Models for Computational Steering

Jeffrey Vetter*

Karsten Schwan

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332

Abstract

This paper describes a conceptual model for compu-
tational program steering. By ezploiting previous re-
sults attained in program monitoring, debugging, and
configuration, the abstractions and mechanisms de-
rived from this model are shown suitable for both algo-
rithmic and human interactive steering. A character-
wzation of existing systems for computational steering
using the model’s abstractions demonstrate such gen-
erality. The model is illustrated through its use for
steering a large-scale scientific code. Mechanisms for
computational steering derived from the model are pre-
sented that include sensors, probes, and actuators.

1 Introduction

Computational steering, or steering, is the run-time
control of an application and of the resources it uses
for purposes of experimenting with application param-
eters or improving application performance. Exam-
ples of performance-motivated computational steer-
ing include the runtime adjustment of performance-
relevant parameters in real-time applications [1], the
adjustment of operating system mechanisms to im-
prove application performance[2, 3], and the improve-
ment of load balance in scientific applications [4].
Steering performed for purposes of experimentation
with target applications alter models and applications
attributes[5, 6, 4, 7]. For example, the steering in-
terface developed for the global atmospheric modeling
code described in [8] permits space scientist to run the
code with alternative settings for atmospheric trans-
port, to restart the code from a previously defined
checkpoint, and to gradually inject certain chemical
constituents into user- identified atmospheric regions.

The model of computational steering presented in
this paper seeks unifies both algorithmic and human-
interactive steering. Human-interactive steering as-
sumes that a human interprets monitoring data from
the target system and then inputs steering decisions,
which are enacted by the steering system. Since this
steering involves human responses, the speed for in-
teractive steering is constrained to human response
times. Algorithmic steering, on the other hand, uti-
lizes algorithms that make decisions based on monitor-
ing information and other information sources, such
as history files. Its response time depends only on al-

*Vetter is financially supported by NASA Graduate Student
Researchers Program grant #93-236.

0-8186-7395-8/96 $05.00 © 1996 IEEE

100

gorithm complexities and on monitoring and steering
delays.

This paper argues that steering systems should be
constructed to support both interactive and algorith-
mic steering, especially since users will typically wish
to employ both modes during the course of applica-
tion development and use. For example, the space
scientists working with our group wish to use the in-
teractive steering facilities to comprehend the nature
of the multidimensional data produced by their appli-
cation and its relationship to specific model param-
eters {e.g., vertical advection). Such human interac-
tive steering can take advantage of advanced visual-
ization environments like virtual reality techniques,
data walls, etc.[3]. However, once scientists have dis-
covered suitable model parameters for the input data
being used, interactive steering could be automated
with algorithmic steering. Therefore, we propose that
any steering system must support an evolutionary ap-
proach to computational steering. In effect, the sys-
tem should make it straightforward to redirect online
monitoring data from human interactive tools to algo-
rithmic steering tools and visa versa.

The desire to steer programs, interactively and al-
gorithmically, distinguishes our work from most pre-
vious research in scientific visualization and user in-
terfaces. Furthermore, the interfaces employed in
our work must interact on-line with systems gener-
ating data rather than explore post-mortem data, as
generally supported by commercial visualization tools
(e.g., SGI Explorer, AVS) and explored in research
on visualization[9, 10]. Nonetheless, we view compu-
tational steering as an extension of visualization and
tracking[9] based on technologies first developed for
configurable and adaptable systems[11, 1]. In contrast
to the visually-based computational steering systems
described in [12]. Our work separates user interfaces
and scientific visualization issues from computational
steering. One result of this separation is our system’s
ability to work with a variety of user interfaces. An-
other result is its ability to cross machine boundaries
and offer the performance required by on-line steering
systems.

In the remainder of this paper, we first describe
sample application programs and their computational
steering. Using these examples as illustration, we de-
velop a model that describes computational steering
as consisting of 8 distinct phases. In Section 3, the
model is used to identify some implementation issues

of steering; in Section 4, other steering systems are
described within the context of the proposed model.
Section 5 outlines steering mechanisms derived from
the model. A summary of results and future research
appear in Section 6.

