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Techniques for 
High-Performance
Computational Steering

increase the utility of high-performance
simulations for scientists because it lets
them drive the scientific discovery process
and interact with their data. They can
investigate, calibrate, and correct the exe-
cution of their simulations. For example,
computational steering lets users interac-
tively maneuver molecule docking in a
protein-design simulation,1 interactively
examine and control structures’ shape
optimization,2 and manage the process of
simulated annealing.3 Steering provides
two major benefits: it lets users diagnose
their simulation models, and it provides
insights into the complex runtime interac-
tions of the simulation components.

Computational steering is the online
management of application execution and
application resources to improve perfor-
mance or explore an application (see the
“Computational-steering issues and tax-
onomy” sidebar).4 Initially, implementa-
tions of computational-steering systems
focused on functionality with limited effort
dedicated to understanding the perfor-
mance of the steering-system architecture.
Furthermore, application users customized
many of these designs to specific operat-
ing environments and applications; there-
fore, these approaches were difficult to

leverage across applications and target
platforms. Nevertheless, interest in tech-
niques for computational steering persists
(see the “Related work” sidebar). Recent
interest in virtual environments4 has fur-
ther fueled the need for an efficient,
dynamic infrastructure for high-perfor-
mance computational steering. Three rea-
sons motivate the need for high perfor-
mance in computational steering. The
steering system must

• act intelligently at runtime to minimize
its perturbation of the target applica-
tion,

• analyze and forward to the user the data
extracted from the target in a timely
fashion to allow for up-to-date visual-
izations and decision making, and

• execute steering commands with low
latency to prevent undesirable feed-
back.

We have developed methods for high-
performance computational steering based
on a domain-specific language called
ACSL and on one runtime optimization
example: spatial locality. Our language and
software design provide a flexible, com-
patible, and efficient way to describe steer-
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ing commands to the steering system.
Our prototype computational-steering
system, Magellan, can interpret and opti-
mize these commands to meet various
criteria, including application perturba-
tion and high steering frequency—a new
metric for steering systems.

System overview

We now define a more precise soft-
ware architecture for any computational-
steering system, which is essential for
understanding the principles of our lan-
guage approach. Figure 1 illustrates an
abstract architecture for a computational-
steering system. We assume that the user
instrumented the application to coordi-
nate with the steering system. At runtime,
when the application generates monitor-
ing information, it communicates this
information to the attached steering sys-
tem. The steering system coordinates
and controls the application by receiving
and digesting monitoring data from the

Interactivity in high-performance computing is not a new
topic. For years, scientists have interacted with their appli-
cations in various ways. Typically, users instrument their appli-
cation software with the communications and graphics code
required for runtime interactions. Such user interfaces are
often quite effective because they are customized to partic-
ular application domains. However, because of such cus-
tomizations, these interfaces are not easily leveraged across
different applications. Moreover, application characteristics
vary dramatically among applications as well as during sep-
arate phases of the same application. Therefore, the infra-
structure should be dynamic. When either the user-issued
steering request changes or the host system changes, the
infrastructure must adapt. Additionally, visualization tech-
niques implemented by a certain user interface simply might
not be suitable for other applications, and these visualiza-
tion and user interface issues for computational steering
complement our research.1

Computational steering has two goals: application steer-
ing and performance steering. Application steering lets
researchers investigate phenomena during the execution of
their application, typically giving them structured access to
various application objects. Users might change parameters,
choose alternative algorithms, rollback and replay execu-
tion, or simply track application execution. Because of appli-
cation steering’s unpredictable nature, the steering system
must provide access to many application objects, not know-
ing which objects to optimize a priori.

Performance steering, on the other hand, seeks to improve
an application’s performance by changing application and
resource parameters during runtime. Manual load balanc-

ing is an example of interactive performance steering, where
a user manually steers a data decomposition to improve per-
formance. With performance steering, users have a general
idea of which parameters influence performance. In fact,
they might have determined which parameters to focus on
by first using application steering or some other type of sen-
sitivity analysis. In general, however, performance steering
is often performed by algorithms,2 because it can be quan-
tified and automated. Algorithmic steering is also useful for
long-running applications when human users are neither
constantly available (for example, batch processing) nor
capable of processing rapid changes to application data
and parameters.

