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ABSTRACT
Scalable heterogeneous computing systems, which are com-
posed of a mix of compute devices, such as commodity mul-
ticore processors, graphics processors, reconfigurable proces-
sors, and others, are gaining attention as one approach to
continuing performance improvement while managing the
new challenge of energy efficiency. As these systems become
more common, it is important to be able to compare and
contrast architectural designs and programming systems in a
fair and open forum. To this end, we have designed the Scal-
able HeterOgeneous Computing benchmark suite (SHOC).
SHOC’s initial focus is on systems containing graphics pro-
cessing units (GPUs) and multi-core processors, and on the
new OpenCL programming standard. SHOC is a spectrum
of programs that test the performance and stability of these
scalable heterogeneous computing systems. At the lowest
level, SHOC uses microbenchmarks to assess architectural
features of the system. At higher levels, SHOC uses appli-
cation kernels to determine system-wide performance includ-
ing many system features such as intranode and internode
communication among devices. SHOC includes benchmark
implementations in both OpenCL and CUDA in order to
provide a comparison of these programming models.

Categories and Subject Descriptors
B.8.0 [Hardware]: Performance and Reliability
General; C.1.3 [Computer Systems Organization]: Het-
erogeneous Systems

General Terms
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1. INTRODUCTION
Graphics processing units (GPUs) first appeared in com-

puters as specialized devices used to offload simple render-
ing operations from the central microprocessor. Over the
years, GPUs have increased in performance, architectural
complexity, and programmability, inching closer towards a
general purpose computing device. In fact, vendors have
facilitated this trend for general purpose computation on
GPUs (GPGPU) by including both programmable stages
and higher precision arithmetic in the GPU’s rendering
pipelines. Modern GPUs are becoming a possible platform
for accelerating scientific applications while recognizing the
challenges of energy-efficiency.

Clusters of heterogeneous architectures based on GPUs
starting to appear in the TOP500 [5] list of the most pow-
erful available computers in the world, and this trend is
expected to continue due to their potential for improved
energy-efficiency. More importantly, these scalable hetero-
geneous systems will place different demands on the node
architecture than a stand-alone graphics system. In partic-
ular, the node design will have to effectively support intra-
node and internode communication: communication with
the GPUs, communication with peer nodes through MPI,
and IO to a disk. Aside from the Linpack benchmark in
TOP500, there are few (if any) accepted benchmark suites
that allow the community to characterize and compare the
architectures and programming environments for these scal-
able heterogeneous systems.

In this paper, we introduce SHOC: a suite of benchmarks
for heterogeneous computing platforms designed to fulfill
these requirements. To demonstrate the applicability of
SHOC, we present results from an extensive set of commer-
cially available graphic cards from both NVIDIA and AMD,
as well as some of the current CPU architectures. We also
highlight the differences across these devices based on the
performance achieved in several SHOC benchmarks. Addi-
tionally, we also compare and discuss the performance dif-
ferences observed between the relatively new OpenCL and
equivalent CUDA implementations of some of the bench-
marks.

1.1 Programming Systems
Programming systems for contemporary heterogeneous ar-

chitectures remains a quickly evolving field. NVIDIA’s
CUDA dramatically improved the programmability of GPUs
for non-graphics applications. OpenCL was ratified only re-



cently in order to provide a portable interface to software
and applications developers.

1.1.1 OpenCL
In December 2008, the Khronos Group introduced

OpenCL [12], an open standard for parallel computing on
heterogeneous platforms. OpenCL specifies a language,
based on C99, that allows a programmer to write parallel
functions called kernels which can execute on any device
with a supporting OpenCL implementation. OpenCL’s ini-
tial specification is oriented towards multi-core processors,
GPUs, FPGAs, and IBM Cell.

The most salient difference between these devices and tra-
ditional CPU architectures is parallelism. OpenCL is pri-
marily focused on fine-grained data parallelism, but also
provides support for task parallelism. In OpenCL, parallel
kernels, functions which execute on the device, are divided
into thousands of work items, which are organized into local
work groups. For example, in matrix multiplication, a single
work item might calculate one entry in the solution matrix,
and a local work group might calculate a sub-matrix of the
solution matrix.

Another key feature of heterogeneous systems is the mem-
ory hierarchy, which can be radically different than a tradi-
tional cache architecture. OpenCL provides a set of abstrac-
tions for device memory hierarchies and an API for control-
ling memory allocation and data transfer. Device memory is
divided into several distinct address spaces including global,
local, constant, and image memory. In order to achieve high
performance, the programmer must meticulously specify the
location of each piece of data.