1.1 Steering Scientific Applications

This research is motivated with two sample high
performance programs. First, the on-line steering of a
molecular dynamics simulation[4] is shown to im-
prove program performance by removing load imbal-
ances due to inappropriate data decompositions. This
long-running, time- stepped simulation models the be-
havior of complex hydrocarbon chains residing on an
inert substrate. When parallelizing this computation
by allocating chains to different processors, the result-
ing computational loads are not easily estimated, since
the bond force computations for each molecular chain
depend not only on the molecule’s complexity, but also
on its distance to other molecules. Second, the initial
decomposition of the data domain into ‘equal’ hori-
zontal or vertical slabs change during runtime. Third,
it is difficult to anticipate the computational loads in-
duced by global computations of total energy and by
slabs’ accesses to neighboring slabs’ data.

MD is steered by implementing movable boundaries
between its different data domains and then moving
these boundaries at runtime such that computational
loads are balanced. These movements are in response
to load balance information captured over some num-
ber of time steps with the monitoring system. Exper-
imental results described in [4] demonstrate that sig-
nificant performance improvements are attained even
with human interactive steering.

Clearly, it is possible to automate the relatively
straightforward task of domain boundary adjustment
when steering the MD application. A more complex
example of program steering is demonstrated with
global atmospheric modeling code.

As shown in Figure 1, this ad-hoc steering interface
presents to end users modeling outputs along with the
corresponding empirical measurements from satellite
data.

It requires human judgment to evaluate and correct
divergence between both sets of data. This divergence
between both sets of data requires that the model be
stopped and rewound to a previous time step, then
restarted using different settings for certain model pa-
rameters (e.g., vertical advection in constituent trans-
port). The atmospheric model requires human inter-
vention during many initial model runs. The purpose
of interactive steering in this scenario is to abort use-
less model runs early, to discover suitable parameter
settings, and to further scientists’ understanding of
the models they use. In addition, end users actually
use models like these in ‘what if’ games. For example,
if they inject certain chemical constituents into the
atmospheric model through steering, then they can
view the evolving distribution so they can better un-
derstand their model of the global phenomena. In our
current work with space scientists, interactive program
execution is being used to understand the distribution
and transport of fluorocarbons and their derivatives

101

300

200
T

Mixing ratio (ppb)

100
T

Height (level)

Figure 1: Sample Graphical User Interface.

in the earth’s atmosphere.

2 A Model for Computational Steering

The diverse examples of program steering described
in the previous section appear to indicate the need
for diverse abstractions and mechanisms for compu-
tational steering. This is not the case. Instead, each
of the computational steering tasks described previ-
ously may be modeled as a closed-loop feedback sys-
tem [13]. On-line monitoring and tracking[9] provide
information about the target system’s current state
and the remainder of the system permits users to make
on-line decisions in order to increase performance, to
experiment with certain program parameters, and to
attempt relevant 'what-if” scenarios.

Consider the model of a traditional feedback system
depicted in Figure 2. Computational steering maps
onto this model as follows. First, monitoring pro-
vides inputs to the steering agent!. In MD, moni-
toring furnishes on-line information such as processor
loads, the number of molecules assigned to each do-
main, and data about the cutoff radii experienced by
certain molecules. The steering agent then decides
what steering actions to exercise based on both in-
puts from the monitoring system and, possibly, inputs
from other external sources. External sources provide
information not available from the monitoring system,
such as inputs from human users or history files that
contain information about previous executions. The
steering system provides mechanisms to the steering
agent for changing the executing system, which in the

! Agent describes a decision-maker that interprets the input
from the monitoring system and dictates steering. Do not con-
fuse 'steering agents’ with 'agents’ commonly used in Internet
or cognitive science vernacular.

case of MD, facilitates the runtime configuration of
domain boundaries.

input
Application input & state
Resource Information

tput

+ Outp!
Application output
Resource Metrics

Steering Monitoring

Steering Agent

Figure 2: Simple feedback system.

The simple feedback model presented in Figure 2
is the basis on which we develop this paper’s abstract
model for computational steering. In this model, the
interchangeable steering agent may be a human user,
an algorithm, or a hybrid. The steering agent imple-
mentation need not depend on the monitoring sys-
tem. For example, in MD, the steerlng agent is a
Motif-based user interface that receives load informa-
tion and, then issues steering actions to change the
domain boundaries in the running application.

As evident from Figure 2, the performance of any
steering system depends on the latency of monitor-
ing, the latency of the steering agent, and the costs
of enacting steering decisions. All of these phases
jointly determine the steering system’s response time.
This response time varies across systems and limits
the types of steering possible on those systems. High
performance also requires low perturbation of the sys-
tem’s execution. Correctness demands that the steer-
ing system provide mechanisms to protect the target
system from introducing irregular behavior or produc-
ing invalid application results.