These two goals of application exploration and perfor-
mance steering first appear mutually exclusive because each
requires different results from the steering system itself.
However, adaptable steering techniques can provide a com-
mon basis for various types of steering on different types of
applications. Our language-based approach provides flexi-
bility and abstraction that let the steering system interpret
and optimize steering requests.
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Computational-steering issues and taxonomy

Figure 1. Abstract decomposition of a steering system’s functionality.
Monitoring data flows from the instrumented application through the steering
system to the steering agent. The agent interprets the data and decides
which steering commands to issue. Those commands flow back into the
steering system. The steering system then makes changes to the executing
application.
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application, enacting steering commands
issued from the steering agent, and man-
aging and configuring the steering sys-
tem itself. Human users represent steer-
ing agents and enter steering commands
to the steering system. When the steer-
ing system receives these commands, it
parses the specified command, possibly
optimizing it. Then it enacts the com-
mand on the target application using pre-
cise, yet flexible, instrumentation mech-
anisms. Our criteria of efficiency,
flexibility, and compatibility motivate our
system design and language approach.

EFFICIENCY
We recognize two separate efficiency

goals. First, the steering agent controls

application performance by controlling the
degree of monitoring and steering pertur-
bation on the application. If the agent
decides not to monitor or steer an applica-
tion for a particular episode, then the appli-
cation runs normally. If, on the other hand,
an agent wants to pause an application,
investigate, and arbitrarily visualize data,
then the application’s performance should
not be an issue. Second, the steering sys-
tem performance itself remains important
because high latency within the steering
system can degrade decision quality and
steering effectiveness.

FLEXIBILITY AND COMPATIBILITY
The steering system should work with

various applications and steering agents

in their existing environments. High-
performance computing applications
vary dramatically in both levels of con-
currency and composition. The steering
system’s design should work with a range
of these applications. Furthermore, the
system should be dynamic enough to
accommodate the varying requirements
of visualization systems, ranging from
Motif visualizations to remote, collabo-
rative, immersive environments.

MAGELLAN’S SOFTWARE
ARCHITECTURE

We have designed and implemented
Magellan to investigate our approach’s
viability. Our system design provides a
fundamentally different framework for

Both Steven Parker and his colleagues and Jeffrey Vetter
provide thorough descriptions of research on computational
steering and related fields.1,2 Several systems for computa-
tional steering exist, each with its own specific contributions.
Although computational steering has some similarities to
other work in performance monitoring and debugging, we
do not outline work in these areas.

The Visualization and Application Steering Environment
first recognized the necessity of application control in addi-
tion to visualization.3 VASE furnished application developers
with tools to annotate their source code with steering break-
points; it also provided an interface between itself and the
application that did not depend entirely on a specific visual-
ization or interaction method. D.J. Jablonowski and his col-
leagues developed VASE on a single-instruction, multiple-data
platform, and this architecture’s single instruction stream let
VASE easily control the application through these steer-
ing breakpoints. VASE was one of the first prototypes to
provide support for algorithmic steering through its scripting
language.

Steven Parker and his colleagues demonstrated a pro-
gramming environment for computational steering based on
the dataflow architecture.2 This environment essentially recasts
computations as modules in a dataflow graph. Steering occurs
when new data is injected into any module’s input ports, and
this, in turn, retriggers recalculation of dependent modules.

SMD interactively steers molecular dynamics calculations
of protein molecules, including computation, visualization,
and communication components.4 Biochemists can “tug”
molecules into different shapes by specifying external forces
in the graphical interface, which are added to internal forces
representing atomic bonds and nonbonded interactions.

Cumulvs provides computational steering and visualiza-
tion for Parallel Virtual Machine applications.5 The steering
and visualization directives are integrated closely with the
facilities of the PVM system to provide a transparent and
portable tool.

Several studies have explored interesting problems in

steering and related areas. For example, a study by Valerie
Taylor and her colleagues explores lag time in an interactive
virtual environment.6

We derived ACSL (our domain-specific language) and Mag-
ellan (our prototype computational steering system) from
our earlier work on Progress and Falcon.7,8 Progress and Fal-
con provide the ability to monitor and steer fine-grain items
in an executing system. Falcon is an event-based monitoring
system that provides low-latency access to application data
at runtime. Progress is an application-specific, low-latency
steering system that provides actuators and probes to enforce
structured changes on executing systems.
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interactive computational steering than
that of previous systems. Figure 2 illus-
trates Magellan’s basic architecture,
which is a group of steering servers and
clients. The application remains intact
except for source-code annotations.
These annotations identify application
objects and how the server can change
these objects in structured ways.

Steering servers represent the Mag-
ellan system’s core. A steerable appli-
cation always has at least one steering
server connected to it. These servers
are modular, and their number depends
on the size and structure of the target
application. However, the servers are
lightweight, executing as threads in the
application’s address space. Steering
servers communicate with steering
clients, which we assume are transient.
These clients, in turn, provide infor-
mation to the steering agents and then
receive commands from the agents;
agents do not directly interact with
steering servers. In Magellan, each
level in the hierarchy, not only the
feedback loop through the steering
client and agent, is capable of feedback.
ACSL provides the communication
protocol between servers and clients,
while servers control applications
directly by accessing the executable. In
Figure 2, the system components have
higher throughput and lower latency
moving to the left and more global
knowledge and centralized control
moving to the right.

