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Abstract—In the past few years, performance improvements
in CPUs and memory technologies have outpaced those of
storage systems. When extrapolated to the exascale, this trend
places strict limits on the amount of data that can be written
to disk for full analysis, resulting in an increased reliance on
characterizing in-memory data. Many of these characteriza-
tions are simple, but require sorted data. This paper explores
an example of this type of characterization–the identification
of quartiles and statistical outliers–and presents a performance
analysis of a distributed heterogeneous radix sort as well as an
assessment of current architectural bottlenecks.
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I. INTRODUCTION

One of the primary tools of descriptive statistics is the
median, a numeric value which separates a distribution into
upper and lower halves. When this approach to segmenting
data is expanded by adding two additional points–one at the
25th percentile and the second at the 75th percentile–the
three points are known as quartiles. More specifically, these
two new points are known as the lower and upper quartiles,
respectively.

Quartiles capture fundamental information about a
dataset’s distribution that complements other traditional met-
rics like the mean, mode, and standard deviation. Their use
in data analytics has become widespread and is particularly
evident in non-parametric characterizations of data such as
the famous Bowley five-number (i.e. quartiles, minimum,
maximum) and seven-number (first and last deciles) sum-
maries. However, most will be familiar with quartiles from
the ubiquitous Tukey boxplot, a well-known visualization
in quantitative analysis, e.g. Figure 1, used primarily for
comparing distributions across multiple data sets.

The second major feature of the boxplot is the outlier,
any data point that markedly deviates from the others.
In a quantitative sense, outliers are usually defined as
points which lie more than 1.5x the interquartile range (the
difference between upper and lower quartiles) below the
lower quartile or above the upper quartile. This traditional
definition is adopted in this work. More practically, outliers
often represent an interesting observation or erroneous result.

In this sense, quartiles and outliers provide one avenue for
understanding and summarizing large datasets.

An important motivating application for this work is
understanding data at the exascale, where it is anticipated
that the amount of data produced by simulations will far
exceed the bandwidth to long-term storage [1]. Instead of
saving an entire dataset, it may be feasible for an application
to only store descriptive information such as the five-number
summary and outliers. Or, more advanced techniques could
store an adaptive sample informed by these properties. In
particular, this work targets data being produced by a parallel
scientific application. The analysis focuses on problem sizes
that are much larger than the memory of a single node. Also,
the initial data is assumed to be resident in memory (i.e. just
calculated), but distributed among many nodes.

Traditionally, this class of problems has not received as
much attention as those that cannot fit into memory (dubbed
external sorting and well covered by the database literature)
or those that can fit into the memory of a single processor,
which has been exhaustively covered by the architectural
community.

A. Identification of Quartiles and Outliers

Several algorithms exist for the identification of quartiles
and outliers, and these algorithms are sometimes embedded
in other analyses such as histogramming. However, in many
cases, data is first sorted to identify quartiles (and as a pre-
processing step for further analysis). One notable exception
is Tarjan’s median-of-medians algorithm [2], although this
approach tends to be less efficient when performing multiple
analyses since each quartile must be found serially.

Sorting is one of the most studied algorithms in computer
science, and a well-tuned sorting implementation can be
leveraged to efficiently calculate quartiles and outliers. In
this approach, depicted in Figure 1, the high level algorithm
becomes:

1) Sort the data
2) Calculate the quartiles (Q1, Q2, Q3) based on the

number of observations. In cases where there is an
even number of points (e.g. Figure 1), the quartile is
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Figure 1. An example of the basic algorithm is shown on the left. First, data is sorted. The quartiles are then identified based on their position in the
sorted dataset. The quartiles for this example are 1.5, 3, and 9.5 (the average between the two relevant points is used when there are an even number of
samples). Finally, a parallel binary search is performed from the quartiles to the end of the dataset to identify outliers. Results for this dataset are shown
in an example boxplot on the right, with one outlier (19). Whiskers (at 1 and 15) indicate the minimum and maximum observations among non-outliers.

defined as the arithmetic mean between the two most
central observations.

3) Calculate the interquartile range by subtracting the
lower quartile from the upper quartile, Riq = Q3−Q1.

4) Perform a binary search between the lowest observa-
tion and the lower quartile for the greatest element that
is sufficiently less (1.5Riq) than the lower quartile.
This and all lower elements are outliers.

5) Repeat step four on the upper portion of the data,
finding elements which are sufficiently greater than
the upper quartile.