The model extends this analogy with feedback sys-
tems further by proposing that a steering system con-
sists of 7 different phases: event generation, event
transport, event analysis, steering agent, steering ac-
tion synthesis, steering action transport, and steering
action execution. The first three steps are common to
event-based monitoring. The last four steps are spe-
cific to the proposed steering model.

2.1 Monitoring

Monitoring is the extraction of dynamic informa-
tion from a computational system[14]. This model
uses an event-based approach to monitoring[15, 16,
17, 18], where each primitive event contains 4 ba-
sic components[16], represented by the tuple <event
class, processor ID, timestamp, state>. Primitive
events are immutable. Event class is an attribute that
describes the type of the event. Event classes differ
in the set of attributes they capture. In MD, sample
event classes include processor load, domain bound-
ary locations, number of molecules in a domain, and
attributes of individual molecules. Event instances
of the same class are differentiated by their two at-
tributes processor ID and fimestamp. The processor
ID, or location, identifies the processor that gener-
ated the event. The timestamp reports the time when

102

the event occurred relative to the producing proces-
sor’s clock. Finally, the state attribute describes some
state within the application relative to observations
by the producing processor. State for MD’s proces-
sor load event class is a single floating point number
that describes the percentage utilization of one pro-
cessor. State for the number of molecules within a
domain is an integer. Complex states contain mul-
tiple attributes, such as cache performance data for
an individual processor (e.g., number of hits and total
accesses).

The state of a target system is described by a
stream of event instances [16]. These streams are
processed in order to collate and present interest-
ing results to steering agents. A steering agent does
not share state with the executing processor other
than through the channels through which events are
received[18]. Each processor has its own reliable chan-
nel to the steering agent. Each channel retains event
orderings with variable but finite event delivery times.

The event timeline as in Figure 3 provides a com-
mon and useful medium for discussing this model.
Time increases from left to right and distinct processor
execution flows along each arrow. Distinct processors
exchange events and actions, similar to messages. For
the purposes of steering, the processors do not have
access to any shared global state. All state informa-
tion is exchanged through event and action messages.
PX represents a processor that is ’external’ to the tar-
get system being monitored and steered. P1 is one
processor within the target system.

The 3 phases of monitoring. Figure 3 lllustrates
the different processing phases experienced by each
single primitive event, which are: event generation,
event transport, event analysis, and possibly, event
presentation[16, 18, 14]. Event presentation is shown
for completeness but later it is omitted because the
steering agent subsumes this phase.

PX

P1

Figure 3: Primitive Event Timeline.

Event generation occurs when a processor re-
trieves some local state, packs the state into an event
tuple along with other necessary information, and
places it in the channel. For example, a primitive
processor load event in MD 1is created at runtime by
allocation of an event structure, followed by filling
its event class, processor ID, timestamp, and proces-
sor load attributes. Total latency of event generation
18 A¢g, where individual processors serialize multiple
event generation phases, but multiple processors can
generate events concurrently. If the channel cannot

accept the event due to unavailable resources, then
the generating processor must wait for the resources.
If a processor must block, the wait time is included in

eq-

'gI‘he latency of event transport is captured by the
time, A, which measures the event’s travel time from
the originating processor to the steering agent’s pro-
cessor. Channels are error-free, so that A.; fully de-
scribes the event’s transmission time across the chan-
nel. However, since events are queued in the channel
until the steering agent receives them, the event trans-
port time, Ag;, also includes buffering costs due to a
busy target processor. Furthermore, this cost is dif-
ferent than the possible waiting cost in A, because
A.q only includes the time of waiting on a channel
to f)ecome available and not while the event is in the
channel.

During the event analysis phase, PX inspects event
attributes. Event analysis time within the steering
agent is denoted with A, in Figure 3. During this
phase, PX can combine multiple primitive events to
form composite events, it can discard events, it can
forward primitive events to the next phase for display,
or it can store events for future analysis. A com-
posite event contains information from 2 or more
primitive events to convey summary information or
to describe some aggregate state extracted from these
multiple events. For example, a composite event in
MD states that two processors in the simulation have
less than 50% utilization (see Figure 3). The imple-
mentation of composite events is straightforward if its
constituent primitive events arrive in a loosely syn-
chronized fashion, at similar rates. Otherwise, obvious
problems arise regarding the time interval for which
primitive events are retained in the steering agent for
possible combination with other events [16j The re-
liability of such information in composite events must
also be guarded. The event analysis time, A,, con-
tains all latencies dues to event analysis. Event pre-
sentation follows event analysis.