Typically, shared-memory, thread-
based applications have only one server.
Distributed-memory applications, such
as those using the message-passing inter-
face, must have one server in every MPI
process. These multiple servers connect
to one master server, which is usually the
server for processor 0. The other servers
receive commands from and send data to
this master server. The master server,
then, communicates directly with the
steering client.

KEY DESIGN CHOICES FOR THE
MAGELLAN ARCHITECTURE

The primary design decisions essen-
tial to our approach include the need for
application instrumentation, client-
server architecture, and the use of an
interpreter and language.

Application-specific instrumentation
Computational steering needs more

information than that provided by tech-
niques for debugging, monitoring, or
executable editing. Normally, these
other techniques require information
about data and control flow that are gen-
erally found within the object files. How-
ever, Magellan needs to know not only
which data to access but also how and
when it can safely alter the data. Object
files do not contain these last two items.
Executable editing and debuggers rely
on information stored by the compiler
in object files. Using this information,
executable editing lets users either stat-

ically or dynamically change the instruc-
tion sequences in object files. On the
other hand, debuggers provide a wealth
of information about the application’s
state. However, debuggers do not give
users information about the semantic
meaning of an instruction sequence.
Hence, there is no information to assure
users that their changes do not invalidate
some ongoing computation. Automated
tools cannot derive this semantic mean-
ing solely from the application’s source
code or the executable.

Magellan solves these problems by
providing source-code annotations for
both data and control flow. Fortunately,
using these annotations does not pre-
clude using other techniques such as pro-
filing or executable editing.

Client–server architecture
Magellan’s software architecture is

fundamentally a client–server design
because it promotes three separate goals.
First, steering servers are modular, and
users can configure them to accommo-
date a range of application structures,
including shared memory, message
passing, and hybrids (for example, clus-
ters). Second, servers can operate as a
thread in the application’s address space,
which improves compatibility and effi-
ciency. Third, this clean separation of
clients from servers lets steering clients
control the steering system from vari-
ous sources, including remote, hetero-
geneous sources such as collaborative,
immersive environments.

Interpreter and language
The domain-specific microlanguage

and the runtime interpreter are funda-
mental to our approach to computational
steering. The runtime interpreter dy-
namically optimizes requests described
with a language while leveraging existing
techniques for language optimization.
Our language approach is congruent with
visualization approaches to computa-
tional steering, because a graphical user
interface can simply generate language
statements to describe their steering
requests, and the visualizations can bind
visual objects to incoming language
updates.

Figure 2. Magellan’s software architecture.
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Magellan server
As Figure 3 illustrates, the basic com-

ponents of the steering server—the core
of the Magellan system—are the inter-
preter with its optimizer, the applica-
tion object registry, the client registry,
the server registry, and controls for the
monitoring and steering mechanisms.
(This definition excludes graphics and
user interfaces, which are traditionally
provided by Magellan clients.) Most
importantly, the interpreter receives
and digests ACSL commands from
clients and other servers. Then, it parses
and optimizes these requests. Finally, it
controls instrumentation to monitor
and steer the application. The server
contains three registries for all applica-
tion objects, attached clients, and other
servers.

SERVER DESIGN
This server design meets three goals.

First, it gives the server fast access to any
application object because it operates in
the application’s address space. More-
over, it gives the server access to the
application’s entire memory space with-
out placing additional constraints on the
application. For example, it does not
force the developer to store steerable
data in a Unix mmap region; although
convenient, such a practice would pro-
hibit access to application objects not
explicitly stored in this shared-memory
segment and most likely would degrade
performance. Second, a modular server
configuration easily reflects the design
of target applications, such as shared
memory, message passing, or a hybrid
(clusters). This design lets servers oper-
ate alone, as peers, or as part of a hier-
archy. This enhances scalability because
servers can operate in a hierarchy with
one master server. When the application
uses distributed-memory models, such
as MPI, our servers are distributed,
because each server must operate as a
thread in the application’s address space.
Alternatively, a shared-memory, threaded
application has at least one server, but
can have more. Finally, by encapsulating
major steering functionality into the
server, this design can run and maintain
graphical interfaces and other visualiza-

tion systems remote from the executing
application.

Within the steering server, the appli-
cation object registry contains informa-
tion about all objects available in the
application for steering, which the appli-
cation declares to the server at runtime.
The server needs this registry to access
application objects. Object information
includes the object’s address, data type,
size, and flags. The client registry main-
tains connection and caching information
on Magellan clients; the server registry
contains connection and management
information on additional servers (if there
are any).