OpenCL also provides a rich API for device interroga-
tion. At run time, programs can query information about
how many devices are available and the computational ca-
pabilities of those devices including available computational
units, memory and cache sizes, clock speeds, and support
for extensions to the OpenCL baseline specification such as
support for double precision floating point operations.

1.1.2 CUDA
In addition to OpenCL, SHOC contains version of each

benchmark in Compute Unified Device Architecture
(CUDA). CUDA is NVIDIA’s C-like language environment
for programming GPUs and is currently the most popular
environment for GPGPU.

CUDA is quite similar to OpenCL in many respects. They
both focus on massively data-parallel kernels, which use tens
of thousands of threads (or local work items in OpenCL)
organized into a grid of thread blocks (or local groups).
Also, they both abstract device memory hierarchies into
several different address spaces. However, CUDA only sup-
ports NVIDIA GPUs, while OpenCL implementations al-
ready support GPUs from NVIDIA and ATI, as well as
multi-core CPUs.

2. RELATED WORK
Previous work on benchmarking GPUs has largely been

targeted toward video game enthusiasts. Measuring the
frames per second (FPS) achieved by computationally de-
manding games such as Crysis [2] has been a common way
to benchmark and compare GPUs. In addition to game
performance, GPUs have also been compared using propri-
etary GPU benchmarking software such as Rightmark [3]

and 3DMark [1] designed to determine the DirectX perfor-
mance of graphics cards.

In terms of benchmarking GPUs as general purpose high
performance computation engines, most previous work has
been focused on NVIDIA GPUs using CUDA. First, Accel-
ereyes has released GBench, a small set of benchmarks based
on their Jacket product, which provides automatic CUDA-
based acceleration of Matlab applications [7]. GBench is
useful for comparing CPU and GPU performance for sev-
eral common Matlab operations. Volkov and Demmel have
also benchmarked NVIDIA GPUs using CUDA [13], with
a primary focus on performance for linear algebra. Their
study also includes a detailed characterization of the GPU
memory system. Parboil [4] and Rodinia [8] are GPU bench-
marks comprised of scientific applications and kernels. They
are both written in CUDA and are aimed toward under-
standing the behavior of scientific applications on GPUs.

SHOC is distinct from these works primarily because it
is designed to be a truly scalable suite of benchmarks–one
with the capability to test large clusters and large numbers
of devices. All of the above mentioned GPU benchmarks are
serial in nature and only test a single device. Furthermore,
SHOC tests more than just performance. It also includes
tests for system stability and contention of system resources,
SHOC is also aimed at a scientific user base, includes sup-
port for the platform-independent OpenCL standard, and
its benchmarks were chosen to be representative of real sci-
entific applications.

3. OVERVIEW
The SHOC benchmark suite was designed to provide a

standardized way to measure the performance and stabil-
ity of non-traditional high performance computing architec-
tures. SHOC benchmarks are distributed using MPI and
effectively scale from a single device to a large cluster.

The SHOC benchmarks are divided into two primary cat-
egories: stress tests and performance tests. The stress tests
use computationally demanding kernels to identify OpenCL
devices with bad memory, insufficient cooling, or other de-
vice component problems. The other tests measure many
aspects of system performance on several synthetic kernels
as well as common parallel operations and algorithms. The
performance tests are further subdivided according to their
complexity and the nature of the device capability they ex-
ercise.

In general, each benchmark has several versions:

• Serial Serial versions of the benchmarks execute on a
single node and use only one device.

• Embarrassingly Parallel (EP) EP benchmarks ex-
ecute tests on multiple devices or nodes of a cluster,
but do not involve any communication between devices
or nodes.

• True Parallel (TP) TP benchmarks measure multi-
ple nodes, with one or more devices per node, including
all communication. These algorithms are decomposed
among the parallel tasks and may include CPU com-
putation time.

In addition to OpenCL-based benchmarks, SHOC also
includes a Compute Unified Device Architecture (CUDA)
version of many of its benchmarks for comparison with the



OpenCL version. As both languages support largely the
same constructs, kernels have been optimized the same for
each language. Furthermore, while OpenCL does support
CPU devices, the language itself is designed for devices such
as GPUs, and so usage of exposed constructs such as local
programmer-managed memory may naturally better exploit
GPU-like devices than standard CPUs.