Event presentation with latency A, in Figure 3
is the presentation of information contained within a
primitive or composite event. Event presentation dif-
fers from analysis because it does not manipulate event
contents, it only presents them in a form suitable for
steering algorithms, for human end users[10], or for
later use (e.g., in trace files or in temporal databases).
For example, a simple bar-graph view of load bal-
ance in the MD application simply checks each prim-
itive event received from event analysis to determine
whether any of its attributes are bound to the graphi-
cal view. It then updates the particular bar-graph for
each processor if that is the case.

From Figure 3, it is apparent that the total latency
of monitoring, A,,, is the sum of phases one to three
(Am = Aeg + Aot + Agy). Phase five is not included
in this calculation because its needs are determined
by the complexity of the display system, steering al-
gorithms, and human-end users. Notice that in the a
system that has separate processors for the application
and the steering agent, the application perturbation is
depends only on A.g. Once an application processor
generates an event, 1t can continue.

103

2.2 Steering

Concepts for steering are not as well-defined as
those for monitoring and debugging. This model offers
several new abstractions to assist in the discussion of
steering and provide metrics for comparing systems.
Steering actions are the basis for this model. We pro-
pose that this abstraction for steering permits a flex-
ible and complete model for changing executing sys-
tems when combined with event-based monitoring.

Steering actions are a natural generalization of
monitoring events [1]. A primitive steering action is
represented with the 4 tuple <steering action class,
processor ID, condition, state>. The action tuple con-
tains four entries: steering action class defines the ac-
tion type, where tuples with the same action class dif-
fer in their entries, condition, and processor ID. Pro-
cessor ID identifies the action’s target processor. Con-
dition generalizes the notion of ¢szmestamp in monitor-
ing events. Generally, timestamps are nothing more
than conditions that use only the total ordering of
time. With conditions, the activation times of steering
actions’ may be described in terms of timestamps or in
terms of program states that must be observed by the
target processor before the action is performed. Our
model assumes that such conditions are some locally
observable system state, the conditions are limited
by the well-known problems with global conditions
in systems with distributed program state[19, 20]. A
null condition indicates immediate action execution.
When a target processor receives a steering action with
a null condition, it executes the action independent of
the local program state. Last, state denotes the action
parameters associated with action class, where abso-
lute state resets some target program state to a new
value, whereas relative state updates the target state
relative to its current state (e.g., 10%).

Our model classifies actions with respect to the
application as either synchronous or asynchronous.
Steering actions scheduled to execute immediately
upon receipt by the processor without condition are
asynchronous because they are executed irrespec-
tive of the current processor state. Asynchronous ac-
tions perform their modifications sometime after they
are synthesized. The steering agent has no control
over the time or the state of the target system when
the asynchronous action is executed. These actions
are useful for updating non-critical program variables,
such as the advection parameters in the atmospheric
modeling code. These actions are also useful for modi-
fying suspended systems. Conversely, a synchronous
action occurs only when some predetermined condition
has been observed. This conditional prohibits the ac-
tions execution until the condition is evaluated by the
target processor as true. For example, the injection of
a specific chemical constituents at a certain timestep
of the atmospheric modeling code are synchronous be-
cause the required modifications are not executed until
the system is between timesteps and hence, the con-
dition is true.

As apparent from the previous descriptions, steer-
ing is defined such that its execution does not rely on
the system’s global state. Specifically, the steering
agent communicates with each individual processor

via their dedicated channels (Section 2.1). Further-
more, a synchronous action is executed by the target
processor rather than the steering processor so that
state changes may be performed in conjunction with
the target processor’s behavior. Discussion of the in-
terchangeable steering agent begins in Section 2.3.

Figure 4: Steering Action Timeline.

The 3 phases of steering. As with monitoring,
steering may be defined with three phases: steering
action synthesis, steering action transport, and steer-
ing action execution. Figure 4 depicts the timeline for
the generation of a primitive event by the monitoring
system, followed by the steering system’s generation of
a primitive steering action. Specifically, the steer-
ing agent accepts primitive and composite events from
the monitoring system at the completion of the event
analysis phase, after time A,, has elapsed (ignoring
event presentation). With execution latency Ag,, the
steering agent decides what steering actions to per-
form, if any. Its latency may be quite high when such
decision making includes event presentation with some
user interface, followed by decision-making by human
users.