MAGELLAN INTERPRETER
Magellan servers are multithreaded,

asynchronous interpreters, and they pro-
vide two new capabilities for steering.
First, the interpreter understands an
LALR(1) (left-to-right-scan with one
look-ahead token) grammar, which lets
it accept user-constructed steering com-
mands at any point during execution.
Second, it can optimize these commands
using various heuristics. In our opti-
mization example, Magellan analyzes
steering commands for spatial locality so
that the server can migrate commands to
the most efficient server.

Our decision to create a new language
was not easy, and our contribution is not
a new language, but an approach to com-
putational steering that promotes high
performance in the application as well as
in the steering system. Because our lan-
guage has a relatively small number of
tokens and expressions, it performs well.
Moreover, the interpreter is thread-safe
so that multiple interpreters can execute

concurrently in the same address space.
However, ACSL is not as flexible as a
general programming language and does
not support user-defined extensibility.

When the interpreter receives an
ACSL command, it parses the command
into tokens and builds a syntax tree. The
server can then optimize the command
by annotating or rearranging the tree.
Next, the server uses the application
instrumentation to make changes to the
application.

During the optimization phase, the
interpreter analyzes the abstract syntax
tree for the current command and may
rearrange the tree slightly or annotate
nodes in the tree with additional infor-
mation. In case of spatial locality, the
interpreter scans the syntax tree to deter-
mine the location of each object involved
in the command. If the all objects and
data in a statement can be executed
locally by one server, then the steering
system executes that expression at that
server. If, on the other hand, the server
cannot forward the command, then the
server must execute the command locally
and incur any necessary latencies.

By contrast, if the server did not have
this optimization phase, the steering sys-
tem would ship all the necessary moni-
toring data to the client, which would
conduct the analysis. Unfortunately,
during this data transmission, the appli-
cation might have to be stalled, depend-
ing on the type of steering request. After
the decision, the steering commands
would be sent from the client back to the
server. The Magellan spatial-locality
optimization step avoids this long cycle,
provided the optimization applies to a
particular steering command.

Figure 3. The internal architecture of one Magellan server.
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A domain-specific
steering language 

ACSL is a microlanguage for steering.
For our steering examples, ACSL pro-
vided sufficient flexibility for different
types of computational steering on our
target applications. Users can create
additional forms of steering by combin-
ing these primitives into expressions and
statement lists. At a higher level of
abstraction, expressions and statement
lists provide Magellan with the majority
of its optimization opportunities.

Using language specifications to
address configuration and adaptation
problems is not novel. In comparison to
such work, our research focuses on
understanding and evaluating the trade-
offs in application perturbation and
steering latency resulting from alterna-
tive manners where the runtime system
processes steering commands into online
steering actions.

PRIMITIVES
ACSL commands specify control of

monitoring and steering mechanisms to
the server. It assumes that an application
exports monitoring and steering objects
using registration instrumentation.5
These objects are not related to object-
oriented languages and do not provide
inheritance or polymorphism. They are
simply application components that are
named. Applications register these
objects at runtime; they can be almost
any registered application component,
including integers, floats, doubles, and
vectors of such types. Once registered,
these objects are available for the steer-

ing system to inspect and manipulate in
structured ways, with various instru-
mentation mechanisms. 

ACSL provides structured operations
that use registered objects as the target for
their monitoring and steering expressions.
ACSL is specified as an LALR(1) gram-
mar with expressions using prefix nota-
tion. A typical ACSL steering command
has the form “<object name>”
<action>[options][data|expr].
The <object name> is the name of an
application object that is the command’s
target. The ACSL primitive <action>
is described later. Actions usually require
either data or expr. data is a constant
while expr is a basic mathematical oper-
ation employing the target object itself or
some object within the scope of the
server’s object registry. That is, objects
within a server’s scope are registered with
that server or a child server.

Probes
Probes are the simplest instrumentation

mechanism, much simpler than sensors
and actuators. A probe read simply
retrieves a value for an object from the
application, regardless of the application’s
current state or calculation. Probe writes,
which are the opposite of probe reads,
overwrite a particular data item in applica-
tion memory. ACSL provides “<object
name>” probe <read|write <data
|expr>> to probe read or probe write a
particular object. In contrast to sensors and
actuators, probes do not have any safe-
guards against reading or writing a value
that the application is using. In Figure 4,
the user probe reads numProcs in line 1.

The Magellan server reads the value and
returns a tuple that includes numProcs’
current value: 8.