Sorting, then, is the dominant component of the algorithm.
Steps 2 and 3 are accomplished in constant time, and the two
binary searches can be performed in parallel. Binary search
is bounded at O(logn), although each search only covers
one fourth of the data.

B. Sorting Primitives

While a full review of sorting is beyond the scope of
this paper, we briefly note that Leischner recently ana-
lyzed the performance of sample sort on a single graphics
processor [3], documenting the fastest known in-memory,
comparison-based sorting. Merill et al. improves upon this
result for some data types by using a radix sort [4]. A
radix sort is a specific type of distribution sort that exploits
the binary representation of data to sort in O(n) time. Our
distributed approach exploits the fast GPU parallel primitives
identified by Merrill (e.g. reduce, prefix sum) involved in
radix sort and extends them to a distributed environment.

II. APPROACH

Before presenting the approach in detail, it is important
to note several constraining assumptions. This work is
primarily concered with performance phenomena due to
heterogeneity and data is assumed to be resident in GPU
memory (that is, just calculated by the accelerated portion
of a scientific application). Therefore, complexity arising
from I/O, a common bottleneck for sorting large data, is
not considered. For the state-of-the-art in external sorting,
we refer the reader to Triton Sort, the winner of the 2011
Sort Benchmark competition [5]. Second, individual nodes
are assumed to begin with the same number of keys. This
is a common scenario based on the motivating example of
a scientific simulation, and, in any case, work can be easily
re-balanced in our approach during the first key exchange.

A. Distributed Sorting Algorithm

Radix sort is an iterative process which repeatedly par-
titions data, or keys, in a stable fashion, r bits at a time.
These bits are known as a digit or radix and r is known as
the radix width. r is usually fixed, and, given an input of
n k-bit keys and values, radix sort will require k

r passes.
We consider the parallel case with a number of processors,
p. p is, more specifically, the number of shared memory
processing domains (in our case, a GPU and CPU core).
The proposed algorithm is a reasonable extension of serial
radix sort and uses an explicit counting method.



Algorithm 1: LSB Distributed Radix Sort

For each r-bit digit, starting with the least significant:

1) On each processor, compute a local histogram, HLocal,
which counts the occurrences of each of the 2r possi-
ble values of the current digit.

2) Perform a global, exclusive scan across all ranks’
histograms to compute HPriorRank. For each i (where
0 ≤ i < 2r), HPriorRank[i] now contains the number
of occurrences of keys with digit value i on all “lower”
ranks.

3) On the highest rank GPU, perform a local exclusive
scan on HLocal+HPriorRank to compute HPriorDigit.
HPriorDigit[i] now contains the number of occur-
rences of all keys with digit value less than i across
all ranks.

4) Broadcast HPriorDigit to all ranks. Within each rank,
HPriorRank[i] + HPriorDigit[i] is now the global
position where that rank will start placing any keys
with digit value i.

5) As each rank may have more than one key containing
digit value i, we locally calculate CDigit, an accu-
mulating count of the local occurrences of keys with
value i.

6) Explicitly calculate each key’s final global position.
For the jth key, whose digit value is i, its destination
position is HPriorRank[i]+HPriorDigit[i]+CDigit[j].

7) Perform a global key exchange and a local sort to
place each key in its calculated final position.

Distributed sorting algorithms tend to be replete with
tradeoffs, and radix sort is no exception. This variant has
some extremely desirable properties, including the linear
O(n) asymptotic bound for work, provided r is fixed.
This approach also exhibits a high degree of parallelism–
each key can be processed in a data parallel fashion, and
synchronization among processors is only required for scans
during the indexing computation and the key exchange. The
depth of each pass is also fixed, with a log2

n
p term for the

local histogramming, log2n for the global scan, log2p to
scan process totals, and finally, a constant depth of one for
the exchange itself.

Furthermore, the choice of the radix width provides an
important “knob” to decrease the number of passes. In effect,
this decreases total depth, increases arithmetic intensity,
and decreases communication among processors. The major
drawback to distributed radix sorting is its high requirements
for bandwidth–both for memory and for the interconnect. In
each pass, keys must be read from memory once and, in the
worst case, may move globally in each iteration (although
this is data dependent). Depending on the width of the
key and radix, this could result in substantially more data
movement than a comparison-based method such as merge
sort or sample sort.
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Figure 2. The full sorting algorithm. This example shows the steps in
sorting twelve four-bit keys distributed among three GPUs using a radix
width of two bits per digit. Due to the given radix width, local storage
for each histogram array will be four (2r) entries, and two passes ( 4

r
) are

will be required for four-bit keys. Note that in this figure, the second pass
condenses steps 1-4 to conserve space. A detailed description of each step
enumerated in this figure is in Algorithm 1.