Action synthesis generates primitive steering ac-
tion tuples. These tuples target all relevant processors.
Steering action tuples are generated from data avail-
able to the steering agent from the monitoring system
and from external sources (e.g., history information).
For example, the steering action for changing domain
boundaries in MD targets an appropriate processor,
sets its condition to two boundary-adjacent processors
are finished with a timestep, and generates state to
specify the new relative boundary value (e.g., -10%
along the X-axis) .

Transport of the steering action utilizes the
buffered channels described in Section 2.1 to transmit
steering actlons to processors. Steering action synthe-
sis first packages the steering action tuple, then sends
it via the channel, with total latency Ag;, to the target
processor. The transport protocol does not generate
acknowledgments. Notice that the steering agent can-
not predict when a processor will receive a tuple or
when the action has completed. Subsequent receipt
of appropriate monitoring events or an extension to
the protocol may confirm the completion of an action.
Buffering time is included in Ag;.

Upon receipt of an action tuple, the action execu-
tion begins on the target processor with a possible de-
lay caused by its condition. This delay might require
the processor to buffer the action locally. This delay

104

is included in the latency for action execution Age.
For example, a synchronous version of the boundary
change in MD may require that the target processor
first determine whether the boundary value is in cur-
rent use {e.g., using a critical section) before updating
it. As stated previously, the new boundary values are
stored in the action’s state. When the target proces-
sor has executed the action, it discards the tuple. The
latency for individual action execution is A,. which
includes delays incurred by unsatisfied conditions.

Am Asa

Figure 5: Composite Steering Action Timeline

Composite steering actions, illustrated in Fig-
ure 5, allow creation of a hierarchy of steering ac-
tions. During the action synthesis phase, the steer-
ing system can expand a composite steering action
into many primitive steering actions. All of the ac-
tions are placed on the channel to the target proces-
sors. Several metrics change for composite actions.
Action synthesis remains the same for both primitive
and composite steering actions. First, action trans-
port becomes composite action transport with la-
tency Acgr. Acge is the maximum transport time for
any one of the primitive steering events that is part
of the composite steering action. Composite action
execution A.,. is the difference from the start time
of the earliest primitive action execution until the end
time of the last primitive action execution. The vari-
ance in both the start time and execution time of any
one of the primitive actions could effect A.;.. Once
the actions are received, they are executed on their
target processor. The purpose of composite actions
created during action synthesis is to simplify and coor-
dinate complex steering maneuvers executed by mul-
tiple processors. An example of a composite action
in MD i1s a concurrent shift in all domain boundaries
by some relative amount. Each processor receives one
action, but that action is tailored for the target pro-
Cessor.

With large delays in communication channels, the
state retention problem for composite actions is the
same as the one for composite monitoring events[16],
where storage requirements depend on the number of
pending primitive actions. This problem is discussed
further in Section 2.5.

Therefore, the total latency of the steering system
is the sum of the separate steering phases: A; = Ags+
Aat + Aae~

2.3 Steering Agents

Steering agents (see Figure 2) make decisions based
on the event stream from the monitoring system and
possibly inputs from an external source. The exis-
tence of an external source is a critical element of the
interactive steering model, because it permits the dy-
namic use of human knowledge and execution history.
A steering agent can use a variety of methods such as
graphical interfaces or expert systems to decide what
steering actions to enact. For example, in the case
of MD, once human users have gained better insights
into the correlation between processor loads and rel-
ative domain sizes for certain data sets[10, 21], they
may then devise and experiment with algorithms that
automate the load balancing task, or they may sim-
ply choose to replay steering actions scripted during
previous program runs. In all such cases, interfaces
to the steering system remain the same, consisting of
event tuples provided by the monitoring system and
steering actions affecting the executing program.

2.4 Steering System Response Time

The latency of entire steering system combines the
monitoring latency A, with the latency of the steer-
ing agent A, and the latency of the steering sys-
tem A to give a total system latency of Asteering =
Ay, + Asg + Ag. The entire perturbation on the exe-
cuting application is only the two phases of event gen-
eration A,y and steering action execution Ag.. The
remainder of the monitoring and steering phases op-
erate concurrently on target systems when sufficient
resources are reserved for the monitoring and steering
system. Given this model of monitoring and steer-
ing, the application is minimally perturbed. Trans-
port, analysis, and steering action synthesis execute
concurrently to the application.