Sensors
Sensors are monitoring mechanisms

that provide consistent information about
application execution in the form of events.
ACSL provides “<object name>”
sensor <enable|disable|freq
<rate>> to actually control sensors for a
particular object. In line 3 of Figure 4, the
user enables a sensor for tau, and sensor
events begin arriving for the tau appli-
cation object. In the application, tau is a
floating-point number. The number of
events arriving at the client after the user
enables a sensor depends on the number
of instrumentation points in the applica-
tion and on the frequency in which the
application threads encounter these
instrumentation points. Lines 4 through
7 show the sensor events for tau. Line 8
disables the sensor for tau.

Actuators
An actuator assigns a new value to an

object, as specified by the steering agent
with data or an expression.5 ACSL pro-
vides “<object name>” actuate
<data|expr> for actuators. Unlike
probes, when the application actuator
accepts the command, it assures the
steering system that the object data is
consistent and available for modification
without fear of corrupting application
execution. In Figure 4, line 9 uses an
actuator to request that the value of tau
be changed to 4.0e−4 when the applica-
tion has a safe opportunity to change it.
(This safe opportunity is a developer-
inserted source code annotation.) The
actuate call returns the new value for
tau when the actuator physically
changes the value in the application.

Control structures
Using control structures, any user can

compose into statement lists the ACSL
commands that manipulate these sen-
sors, probes, and actuators (see Figure
5). These control structures are based on
the event-action paradigm, where some
code block is executed when a monitor-
ing event satisfies a predicate. ACSL

Figure 4. Interaction with a runtime steering system using ACSL through a
text-based steering client. The target application is the multigrid simulation,
which continues to execute as the user enters steering commands through the
steering client. User commands are indicated with a > prefix.

1 > “numProcs” probe read; # probe read

2   “numProcs” = {1 -1 {8}};

3 > “tau” sensor enable; # sensor enable

4   “tau” = {1 8 {3.5460e-04}};

5   “tau” = {1 9 {3.5780e-04}};

6   “tau” = {1 10 {3.5813e-04}};

7   “tau” = {1 11 {3.5891e-04}};

8 > “tau” sensor disable; # sensor disable

9 > “tau” actuate {4.0e-4}; # actuate

10   “tau” = {1 -1 {4.0000e-04}};
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provides when <expr> do {code
block} as the basic event-action con-
trol structure. Each expr can be a com-
bination of objects and basic numerical
expressions, as well as relational opera-
tors. Multiple objects may appear in each
expression.

The code block is a list of steer-
ing commands that may be parameter-
ized so that objects in the code block
are available for use in its calculation.
Parameterized objects are those steer-
ing objects referenced in the expres-
sion’s conditional. As the parser con-
sumes the expression, it assigns a
number to each of these objects. The
parser assigns numbers from left to
right, beginning with one at the first
object and incrementing the counter
for each new object. The server resets
the counter for each steering expres-
sion when parsing begins. The remain-
ing portion of the expression then ref-
erences these objects with the format
$n, where n is the number that the
object has been assigned during the
parse.

Complex commands that involve
event-action control structures require
more analysis by the server. Consider the
spatial-locality optimization again. When
the server receives a statement list, it
parses the list to determine if the objects
in the expression and code block are local
to one server. If the list satisfies this
requirement, the server can enact the
steering command (code block) locally
to begin executing it without sending the
monitoring data to the client. This
improves both the monitoring data’s and
the steering enactment’s latency.

Next, the server stores a parsed
expression in its event-action table with
a unique identifier. In the example, the
expression < “thread.*.load” 0.8
receives an identifier, and each object
contained in the expr stores this iden-
tifier. Whenever an object’s data is
updated, <expr> is reevaluated because
it has a pointer to this expression via the
identifier. The event-action table entry
contains a pointer to the code block
for the control structure. When expr is
true, the corresponding code block is
executed. The overhead for evaluating

this expression is a direct function of the
expression complexity.

Application
instrumentation

Magellan instrumentation provides
well-defined mechanisms to modify an
executing application. Magellan servers
monitor and steer an application using
three basic mechanisms: sensors, actua-
tors, and probes.6 In line with our earlier
high-performance design criteria, we pre-
sent microbenchmarks for each of our
basic low-level monitoring and steering
mechanisms, which must be efficient. The
following microbenchmarks detail the
time consumed by the application thread
when executing an instrumentation point
for one of these mechanisms. This micro-
benchmarking helps with later analysis of
the entire system. Although perturbation is
an issue for all performance-
monitoring systems, our objec-
tive here is to convince users
that they will not suffer exten-
sive performance degradation
due to instrumentation.

An SGI Origin 2000 pro-
vided the target platform for
our performance tests. The sys-
tem has 32 MIPS R10000
microprocessors with a clock
speed of 195 MHz (1/195 MHz
≈ 5.1 ns). Peak performance per
processor is 390 Mflops. Data
and instruction caches are 32
Kbytes, and the secondary uni-
fied cache is 1 Mbyte. Total
memory is 8 Gbytes. The sys-
tem uses the Irix 6.4 operating

system. For reference, we measured a
null procedure call at 68 ns.