And, as the disparity between CPU throughput and mem-
ory bandwidth increases, these data movement constants
play an increasing role in the actual runtime of sorting
alorithms. Indeed, Satish et al. make projections that, for
some key/radix configurations, radix sort should be aban-
doned in favor of merge sort [6] for the foreseeable future
for single node sorting. It remains to be seen, however, if
radix’s sort guaranteed (but high) bandwidth requirements
will be preferable over the decreased parallelism of merge
sort at the exascale. In other words, for large enough n, the
merges used by comparison-based methods may have similar
bandwidth requirements to radix sort.

B. IQR Computation and Outlier Identification

Compared to sorting, the requirements for interquartile
range computation and outlier identification are quite low.
Once data has been sorted, quartiles and the IQR can be
computed in constant time and then broadcasted to all
processors, adding roughly logp steps to the total depth.
Following the broadcast, both binary searches can be done
in parallel. Since the binary searches contain both task-level
and data-level parallelism, the depth of the entire algorithm
is increased by only log2

n
4p .

III. EVALUATION

We evaluate the performance of the proposed approach
for quartile detection on the NSF Track2D Keeneland Sys-
tem [7], a heterogeneous cluster comprising Intel West-
mere CPUs and NVIDIA Fermi GPUs. More details of
Keeneland’s configuration are available in Table I. The pro-
totype implementation is written in Thrust, a C++ template
library for productive GPU programming similar to the
Standard Template Library, and MPI. The implementation
operates on 64-bit key-value pairs and and takes the radix
with, r, as a parameter. Results are presented using Thrust
1.3.0, CUDA 3.2, and MVAPICH2 1.6rc2 running in CentOS
5.5. Our evaluation aims to characterize effects from data
movement and identify current architectural bottlenecks.
Since the sorting step strongly dominates runtime (and may
be of wider interest to the community), we provide its
analysis first.

A. Experimental Platform: Keeneland

Figure 3 shows the Hewlett Packard SL390, the architec-
ture for a Keeneland node. This dual socket system based on
Intel Westmere processors features a dual I/O hub design,
which provides a full sixteen lane PCIe 2.0 connection
to three NVIDIA Tesla M2070 GPUs (codenamed Fermi).
Keeneland nodes are connected using single-rail QDR Infini-
band, in a fat-tree topology. Theoretical peak unidirectional
bandwidths for each of the SL390’s datapaths are shown in
Figure 3.

Node Architecture HP SL390
CPU Intel Xeon X5660 (Westmere)
CPU Frequency 2.80 Ghz
CPU cores per node 12
Host memory per node 24 GB
GPU Architecture NVIDIA Tesla M2070 (Fermi)
GPUs per node 3
GPU memory per node 18 GB (6GB per GPU)
CPU/GPU ratio 2:3
Interconnect InfiniBand QDR (Single rail)
Total Number of Nodes 120
Total CPU Cores 1440
Total GPU Cores 161,280

Table I
KEENELAND HARDWARE DETAILS

Figure 3. Block Diagram of HP SL390–An example of a dual-IOH
system. Numbers indicate the peak theoretical unidirectional bandwidth of
the system’s datapaths in gigabytes per second.

B. Implementation Details

1) Local Histogramming and Scanning: Due to the well-
characterized speedups for scan and radix sort within a
single GPU [8], [9], the prototype implementation relies
heavily on these operations, which are built into Thrust.
First, a bitmask is applied to the keys to select only the
relevant bits for the current pass. Then, using only these bits
as a key, key-value pairs are sorted within a node. Then, the
local histogram is computed with Thrust’s vectorized binary
search. This approach has the advantage of appropriately re-
ordering the keys for a specialized all-to-all communication,
which is used in the key exchange.

2) Key Exchange: Perhaps the most flexible portion of
the sorting algorithm is the global key exchange. Due to
the explicit nature of the index calculation, each processor
contains information on how many keys it will send, the
corresponding destinations, and how many it will receive
(but not which processor will send them). Since radix sort
is not an in-place algorithm, one has several options for
implementing the exchange including: many point-to-point
messages, three all-to-all collective operations (counts, keys,
values), or numerous one-sided puts. The optimal choice is
highly dependent on the MPI implementation, the network
topology, and the interconnect hardware itself, and a detailed
exploration of this space is an opportunity for future work
when more GPU-based clusters are available for testing. The
prototype implementation uses the all-to-all based scheme.



