conclusion

In this paper, we presented an initial performance
characterization of two pNFS prototype implemen-
tations, lpNFS (Lustre-based parallel NFS) and sp-
NFS (simple parallel NFS from Network Appliance,



Inc.). Our experiments were conducted with both
sequential and parallel I/O benchmarks, including
data-intensive and metadata-intensive tests. We
show that both lpNFS and spNFS can achieve peak
read bandwidth as allowed by the storage devices,
while lpNFS provides better write performance. We
also show that lpNFS and spNFS can support data-
intensive scientific applications, such as NAS BT-
IO.

However, metadata management is an important
scalability issue, for which the performance of sp-
NFS degrades with an increasing number of data
servers, while lpNFS scales gracefully with more
data servers. The internal Lustre metadata server
in lpNFS still faces a known scalability challenge in
handling metadata requests from many concurrent
clients. Based on our initial characterization and
examination of parallel NFS implementations, we
discuss how to optimize the design of lpNFS to effi-
ciently export Lustre storage to many parallel NFS
clients. We propose a direct flow path in lpNFS to
expedite the delivery of I/O requests to Lustre stor-
age servers. We are in the process of implementing
this direct flow protocol.

In the future, we plan to extend lpNFS further
with more features that are defined for pNFS, such
as client-side caching, session management, and file
delegation.
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