SENSORS
Sensors are instrumentation points in

the application that capture a compo-
nent of application state. When any
application thread encounters this
instrumentation point, it captures one
snapshot of the target application state
and forwards it to the steering server,
usually through shared memory.5,6 Fig-
ure 6 illustrates the pseudocode for a
tracing sensor, and Figure 7 shows an
instrumentation point in an application.
A sensor fires when an application
thread encounters an enabled sensor
instrumentation point. When the in-
strumentation point fires, the sensor
creates an event by copying the class,
current time, thread identifier, and
application state into the event. The

Figure 5. Sample steering command in ACSL that uses the when control
structure to specify changes in the column allocation to each thread. Actuator
instrumentation points in the application safeguard application state by
verifying requested changes and by using preconditions and postconditions.

1 # Event Expression

2 when (< “thread.*.load” 0.8) do

3 {

4   #Grow columns by 10% of problem width

5   “$1.startColumn” actuate (- “$1.startColumn”

6     (* “dimLength” 0.05));

7   “$1.endColumn” actuate (+ “1.endColumn”

8     (* “dimLength” 0.05));

9 }

Figure 6. Tracing sensor pseudocode.

1 trace-sensor ( datahandle )

2   hits++

3   if enabled

4     timestamp

5     captures++

6     allocate event

7     copy datahandle to event

8     package event

9     while buffer_insert fails

10       buffer_insert event

11   return



70 IEEE Concurrency

sensor, then, places the event into a
shared-memory first-in, first-out buffer.
The application sensors produce events,
and steering servers consume them. The
Magellan server polls these FIFO
buffers and extracts these tuples from
the buffer for analysis. If a FIFO buffer
is full or locked by the server, then the
sensor instrumentation point must stall
and retry inserting the event into the
buffer.

For sensors, two perturbation costs
are important: execution time for dis-
abled sensors and execution time for a
firing sensor. First, there should be lit-
tle overhead experienced for disabled
sensors. Applications will most likely be
instrumented with far more sensors than
actually used at runtime, allowing for
online selection in application steering.
The average cost for a disabled sensor is
190 ns, which is about 2.79 times the
cost of a null procedure call. Second, the
cost of a firing sensor must be small so
that using a sensor is not prohibitively
expensive. An enabled sensor that trans-
fers 4 bytes of application state executes
in 23 microseconds, which is about 121
times the cost of the disabled sensor.
The increase in cost over the disabled
sensor is due to three primary items:

• a mutex lock guarding the FIFO
between the application and the
steering server,

• allocation of memory for copying
state, and 

• copying of the object state to the
monitoring event.

These results are reasonable, but more
aggressive strategies (such as optimizing
memory management) could improve an
enabled sensor’s execution time. Alter-
natively, Magellan sensors can also
change their sampling rate to amortize
costs across many sensor firings.

ACTUATORS
Actuators are instrumentation points

in an application (see Figure 8).6 Actu-
ators modify the state of an application
component. Servers control actuators
by sending requests to the actuator
through a shared FIFO buffer, much
like sensors send events to the server.
When any application thread encoun-
ters this instrumentation point, it veri-
fies any preconditions or postcondi-
tions; then it updates the target
application component with this new
application state. In this case (unlike
sensors), the steering servers generate
change requests, and actuators in the
application consume these requests.
Similar to sensors, servers use a shared-
memory FIFO buffer to send requests
to actuators. An actuator fires when two
conditions occur: the steering server
arms the actuator by placing an event in
the FIFO buffer, and an application
thread encounters an actuator instru-
mentation point, removes the event
from the FIFO buffer, and makes the

change to the application component.
Otherwise, an actuator is dormant. 

As with sensors, applications will most
likely have many more actuators than are
actually used at runtime. Therefore, a
dormant actuator’s perturbation costs
must be minimized. The disabled actu-
ator costs 137 ns, twice the cost of a pro-
cedure call. The enabled actuator is sim-
ilar in execution time to the enabled
sensor, costing about 25 µs; it costs only
182 times the disabled actuator when the
data size is 4 bytes. The instrumentation
mechanism for the actuator suffers the
same implementation constraints as the
sensor does: a mutex lock and two mem-
ory copies. Varying the actuator data size
has effects similar to varying the data size
for sensors because they both must ac-
quire a mutex lock, copy memory, and
either allocate or free memory.

PROBE READS AND PROBE WRITES
Probes are simpler than sensors and

actuators. These mechanisms require no
instrumentation points in the applica-
tion. The Magellan server, because it
occupies the same address space as the
application, simply reads and writes
application state directly. The
server does not synchronize with the
application, which can lead to inconsis-
tencies in the recorded or changed data;
in fact, these possible inconsistencies
motivate the need for sensors and actu-
ators. Probes’ execution costs do not
contribute to perturbation other than
secondary effects such as cache and
processor execution disruptions.