3.1 Level Zero
Level Zero tests are designed to measure low level hard-

ware characteristics (the so called “feeds and speeds”). All
Level Zero tests use artificial kernels, and results from these
benchmarks represent an empirical upper bound on realized
performance. As these are designed for consistency, they
can be used not just as a comparative performance mea-
sure, but can also detect a variety of issues, such as lower
than expected peak performance, chipsets with only eight
PCI-Express (PCIe) lanes, or systems with large variations
in kernel queueing delays.

• Bus Speed Download and Readback Measures the
bandwidth of the interconnection bus between the host
processor and the OpenCL device (typically the PCIe
bus) by repeatedly transferring data of various sizes to
and from the device.

• Device Memory Bandwidth Measures bandwidth
for all device memory address spaces, including global,
local, constant, and image memories. The global ad-
dress space is benchmarked using both coalesced and
uncoalesced memory accesses. In all cases, each thread
generates 16 independent memory requests.

• Kernel Compilation OpenCL kernels are compiled
at runtime, and this benchmark measures average com-
pilation speed and overheads for kernels of varying
complexity.

• Peak FLOPS Measures peak floating point (single or
double precision) operations per second using a syn-
thetic workload designed to fully exercise device func-
tional units. Floating point execution rates are com-
puted for different synthetic mixes of arithmetic op-
erations, such as 1) only additions; 2) only multipli-
cations; 3) an equal number of multiplications and
additions; 4) a mix consisting of multiplications and
additions in a ratio of 2 to 1.

• Queueing Delay Measures the overhead of launching
a kernel in OpenCL’s queueing system.

• Resource Contention Measures contention on the
PCIe bus between OpenCL data transfers and MPI
message passing.

3.2 Level One
Level One benchmarks measure basic parallel algorithms,

such as the Fast Fourier Transform (FFT) or the parallel pre-
fix sum (a.k.a. scan)[11]. These algorithms represent com-
mon tasks in parallel processing and are commonly found in
a significant portion of the kernels of real applications.

These algorithms vary significantly in performance char-
acteristics, and Figure 1 provides an illustration of their rel-
ative stress on a device’s memory subsystem and functional
units. Several of the benchmarks are highly configurable and

can span a range of the spectrum based on problem size or
other input parameters.

• FFT Measures the performance of a two dimensional
Fast Fourier Transform. The benchmark computes
multiple FFTs of size 512 in parallel. The FFT im-
plementation is based on the algorithm described by
Volkov and Kazian [14].

• MD Measures the speed of a simple pairwise calcu-
lation of the Lennard-Jones potential from molecular
dynamics. Each thread computes the acceleration for
one particle based on the potential field generated by
all particles into a cutoff area. The kernel uses coa-
lesced global memory accesses.

• Reduction Measures the performance of a sum re-
duction operation using single precision floating point
data. The kernel performs first a partial reduction on
a global input data array saving the partial results to
the local shared memory. Next, a reduction is com-
puted over the local data array and the result is saved
into a global output memory array.

• Scan Measures the performance of the parallel prefix
sum algorithm (also known as Scan) on a large array
of floating point data.

• SGEMM This benchmark measures device perfor-
mance on an OpenCL version of the single precision
general matrix multiply (SGEMM) BLAS routine.

• Sort Measures device performance for a very fast radix
sort algorithm [10] which sorts key-value pairs of single
precision floating point data.

• Stencil2D Measures performance for a standard two-
dimensional nine point stencil calculation. First, each
thread group copies their piece of the data from global
memory to local shared memory, including an addi-
tional one element ghosting area for the group. Each
thread computes the stencil for one matrix element ac-
cessing only data in the local memory.

• Triad An OpenCL version of the STREAM Triad
benchmark [9], which measures sustainable memory
bandwidth for a large vector dot product operation
on single precision floating point data. The bench-
mark uses a block-pipelined implementation to par-
tially overlap the cost of the dot computation with the
transfer of data from the host memory to the device
and back.

3.3 Stability Test
The purpose of the stability test is to provide a mech-

anism for ensuring that device hardware is operating cor-
rectly. Because some OpenCL device memory, especially
GPU memory, has historically lacked error correcting mech-
anisms, there is a particular need to ensure that the devices
produce valid results.

The basic notion is to run a computationally intensive
kernel for a sufficiently long period of time to permit the
occurrence of overheating and other transient effects, and
periodically check to ensure that computation has been per-
formed correctly.