2.5 Model Issues

The model presented in Section 2 does not cap-
ture extended steering issues, such as coordination of
composite steering actions, recognition of action com-
pletion, and enhancement of steering with properties
typically associated with general feedback systems.

The execution of composite actions is complicated
by several factors, including delays in the execution of
primitive actions, potential deadlocks caused by circu-
lar dependencies among composite actions. The model
does not offer general solutions to any of these topics,
but instead, posits that a basic steering system should
provide mechanisms and guidance but should not offer
specific solutions to these problems. This model per-
mits target system specific solutions to these issues,
as shown possible in [1], where ‘adaptation transac-
tions’ are efficiently implemented for pipelined pro-
gram structures.

Recognition of action completion is difficult with
this model because it assumes distributed state{19].
Because processors execute and then discard steering
actions, the steering agent cannot trivially infer when

105

a steering action has completed. Conditions on steer-
ing actions exaggerate this problem because a proces-
sor may hold a steering action for an arbitrary amount
of time. In addition, completion checking cannot triv-
ially rely on action orderings since the orderings may
change when processors remove steering actions from
the channel and then store them locally. Specifically, if
such a solution relies on maintaining action orderings,
then such orderings may be implemented using addi-
tional conditions formulated by the steering agent and
enforced by processors. In addition, processors could
implement acknowledgments, some of which may be
piggybacked on future monitoring messages. Alterna-
tively, an steering agent might simply rely on future
monitoring output to verify that certain steering ac-
tions have been taken.

The steering model is easily analyzed with several
general characteristics of feedback systems [13].

Sensitivity of the target system to steering may be
evaluated by analyzing the steering of particular sys-
tem components. Sensitivity ranges from not chang-
ing the system output to deadlocking the system. The
sensitivity of each component is measured by perturb-
ing each possible system component with the steering
system and evaluating the change in system output.

A system being steered should remain stable, which
implies that its outputs should remain bounded given
bounded inputs. Stability checking should be per-
formed with algorithms specific to certain systems and
data sets. The addition of steering should not cause
the target system to ’thrash’ or oscillate. Usually, this
requirement forces the steering system to have low la-
tency so as to prevent positive feedback through the
steering system.

3 Related Research

This section maps a selected group of those systems
onto the model developed in Section 2. Several pro-
totype computational steering systems exist; they are
discussed extensively in two separate articles [22, 12].

VASE [6] established an interactive steering system
for SIMD computers that provided tools for code an-
notation, run-time control, and visualization. A SIMD
model of computation relaxes several of the constrains
on steering actions mentioned in Section 2.2. First, be-
cause global state is shared, any processor including
the steering agent can determine not only the data for
another processor but it also knows the state of com-
putation at each processor. Therefore, steering actions
could be performed by the steering agent alone while
other processors idle. Conditions are unnecessary be-
cause the steering agent knows the state of each pro-
cessor and can determine if any condition is true.

Dynascope[23] developed a steering (directing) sys-
tem using debugging facilities provided by the operat-
ing system. Dynascope lacks important time informa-
tion about when to change state. Debugging mecha-
nisms do not enforce system integrity with conditions
as steering action tuple do and this lack of conditions
allows arbitrary changes to the system which might
invalidate system execution.

Several systems use dataflow architectures for steer-
ing and visualization [5, 12]. Dataflow systems are

the easiest to map to this feedback model. Computa-
tion is usually contained within modules whose input
and output are connected to other modules for visu-
alization and control. This dataflow network forces
an ordering similar to the proposed model ordering on
the computation and explicitly specifies inputs and
outputs. Changes are fed into the input ports of
the computation modules. As the module executes,
new inputs are integrated into the calculations. This
large granularity for steering has several disadvan-
tages. First, if the computation is not decomposed
thoroughly through modules, then any feedback re-
quires recomputing the dataflow network. Thus, even
the smallest change in the inputs to a module cause
recomputation. This sensitivity to every system com-
ponent reduces performance because any action forces
a total recomputation. Second, it is unclear how mod-
ules incorporate changes into their execution other
than restarting the computation with new parameters.
Third, due to the limited number of inputs a module
can accept, the possible number of parameters to steer
is limited.

Progress[7] and Falcon[15] provide the ability to
monitor and steer fine-granularity items within the
executing system. Falcon is an event-based monitor-
ing system that provides low-latency access to system
data at runtime. Progress is an application-specific,
low-latency steering system that provides actuators
and probes to allow structured changes to executing
systems. These actuators provide conditions as de-
scribed by steering action tuples that allow the target
processor to validate and coordinate changes before
their execution.