Evaluation

To evaluate our steering system, we
(1) instrumented the application source
code and recompiled the application, (2)
ran the application with the steering sys-
tem enabled, (3) steered the system (with
an algorithm for performance steering),
and (4) compared performance results.

Several design criteria are not easily
quantified. For example, the ease of
instrumentation is quite subjective.
Therefore, we focus on quantitative
aspects of the system. As we mentioned
earlier, performance has many dimen-

Figure 7. One sensor instrumentation point in source code. AS_RegisterObject
notifies the Magellan server that the object “residual norm” is available for
monitoring. Then, the AS_Sense function uses the object handle to capture the
state of “residual norm” and then forward it to the Magellan server, if the
sensor is enabled.

1 void multig (my_id)

2 /*   perform multigrid (w cycles) */

3 int my_id;

4 {

5    /* declarations and initialization... */

6    AS_RegisterObject(steer, “residual norm”,

7     &multi->err_multi, AST_DOUBLE, 0, my_id,

8     &sResNorm);

9    /*...compute with multi->err_multi... */

10   AS_Sense(sResNorm);

11   /*...compute with multi->err_multi... */

12 }
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sions for computational steering. Ac-
cordingly, our evaluation compares
ACSL’s performance with that of other
steering strategies.

We chose to focus on performance
steering with algorithmic clients to cre-
ate consistent and repeatable perfor-
mance results. Note that application
steering is accomplished in a similar
manner, but is more difficult to quantify.
For these performance tests, the steer-
ing clients were simple C programs that
controlled the steering servers.

EXAMPLE APPLICATIONS
We use two different applications for

our performance measurements: a 27-
point 3D-stencil code and a multigrid
simulation.

27-point 3D-stencil simulation
The heat-diffusion simulation is a 27-

point 3D-stencil time-stepped simulation,
which uses threads with a single-process,
multiple data model. The data domain is
decomposed into slabs along the z-axis.
Each thread has two boundaries identify-
ing its slab: a start and an end column.
These columns are integers that are
shared between neighbor threads and
protected by mutex locks. Moving these
boundaries changes the slab decomposi-
tion and balances simulation load. Exper-
iments with this example used 1283 cells
in the 3D space, with heat as the cell
quantity.

Multigrid simulation
For a more complex example, we use

the Splash 2 benchmark, Ocean. We
chose this application because it exhibits
characteristics similar to various high-
performance computing applications.
Ocean simulates eddy and boundary cur-
rents in a cuboidal ocean basin. The
application uses finite-differencing com-
putational fluid dynamics with a regular
grid. The key algorithm uses a red-black
Gauss-Seidel multigrid equation solver;
each time step in the simulation involves
setting up and solving a set of spatial par-
tial differential equations.

APPLICATION PERFORMANCE
To determine how our instrumentation

and steering infrastructure affect appli-
cation performance, we measured appli-
cation performance on both the multi-
grid and the heat-diffusion simulations
under different instrumentation sce-
narios. All times are wall-clock times.
Table 1 gives the application-perfor-
mance measurement results. Optimized
mode is the uninstrumented, optimized
application’s original runtime. Heat dif-
fusion runs on two processors for 204
seconds, with work evenly distributed
between processors. Multigrid runs on
two processors for 132 seconds. Instru-
mented mode is the application’s run-
time with all the necessary instrumen-
tation for steering, but we performed
no steering. That is, the steering system
captured no monitoring events and exe-
cuted no steering commands.

In these tests, one steering server exe-
cuted concurrently with each application
during each test. Both heat diffusion and
multigrid ran within 10% of their orig-
inal runtimes, with instrumentation at

223 and 137 seconds, respectively. This
result bolsters the argument that appli-
cations can be instrumented for interac-
tivity and still provide adequate perfor-
mance. As a benchmark, debug mode
demonstrates the runtimes of these
unoptimized, uninstrumented applica-
tions with debugging information. In
these examples, the unoptimized debug
mode extends the runtime by more than
100% over that of the optimized mode.
The perturbation induced on an appli-
cation during steering is a function of the
steering requests issued by the client.