Figure 1: This figure characterizes the L1 benchmarks’ relative stress on an OpenCL device’s memory subsys-
tem and functional units. Several of the benchmarks can vary their performance requirements significantly
based on problem size or other input parameters.

A signature feature of our stability test is that it divides
device memory in half1, and then performs the exact same
computation on the two halves of memory. This allows the
consistency check to be performed by the OpenCL device,
on data that resides in the device memory. This is preferable
to the alternative in which the host processor performs the
consistency check, as a CPU-based check would allowing the
device time to cool while data is transferred and the test is
performed.

Another feature of the stability test is its utilization of an
invertible kernel. Alternately executing the kernel and its
inverse reduces the need for data transfer during the test,
while eliminating concerns about overflow of data values.
The test potentially works with any kernel that can be in-
verted; however, we have found empirically that the FFT
proves more effective than other kernels (e.g. DGEMM),
at finding intentionally induced errors resulting from over-
clocking the GPU and/or its associated memory, in part as
it is less susceptible to underflow hiding errors. This is con-
sistent with the highly regarded “torture test” included with
the Great Internet Mersenne Prime Search (GIMPS, a.k.a.,
Prime95) package [6], used by many in the enthusiast com-
munity to test overclocked hardware, which is also based on
the FFT and its inverse.

The algorithm for the parallel version of the test, which
enables testing of an entire GPU cluster at the same time,
is as follows. Each participating node first allocates its
data, while node zero additionally determines start and fin-
ish times based on a user input parameter. All nodes then
enter the outermost loop, copying fresh data from the CPU
before entering the core of the test. In the core, each node
performs a loop consisting of the forward kernel, a potential
check, and then the inverse kernel. After performing a con-
figurable number of forward/inverse iterations, along with a
configurable number of checks, each node sends the number
of failures it encountered to node zero. Node zero collects
and reports the error counts, determines whether the test

1In practice, it is not possible to allocate all of GPU memory
as some is reserved by the operating system driver for page
tables.

has run its course, and broadcasts the decision. If the de-
cision is to proceed, each node begins the next iteration of
the outer loop, copying fresh data and then performing the
kernels and checks of the core loop.

3.4 Program Event Timing Mechanisms
The SHOC benchmarks designed for measuring perfor-

mance (as opposed to testing stability) use timers to measure
the latency of benchmark program events. On Linux sys-
tems, SHOC programs can be built to use the high-resolution
per-process timer provided by the clock_gettime() func-
tion. On other UNIX-like systems such as Mac OS X, or on
Linux systems where clock_gettime() is unavailable, the
gettimeofday() is used as a lower-resolution timer. As a
fallback, SHOC benchmarks can be built using ftime() but
this is not recommended. Using these timers and knowledge
of the amount of data transferred or the amount of com-
putation performed, SHOC benchmarks derive bandwidths
and computational rates, respectively.

The clock_gettime()/gettimeofday() timers are acces-
sible only from program code running on the host system.
For some SHOC benchmark programs, these timers are suf-
ficient and even desirable for measuring benchmark perfor-
mance, because they are applicable to both OpenCL and
CUDA versions of the benchmark. However, OpenCL de-
fines an optional standardized mechanism for collecting finer-
grained timing data using the clGetEventProfilingInfo()

function. Using this function, SHOC benchmarks can dis-
tinguish between the time actually spent executing a kernel
on a device from overhead (e.g., the amount of time the ker-
nel spent in a command queue). Such distinctions are not
possible with the host-only timers such as clock_gettime().

The CUDA API contains no direct analogue to the
OpenCL clGetEventProfilingInfo() function. NVIDIA
distributes a profiler for CUDA programs that uses hardware
counters built into NVIDIA GPUs, but no public API for
accessing these counters is yet available. Therefore, SHOC
programs with both OpenCL and CUDA versions use the
host-only timers as their primary performance data collec-
tion mechanism, and may use the OpenCL profiling support
for additional detail for the OpenCL version.



4. EXPERIMENTAL TESTBED

4.1 NVIDIA GPUs
Hardware characteristics of the tested NVIDIA GPUs are

listed in Table 1.

4.1.1 NVIDIA G80 Series
The NVIDIA G80 architecture shunned the traditional

separation in graphics processors of vertex and pixel hard-
ware pipelines in favor of a single category of processors, all
of which could be tasked for computation. In this sense,
it was a GPU which could devote almost its entire set of
resources to general-purpose computation. The NVIDIA
8800GTX has 128 stream processors split among sixteen
multiprocessors. The shader cores run at 1.35GHz, and are
fed from 768MB of GDDR3 RAM through a 384-bit bus.