3) Division of Work Between CPU and GPU: Another
key aspect of the design of our implementation is the
division of work between the CPU and GPU. For most of
the subtasks, including histogramming, scanning, and local
sorting, the GPU is faster. Indeed, the CPU was left with
only three major tasks: MPI communication in the indexing
calculation, MPI communication in the key exchange, and all
computation to prepare for those exchanges (MPI specialized
all-to-all required two prefix sums for offset calculation).
It should also be noted that our approach presents an
opportunity to overlap communication and computation. In
particular, the MPI indexing calculation (and associated CPU
scanning) is overlapped with the asynchronous copy of
the keys and values back from the GPU (just before the
exchange).

C. Results

Our analysis aims to address the following questions:
• What is the relative importance of computation versus

data movement? What data movement steps account for
most of the runtime?

• How does the performance vary with problem size scal-
ing, different data distributions, and parameter settings
(radix width)?

• How does performance compare with sorting within a
single GPU?

• How does performance scale when more nodes are
added?

1) Computation vs. Communication: In order to un-
derstand how the ratio of computation to communication
changes across problem sizes, the prototype implementation
was instrumented with timing code to report the running
time spent in each of the components of the algorithm.
Results are shown in Figure 4 for two standard distribu-
tions of sixty-four bit key-value pairs: already sorted data
(sequential) and random data with a uniform distribution.
This experiment involves varying the problem size (keys and
values) using a fixed processs count of twenty four (eight
Keeneland nodes).

MPI communication ranges between 26%-30% of run-
time. When including PCIe transfer time, data movement
between ranks only accounts for up to 40% of total runtime.
In relative terms, MPI strongly dominates PCIe transfer, by
a factor of at least two for all problem sizes and both data
distributions.

2) Problem Size Scaling and Data Distribution: Figure 4
also confirms the expected linear relationship between prob-
lem size and runtime. It provides insight into the relative
insignificance of the global indexing calculation and CPU
computations, at least for small node counts.

Averaged over one hundred random trials, already sorted
data performs worse than random data with a uniform distri-
bution; since the radix width is smaller than the key length,
already sorted data is guaranteed to require passes which will

perform full scatters, leading to the greatest MPI all-to-all
times. Still, runtime for the two data distributions was fairly
consistent, with the largest disparity at any problem size
of roughly 5% of runtime, resultant from varying MPI all-
to-all performance. This amount of variation is in line with
expectation–kernels are expected to be essentially consistent,
but MPI all-to-all time should vary slightly based on data
distribution. In other words, depending on the data, keys
may or may not move between nodes during the exchange.

3) Radix Width: The theoretical analysis asserted that
changing the radix width provides an important mechanism
for increasing arithmetic intensity and decreasing data trans-
fer by controlling the number of passes. In this study, we
focus on sixty-four bit data, given that is the precision used
by most scientific applications. As the radix width increases,
the number of passes decreases, leading to a reduction
in PCIe, MPI, and kernel time due to decreased memory
requirements (in the worst case, keys traverse GPU global
memory, a PCIe link, and an MPI link in each pass). This
decrease is depicted in Figure 5. On the other hand, the
size of the histogram increases exponentially, making radix
widths greater than sixteen impractical.

4) Strong Scaling: In the next scaling experiment, par-
allel efficiency was measured in a strong scaling scenario,
shown in Figure 6 for a 1 GiB problem of already sorted
data. As expected, efficiency drops dramatically when data
must be moved off node (greater than three processes), but
then levels off at around 60%.

However, it must be noted that this measurement includes
PCIe transfer during each pass for the single process result,
which is not strictly necessary. While this makes it easier
to understand scaling behavior (in terms of the interconnect
performance), it understates the penalty for using more than
one GPU. In fact, compared to Merrill’s optimized radix sort
(kernel only), the overheads of the parallel version result in
18x slower performance when run on one GPU. This penalty
due to PCIe transfer and other overheads makes a distributed
approach unreasonable for problem sizes which can fit inside
the memory of a single GPU.

5) Weak Scaling: Next, we examine the performance
behavior in a typical weak scaling experiment to evaluate
scalability (e.g., at what concurrency level overhead domi-
nates and collective communication time reaches parity with
computation). For this experiment, depicted in Figure 7, we
use sixty-four bit key-value pairs, with a sixteen bit radix
width (r = 16), and choose the already sorted distribution
for input since it stressed the interconnect more than the
random distribution in the previous experiment.