4 Mechanisms for Steering

This section presents several mechanisms that pro-
vide the functionality outlined by the proposed model.
Many of the monitoring mechanisms have been pre-
sented by earlier research; however, we list them here
to solidify the model’s usefulness.

4.1 Monitoring Mechanisms

The results of any monitoring mechanisms are
events as described earlier. Two possible types of
monitoring mechanisms produce events: sensors and
Fro]bes. Both of these devices are described elsewhere
17].

Sensors. Sensors are instrumentation points
placed throughout the application’s source code;
therefore, sensors are synchronous mechanisms with
respect to the application. Each sensor captures infor-
mation about the state of the application or a system
resource as an event and forwards these events to the
steering agent. The generation of events by sensors
is totally dependent on the frequency that the appli-
cations processors encounter these sensor instrumen-
tation points. Advanced techniques for sensor control
use online control, filtering, and sampling sensors to
control event frequency. Sensors can do minimal cal-
culation; however, they must be very efficient[15];

Probe reads. Probes, as opposed to sensors, are
not part of the application code. Probes allow some
external processor to ’snoop’ into an executing ap-
plication’s data and resources. Because probes don’t

106

synchronize with the application execution, they are
considered asynchronous. The result of a probe 1s the
same as a sensor: an event tuple. Probes are useful for
monitoring data differently than sensors because they
have no application overhead and they allow instant
data investigation.

4.2 Steering Mechanisms

Steering mechanisms are the converse of monitor-
ing mechanisms. Two such steering mechanisms, ac-
tuators and probe writes, provide the flexibility and
completeness to steering furnished to monitoring by
sensors and probe reads. Both actuators and probe
writes are controlled by steering actions.

Actuators. Actuators, like sensors, require instru-
mentation points in the application source code [7].
An actuator is controlled by a steering agent; how-
ever, the actual execution of the steering action is per-
formed by the application’s processor when it encoun-
ters an actuator instrumentation point. With respect
to the application, the change is synchronous with the
application because the application can identify the
actuators as the only regions of code that allow mod-
ifications from the steering system. With this limita-
tion, actuators provide a ’safe’ mechanism to change
state within the application. The application can ex-
pect changes at various points throughout its execu-
tion and accept those possible changes. Conditions
for steering actions limit those changes. The condi-
tion can limit the action to a specific segment of the
code, or it can specify some state in the application
is true prior to performing the steering action. Ac-
tuators rely on the application for their execution. If
the application execution does not include an actuator
instrumentation point, then the changes requested by
the steering agent will not occur.

Probe writes. Probe writes allow identical func-
tionality to probe reads, but instead of reading some
state they actually update it. Probe writes are asyn-
chronous because the target state is updated immedi-
ately instead of waiting for the application’s processor
to perform the change. Probe writes have a null con-
dition in their steering action tuple. Regardless of the
application’s state, the requested steering action up-
dates the application state to the state required by the
tuple.

5 Conclusions

This paper presents a model for computational
steering that captures the essential properties of steer-
ing systems whether the steering is guided by a human
or algorithm. The model is based on previous research
in monitoring and debugging systems, and adaptable
and configurable systems. The model defines the pro-
cess of steering using a timeline of monitoring events
and steering actions. A time diagram motivates the
description of the monitoring and steering system as
well as the role of the steering agent. The steering
agent is interchangeable and it could provide either
human-interactive or algorithmic steering. Event and
steering action tuples capture the essential abstrac-
tions in the steering system. Existing prototype steer-
ing systems demonstrate the model’s usefulness and

provide illustration of the model features and limita-
tions.

6

Acknowledgments

We thank Vernard Martin and Daniela Ivan for
their comments and proofreads, Greg Eisenhauer and
Weiming Gu for their implementation work and dis-
cussion, and Thomas Kindler for his work on the at-
mospheric modeling software.

References :
[1] T. Bihari, P. Gopinath, and T. Walliser, “Man-

[4]

(]

aging beliefs, desires and time in real-time sys-
tems,” in Proc. Eighth IEEE Workshop on Real-
Time Operating Systems and Software, pp. 114-9,
1991.

B. Mukherjee and K. Schwan, “Experiments with
a configurable lock for multiprocessors,” in Proc.
22nd Int. Conf. on Parallel Processing, pp. 205-8,
1993.