4.1.2 NVIDIA GT200 Series
The NVIDIA Tesla C1060 graphics processor was designed

with high performance computing in mind. It is composed
of thirty streaming multiprocessors, each of which contains
eight stream processors for a total of 240 processor cores
clocked at 1.3Ghz. Each multiprocessor has 16KB of shared
memory, which can be accessed as quickly as a register under
certain access patterns. The Tesla C1060 has 4GB of global
memory, as well as supplementary cached constant and tex-
ture memory. The Tesla supports native double precision
floating point operations, although a difference in functional
units causes a significant gap between single and double pre-
cision performance.

4.1.3 NVIDIA ION
Originally targeted for the netbook and nettop market

segment, NVIDIA’s ION platform has garnered some at-
tention from the scientific community due to its extremely
low power consumption. ION is not a discrete GPU – it
pairs an Atom processor, Intel’s ultra low voltage, dual core
x86-64 processor with NVIDIA’s GeForce 9400M GPU. The
addition of the GeForce 9400M supplements the otherwise
unimpressive performance of Atom, adding the raw FLOPS
capability necessary for ION to be considered a candidate
for low-power, scientific computing. We present ION per-
formance results from the ASRock ION 330 platform with a
1.6Ghz dual core 45nm Atom processor and 2 GB DDR2-800
RAM.

4.2 ATI GPUs

4.2.1 ATI Evergreen Series
In ATI’s“Terascale Graphics Engine”architecture, Stream

processors are divided into groups of eighty, which are col-
lectively known as SIMD cores. Each SIMD core contains
four texture units, an L1 cache, and has its own control logic.
SIMD cores can communicate with each other via an on-chip
global data share. The Evergreen line of GPUs doubled the
number of stream processors, texture units, and ROPs avail-
able in the previous generation. Evergreen GPUs all feature
a 40nm fabrication process, with core counts ranging from
400 to 1600. We present results from the Radeon HD5770
(Juniper XT) and HD5870 (Cypress XT). Specific hardware
characteristics are listed in Table 2.

4.3 Multicore CPUs
We present several results from current multicore CPUs

using the OpenCL implementation in AMD’s Stream Com-
puting SDK (v2.0). The most salient details for comparison
are summarized in Table 3.

4.3.1 AMD Shanghai
Shanghai is AMD’s current quad core Opteron-based sys-

tem. Shanghai features a 45nm process, with clock speeds
ranging from 2.3Ghz to 2.9Ghz. Shanghai has a familiar
cache organization, with a private L1 and L2 cache, and a
large, shared L3 cache. We present results from a dual socket
platform with a total of eight cores running at 2.6Ghz.

4.3.2 Intel Gainestown
Gainestown is Intel’s current quad core offering based on

the Nehalem architecture. In striking contrast to the Core
architecture, Nehalem adds a large, shared L3 cache and
replaces the front side bus with the new QuickPath point-
to-point interconnect between cores. Nehalem also saw the
reintroduction of Hyper-Threading, Intel’s implementation
of simultaneous multithreading.

4.3.3 Intel Harpertown
Intel Harpertown is the predecessor to Gainestown, fea-

turing a quad core processor based on the Core architecture.
We benchmark a dual socket, 2.8Ghz Harpertown system
with 8GB of RAM. Harpertown features the same 32KB in-
struction and data cache as Gainestown, but features a large
shared L2 cache instead of Nehalem’s private L2 cache.

4.4 Host Configurations

4.4.1 Lens Configuration
Lens is a medium sized cluster primarily used for data vi-

sualization and analysis. It is composed of thirty-two nodes
connected via Infiniband, with each node containing four
AMD quad core Barcelona processors with 64GB of DDR2-
667 RAM. Each node also has two GPUs–one NVIDIA Tesla
C1060 and one NVIDIA GeForce 8800GTX, connected to
the host processor over a PCI Express 1.0 bus with sixteen
active lanes. Lens runs Scientific Linux 5.0, and results were
measured using NVIDIA’s GPU computing SDK, version 2.3
with the NVIDIA 190.29 driver.