As the number of processes increases from 12 to 96, the
total exchange time gradually increases from 1.74 to 2.12
seconds, with all MPI communication spanning 36% to 41%
of total runtime. Each additional node (or 3 GPUs) adds
roughly eight milliseconds to the exchange at low concur-
rency levels, dropping to approximately three milliseconds



Figure 4. This figure displays total runtime for varying problem sizes, broken down by category. GPU and CPU indicate kernel computation time and
others identify communication or data movement. MPI atoa refers to the three collective operations during the key exchange and MPI idx refers to all
broadcasting and global scanning operations. All measurements use eight Keeneland nodes (24 GPUs) with a radix width of sixteen bits.

Figure 5. This figure captures the effect of changing the radix width. Runtime decreases substantially as radix width is increased. Widths beyond sixteen
bits become impractical due to histogram size. Results shown on eight Keeneland nodes with 2GB problem size (256 MB per node).

within the higher concurrency levels we reached. We expect
scaling to large node counts should present no performance
obstacles, though of course further study would be required
when considering more extreme concurrency levels.

D. Other Operations

Note that in Algorithm 1, the only other operations which
require more than constant time are a global broadcast of the
interquartile range and parallel binary search for outliers.
And, despite their nontrivial logn and logp bounds, these
two kernels represent only a fractional amount of the total
runtime, on the order of .01%. For both these operations, our
implementation relies on the optimized versions included in
Mvapich2 and Thrust.

E. Architectural Bottlenecks

As mentioned in Section III-C4, the performance we
observed on a single GPU, after adding the pieces necessary
to enable a distributed algorithm, was 18x slower than
the heavily optimized single-GPU Thrust implementation.
This is a sobering reality, and it highlights the bottlenecks
we encounter in developing algorithms for heterogeneous
systems. In this case, some work which could previously
be combined into a single pass was separated into multiple
kernel calls. This introduces overheads: first from the mere
fact that we are launching more kernels, and second because
some bookkeeping calculations must be repeated in each
phase.

The PCIe transfers in between these kernel invocations
add further overheads. In the case of an architecture like
Keeneland, and in particular systems with multiple CPU



Figure 6. Parallel efficiency drops abruptly when moving off node (> 3 processes), then levels out around 60%. Results shown for strong scaling with a
1 GiB problem using 64-bit key/value pairs. This drop illustrates the performance penalty of off-node communication.

Figure 7. This figure depicts results from a weak scaling experiment using 512MB of 64-bit key/value pairs per GPU. While PCIe transfer and compute
times remain fairly constant, time spent in the key exchange (MPI atoa) rises from 1.74 to 2.12 seconds.

sockets and I/O hubs, we observe an additional complexity
where the PCIe bus comes into play: non-uniform memory
access, or NUMA. As seen in Figure 3, the bandwidth and
number of hops differs among choices of CPU and GPU;
therefore, one must choose a CPU affinity for the host tasks
assigned to each GPU carefully. [10] Here, the difference
between a poor choice and proper choice of affinity was a
performance penalty of approximately 12%.

IV. RELATED WORK

Sorting algorithms capable of running on distributed
memory parallel computers have been explored for some
time. Examples include bitonic sort [11], [12], [13], dis-
tribution sort [14], and radix sort [15]. Similarly, some of
these have been developed for graphics processors, namely
bitonic [16], radix [4], sample [3], and hybrid combina-

tions [17], [18]. While these GPU-based algorithms are
inherently data-parallel due to the nature of the GPU ar-
chitecture, most of these algorithms are limited to graphics
processors shared by a single shared-memory host system, or
more often just one GPU, and have not explored the com-
bination of data-level and distributed memory parallelism
required for large-scale heterogeneous systems.

V. CONCLUSION

As we move to an era where analysis techniques become
increasingly necessary as an aid to data reduction, and as
the machines supporting these calculations become more
heterogeneous, reevaluating these techniques is crucial. In
this paper, we present an extension of a fast GPU-based
in-memory sorting algorithm to a distributed heterogeneous
system and analyze its performance. We conclude that



significant sacrifices in performance must be made to enable
distributed support as long as fast GPU memory is disparate
from main memory and lies across a PCI-Express bus.
However, once these overheads are paid, the approach allows
applications to continue to scale up large datasets despite
limited bandwidth to stable storage.

VI. SOURCE CODE

Source code for the distributed radix sort is open source
and available at http://bitbucket.org/kyle spafford/radix sort
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