D. A. Reed, K. A. Shields, W. H. Scullin, L. F.
Tavera, and C. L. Elford, Virtual Reality and
Parallel Systems Performance Analysis. Dept. of
Computer Science, University of Illinois, 1995.

G. Eisenhauver, W. Gu, K. Schwan, and
N. Mallavarupu, “Falcon - toward interactive par-
allel programs: The on-line steering of a molec-
ular dynamics application,” in Proc. Third Int.
Symp. on High-Performance Distributed Comput-
ing (HPDC-3), pp. 26-34, 1994.

S. G. Parker and C. R. Johnson, “Scirun: a
scientific programming environment for compu-
tational steering,” in Proc. Supercomputing 95,
(San Diego), pp. 1-, 1995.

D. J. Jablonowski, J. D. Bruner, B. Bliss, and
R. B. Haber, “VASE: The visualization and ap-
plication steering environment,” in Proc. Super-
computing ’93, (Portland, OR, USA), pp. 560-9,
1993.

J. Vetter and K. Schwan, “Progress: a toolkit for
interactive program steering,” in Proc. 2/th Int.
Conf. on Parallel Processing, pp. 139-42, 1995.

T. Kindler, K. Schwan, D. Silva, M. Trauner,
and F. Alyea, A parallel spectral model for at-

mospheric transport processes. Georgia Institute
of Technology, 1994.

B. H. McCormick, T. A. DeFanti, and M. D.
Brown, “Visualization in scientific computing,”

IEEE Computer, vol. 23, no. 8, 1989.

E. Kraemer and J. T. Stasko, “The visualization
of parallel systems: An overview,” Jour. of Par-
allel and Distributed Computing, vol. 18, pp. 105—
17, 1993.

107

[11]

[12]

[13]

[14]

(15]

[16]

(17]

[19]

(22]

(23]

J. Kramer and J. MaGee, “Dynamic configura-
tion for distributed systems,” IEEE Trans. on
Software Engineering, vol. 11, no. 4, pp. 424-36,
1985.

M. Burnett, R. Hossli, T. Pulliam, B. Van-
Voorst, and X. Yang, “Toward visual program-
ming languages for steering scientific computa-
tions,” IEEE Computational Science & Engineer-
ing, vol. 1, no. 4, pp. 44-62, 1994. Oregon State
Univ,.

C. L. Phillips and R. D. Harbor, Basic Feedback
Control Systems, vol. 1. Prentice-Hall, 1991.

R. Snodgrass, “A relational approach to monitor-
ing complex systems,” ACM Trans. on Computer
Systems, vol. 6, pp. 157-96, 1988.

W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan,
J. Stasko, J. Vetter, and N. Mallavarupu, “Fal-
con: On-line monitoring and steering of large-

scale parallel programs,” in Proc. Frontiers 95,
1995.

P. Bates, “Debugging heterogeneous distributed
systems using event-based models of behavior,”
in Proc. ACM SIGPLAN/SIGOPS Workshop on
Parallel and Distributed Debugging, pp. 11-22,
1988.

D. M. Ogle, K. Schwan, and R. Snodgrass,
“Application-dependent dynamic monitoring of
distributed and parallel systems,” IEEE Trans.
on Parallel and Distributed Systems, vol. 4,
pp. 762-78, 1993.

D. C. Marinescu, H. J. Siegel, J. E. Lumpp, and
T. L. Casavant, “Models for monitoring and de-
bugging tools for parallel and distributed soft-
ware,” Jour. of Parallel and Distributed Comput-
ing, vol. 9, pp. 171-84, 1990.

K. M. Chandy and L. Lamport, “Distributed
snapshots: Determining global states of dis-
tributed systems,” ACM Trans. on Computer
Systems, vol. 3, pp. 63—75, 1985.

L. Lamport, “Time, clocks, and the ordering of
events in a distributed system,” Communications
of the ACM, vol. 21, pp. 5658-65, 1978.

A. D. Malony and D. A. Reed, “Visualizing par-
allel computer system performance,” in Parallel
Computer Systems: Performance Instrumenta-
tion and Visualization (M. S. Bucher, ed.), New
York: ACM, 1990.

W. Gu, J. Vetter, and K. Schwan, “An anno-
tated bibliography of interactive program steer-
ing,” SIGPLAN Notices, vol. 29, pp. 140-8, 1994.

R. Sosic, “Dynascope: a tool for program direct-
ing,” SIGPLAN Notices, vol. 27, pp. 12-21, 1992.