4.4.2 Florence Configuration
Florence is a standard MacBook Pro, featuring an Intel

Core 2 Duo processor at 2.4Ghz with 2GB of DDR2-667
RAM. Florence has one NVIDIA GeForce 8600M GT GPU
connected via a 16 lane PCIe 1.0 bus. We provide results
from Florence for two main reasons. First, to compare the
relative strength of Snow Leopard’s OpenCL implementa-
tion (version 10.6.2), and second, to provide performance
results of a “typical” laptop.

4.4.3 Athens Configuration
Athens serves primarily as a CUDA development machine,

covering the moderate performance range with an NVIDIA
GeForce 8600GT GPU, connected via a 16 lane PCIe 1.0 bus
to a dual core Intel Pentium D 820 processor at 2.8Ghz, with
1 GB RAM. Athens currently runs Red Hat Enterprise Linux
(RHEL) 4.3 and uses NVIDIA’s GPU computing SDK, ver-
sion 2.3 with the NVIDIA 195.17 Beta driver.



Table 1: Comparison of NVIDIA GPUs
GPU Peak FLOPS Peak Bandwidth Stream Processors SP Clock Memory
Units GF GB/s # Mhz MB

Tesla C1060 933 102 240 1300 4096
GeForce 8800GTX 518 86.4 128 1350 768
GeForce 8800GTS 403.2 64 128 1200 320
GeForce 8600GT 114.2 22.4 32 1190 512

ION (9400M) 54 21 16 1100 256

Table 2: Comparison of ATI GPUs
GPU Peak FLOPS Peak Bandwidth Stream Processors Core Clock Memory
Units GF GB/s # Mhz MB

Radeon HD5770 1360 76.8 800 850 1024 GDDR5
Radeon HD5870 2720 153.6 1600 850 1024 GDDR5

4.4.4 Paris Configuration
Paris is a workstation with dual 16 lane PCIe 2.0 slots, fea-

turing a performance-limited engineering sample NVIDIA
Tesla C1060 and an NVIDIA 8800GTS 320MB. The cards
are fed through a Harpertown chipset with two quad-core In-
tel L5420 processors at 2.5GHz and 8 GB DDR2-667 RAM.
Paris runs Ubuntu 8.04 LTS and uses NVIDIA’s GPU com-
puting CUDA, version 2.3 with the NVIDIA 190.29 driver.

4.4.5 Naples Configuration
Naples is a typical gaming desktop and features an Intel

Core 2 Duo at 2.66Ghz, 2GB DDR2-800 RAM, and an ATI
Radeon HD5770 GPU. The GPU is connected to the host
via a 16 lane PCIe 1.0 bus. Results were measured under
Ubuntu 9.04 using the ATI Stream SDK 2.0 with the Cata-
lyst 9.12 Hotfix 8.682.2RC1 driver.

4.4.6 Lyon Configurations
Lyon is an dual-socket, single-core 2.0 GHz AMD Opteron

246 system with a 16-lane PCIe 1.0 bus and 4GB of DDR1-
400 RAM, housing an ATI Radeon HD 5870 GPU. It runs
Ubuntu 9.04 and uses the ATI Stream SDK 2.0 with the
Catalyst 9.12 Hotfix 8.682.2RC1 driver.

5. RESULTS AND DISCUSSION
SHOC provides an easy framework for the performance

analysis of OpenCL compatible devices. At its most ba-
sic level, it measures the relative performance of single de-
vices on important computational kernels. However, data
collected from SHOC can make an important contribution
to far more sophisticated analyses. We present a compar-
ison of OpenCL devices, a power-performance analysis, an
examination of CUDA versus OpenCL performance, and an
exploration of resource contention as example results.

5.1 OpenCL Device Comparison
Figures 2 and 3 shows results from the Level Zero Ker-

nel Compilation benchmark across two systems with same-
generation GPUs, on both small and large kernels. While
Lens’ 8800GTX and Paris’ 8800GTS are not of the same
computational power, they have the same underlying chip
and compute capability; similarly for the retail and sam-
ple Tesla C1060 across the two systems. We see that the

Figure 2: Kernel compile times on Lens and Paris.

Paris host system, with Harpertown Xeons and local disk,
results in somewhat faster OpenCL compile times and no-
tably faster kernel extraction times. We also see the differ-
ence between the longer kernel (taken from the Level One
Scan benchmark) and the shorter kernel (taken from the
Level One Triad benchmark). And finally, we see a small
but consistent increase in compilation time resulting from
targeting the more advanced Tesla C1060 architecture.

Figure 4 shows results from the Level One MD test. We
see a large improvement in NVIDIA GPUs when moving
past the 8000-series, where the older architecture is barely
competitive with contemporary CPUs. Figure 5 shows the
results from the FFT test, where we may see some impact
from the greater maturity of the NVIDIA OpenCL imple-
mentation, with the NVIDIA Tesla outperforming the ATI
HD 5870. Additionally, the beta NVIDIA driver appar-
ently contains some optimizations which help performance,
as seen by the 8600GT besting the 8800GTS. In these two
tests, the CPU performance comes closest to the GPU per-
formance.

Figures 6 and 7 show straightforward results from the
Level One Scan and Reduction benchmarks, respectively,
both utilizing the high bandwidth and FLOPS of GPUs
and showing a clean improvement when moving to higher-



Table 3: Details of Benchmarked CPUs
CPU Sockets Cores Clock L1 Cache L2 Cache L3 Cache RAM

AMD Shanghai 2 8 2.6Ghz 128 KB 512 KB 6 MB 8GB DDR2-800
Intel Harpertown 2 8 2.8Ghz 32 KB 12 MB N/A 8GB DDR2-667
Intel Gainestown 2 8 2.3Ghz 32 KB 256 KB 8 MB 24GB DDR3-1333

Figure 4: SHOC OpenCL Level One Molecular Dynamics benchmark results across test platforms.

Figure 3: Kernel extraction times on Lens and Paris.

powered cards, and with all GPUs outperforming the CPUs.
The results from the Stencil2D benchmark in Figure 8 are

more complex – while the GPUs do outperform the CPUs
by a large margin, we see some dependence on the platform
supporting the GPU devices, such as the HD 5870 being
hampered by the slow CPU and RAM of its host system.

Some general patterns emerge from these results of run-
ning the Level One benchmarks on the test systems. First
and foremost, the GPUs largely outperformed even the
multi-core CPU systems, and often by a significant margin.
Among the GPUs, the newest cards typically performed the

best, with the recent Evergreen series ATI Radeons gener-
ally leading the older NVIDIA Tesla, which in turn leads
the older NVIDIA 8000 and 9000 series. And we also see
mobile parts typically outperformed by their desktop equiv-
alents, showing architectural differences much greater than
the name similarity would imply.

These results also highlight the ability of the benchmark
suite to discern how architectural differences between cards
impact algorithms. For example, we note that the MD
benchmark, which tests more of the functional unit subsys-
tem than the memory subsystem, performs similarly on the
Radeon HD5770 and the Tesla C1060, which have similar
peak GFLOPS values. In contrast, we note that the FFT
benchmark, which is more sensitive to the memory subsys-
tem, performs better on the Tesla C1060, which has a higher
peak memory bandwidth.

5.2 CUDA vs. OpenCL
When choosing to port a legacy scientific application to a

heterogeneous computing platform, the choice of program-
ming paradigm is critical. While CUDA enjoys an advan-
tage in popularity and elegance, it confines codes to NVIDIA
GPUs. OpenCL has tremendous potential for code portabil-
ity, but is rather verbose and may not meet the performance
requirements of all developers.

SHOC provides an easy way to compare the relative per-
formance of CUDA and OpenCL on a target platform, as all
kernels have received the same optimizations on each plat-
form. Figures 9, 10, and 11 detail CUDA and OpenCL per-
formance for the Tesla C1060 GPU, using a single node of
the Lens cluster. Performance is nearly identical for all Level



Figure 5: SHOC OpenCL Level One FFT benchmark results across test platforms.

Figure 9: Level Zero results for the Tesla C1060.
CUDA and OpenCL performance is nearly identical.

Zero benchmarks. However, when nontrivial device kernels
are used, OpenCL begins to trail CUDA performance signif-
icantly (especially in FFT). This demonstrates the immatu-
rity of the OpenCL compiler and has dramatic consequences
for potential application developers.

5.3 Power-Performance Analysis
Figure 12 shows the measured peak single precision float-

ing point operations per second of a variety of OpenCL com-
patible devices normalized by their respective power con-
sumption. For this particular example, we use the manufac-
turer’s specified thermal design point (TDP).

The ATI GPUs strongly dominate the results, and this
is consistent with expectation. The Evergreen series is at
least one generation ahead of any NVIDIA GPU tested and
features a 40nm fabrication process. While they use less
power, both AMD and Intel CPUs produce lower results
due to the tremendous difference in the number of floating
point units.

Figure 10: Performance comparison of several L1
benchmarks on the Tesla C1060. OpenCL perfor-
mance significantly trails CUDA.

5.4 Resource Contention

Table 4: Simultaneous Device Usage, Tesla C1060
and GeForce 8800GTX on Lens.

GPU Peak Bandwidth D->H H->D
Units GFLOP GB/s GB/s GB/s
ideal 1046 159.1 5.38 5.29

measured 941 157.3 4.66 4.99

Due to their parallel nature, many of the SHOC bench-
marks have the ability to test multi-GPU performance, even
when run on a single node. Table 4 shows the results of sev-
eral Level Zero benchmarks on one node of the Lens clus-
ter, containing both an NVIDIA Tesla C1060 and GeForce
8800GTX. The first row shows the ideal results one could
obtain by summing the contributions from each card run in



Figure 6: SHOC OpenCL Level One Scan benchmark results across test platforms.

Figure 11: Comparison of several benchmarks which
stress the device memory hierarchy on the Tesla
C1060. OpenCL trails CUDA when nontrivial de-
vice kernels are executed.

isolation. The second row shows the actual results, measured
while running both devices concurrently. Note the penalties
apparent from simultaneous usage, sometimes beyond 10%
in this test.

Beyond simple multi-GPU contention, the Resource Con-
tention benchmark is specifically designed to test the effects
of simultaneous data transfers both for sending data to a
GPU and for MPI inter- and intra-node communication. It
does this by allocating a number of MPI tasks, with some
tasks performing GPU actions and some performing MPI
actions. It measures the GPU performance and MPI per-
formance under two conditions: first, with these two task
categories running sequentially in turn so that they do not
collide, and then with both categories of tasks running si-
multaneously, contending for system resources that one may
see in actual scientific computing usage. This test targets

Figure 13: This figure shows the effect of simultane-
ous GPU data movement and pairwise MPI message
passing on the average maximum latency of the MPI
messages. The “sim” results were obtained with the
GPU and MPI tasks running simultaneously, and
“seq” results avoid contention by running each piece
in turn sequentially.

the PCI-Express bus, running download speed tests for the
GPU and random-pair latency for the MPI tests.

We ran this test on one to four nodes of the Lens clus-
ter. We utilized five tasks per node: four to participate in
the MPI communication and one to test download speed
of the Tesla C1060 GPU. In Figure 13 we see the behavior
of the MPI latency in the test. First, as expected, the la-
tency grows with the number of nodes in play in the random
pairwise communication, and with the size of the message.
More importantly, under contention, this latency generally
increases when the GPU tasks are running simultaneously –
and sometimes dramatically (note the logarithmic scale).



Figure 7: SHOC OpenCL Level One Reduction benchmark results across test platforms.

Figure 14: This figure shows the effect of simultane-
ous GPU data movement and pairwise MPI message
passing on the average minimum data transfer from
the host to the GPU device. The “sim” results were
obtained with the GPU and MPI tasks running si-
multaneously, and “seq” results avoid contention by
running each piece in turn sequentially.

Figure 14 shows the behavior of the GPU host-to-device
data transfer rate in this test. Again, we see an expected
increasing data transfer speed with larger transfer sizes. Al-
though we see some variation in the transfer speeds, we also
see a consistent penalty of about 30% to the peak transfer
speed when running simultaneously with the MPI tasks.

5.5 Results Repository
Results from the SHOC benchmark suite are aggregated

and posted to the SHOC wiki at http://ft.ornl.gov/doku/
shoc/start.

6. CONCLUSIONS
The SHOC Benchmark suite is an effective tool, with a

variety of uses applicable to high performance computing in
heterogeneous environments. We show its ability to differ-
entiate the performance characteristics of several systems,
including highlighting differences of the GPUs themselves
and their supporting infrastructure. We also show its abil-
ity to highlight strengths and weaknesses among different
OpenCL implementations, including its performance rela-
tive to CUDA.

In a parallel setting, the advantages grow. First, all bench-
marks support a version which can run on multiple nodes
and/or devices simultaneously, including a sensitive parallel
stability test. More significant is the truly parallel support,
including benchmarks designed to test parallel decomposi-
tion of problems, and to test the performance of both the
GPU and parallel support architecture when fully utilizing
the heterogeneous capabilities of these systems.
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Figure 12: This chart shows the measured peak single precision flops normalized by device power consumption.
All power consumption numbers used are the manufacturer’s specified thermal design point (TDP).