ALTERNATE DESIGN STRATEGIES
FOR STEERING SYSTEMS

Steering-system designers have a
choice of several strategies. The steering-
system infrastructure’s design can dra-
matically affect its performance and, in
fact, determine the types of steering pos-
sible. The primary difference in the fol-
lowing strategies is the range of possible
latencies in the closed-loop steering sys-

Figure 8. One actuator instrumentation point in source code. AS_Register
Object notifies the Magellan server that the object “tolerance” (a global
variable) is available for steering. Then, if requested by the Magellan server,
the AS_Actuate function uses the object handle to change “tolerance”.
The user-defined function verify receives a pointer to the incoming data,
and returns a Boolean value dictating whether the requested change is valid.
The user-defined functions pre and post allow user code to be executed
before and after the change.

1 bool verify (void *p)

2 {

3     /* is *p valid? */

4 }

5 

6 double tolerance = DEFAULT_E;

7 void main(argc, argv)

8 int argc;

9 char *argv[];

10 {

11   /* declarations and initialization... */

12   AS_RegisterObject (steer, “tolerance”,

13    &tolerance, AST_DOUBLE, 0,

14    &objHandle);

15   /*...compute with tolerance... */

16   AS_Actuate( objHandle, verify, pre, post);

17   /*...compute with tolerance... */

18 }
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tem. Only strategy 3 lets the steering system exploit the shorter
feedback loop, because steering requests are encoded with
ACSL, and the interpreter can make intelligent decisions about
how to fulfill steering requests.

Strategy 1: brute force
The steering system forwards to the steering agent all raw

monitoring data generated by the application. Once the agent
interprets this data, it decides on steering commands, if any.
The agent, then, issues these commands through the steering
system. The advantage of this scenario is that it is relatively
easy to implement. However, a major disadvantage is that it
forces a relatively long feedback loop on all steering commands.
Unfortunately, data congestion and management of the appli-
cation can prohibit high performance. Furthermore, latency
due to the long feedback loop can cause poor decision quality
in the steering system.

Strategy 2: monitoring data analysis and steering-
command synthesis

The steering system digests and filters raw monitoring data,
which is then forwarded to the steering agent. The steering
agent issues steering commands as compound commands.
Then, the steering system coordinates and controls the exe-
cution of the commands. This strategy combines monitoring
data analysis with steering-command synthesis. An advantage
is that the system can filter data early in the process to reduce
data congestion. The steering system can coordinate and
expand these commands. On the other hand, although moni-
toring data latency might be reduced because of data filtering,
any transmission latency in the steering system is forced on all
this monitoring data. Steering commands return via the same
path. In summary, all mandatory communication latencies
remain similar to the brute-force strategy.

Strategy 3: Magellan steering language
Our language-based approach lets the steering client

describe the steering commands and any conditions with a lan-
guage. Because a language explicitly defines relationships
between monitoring data and steering commands, the steering
system can optimize the agent’s request. Such a steering sys-

tem can integrate monitoring and steering, then optimize the
commands for spatial locality. In contrast to the aforemen-
tioned strategies, this choice has an advantage in that it allows
dramatic changes in the operation of the steering system for
two basic reasons:

• Massive amounts of monitoring data might never have to
be transferred across the steering system to the steering
agent, because these decisions are made locally.

• The frequency of steering commands increases dramati-
cally, because these local decisions circumvent mandatory
communication latencies.

This approach’s major limitation is that the steering system can
optimize only those language requests that fulfill its prerequi-
sites. In some cases, the steering system simply degrades to strat-
egy 2.

STEERING FREQUENCY
To compare these alternate strategies, we developed a new

steering metric called steering frequency. Equation 1 describes
system latency.7 The cost for one steering cycle in the steer-
ing feedback model includes generating monitoring data in
the application ∆me, transporting it to the steering agent ∆mt,
digesting the data ∆ma, deciding on a steering command ∆agent,
issuing the steering command ∆ss, transporting it to the steer-
ing system ∆st, and executing the steering command ∆se.

∆steercycle = ∆monitor + ∆agent + ∆steer

= (∆me +∆mt +∆ma ) + ∆agent + (∆ss+ ∆st+ ∆se)

(1)

Over a period of one second, the number of possible steer-
ing events per server based on the most recent monitored data
is limited to ωsteering, as specified in Equation 2. Steering fre-
quency (Equation 2) is a function of latencies that exist
throughout the closed-loop steering system. We use this met-
ric to compare the brute-force strategy (which is typical of
many steering systems) with the steering-language approach.

(2)

Increasing any of these components decreases the steering fre-
quency. Consequently, a higher frequency indicates that the entire
system is operating efficiently, because these latencies are low.

Steering frequency for brute-force steering system
Most of the different components of a brute-force steering

system have been studied independently. However, the entire
steering cycle depends on the combination of these compo-
nents and the particular implementation. Gathering data with
a monitoring system such as Magellan, we can expect a steer-
ing system to have a ∆me of about 23 µs. Furthermore, a steer-

ω steering
steercycle monitor agent steer

= =
+ +

1 1
∆ ∆ ∆ ∆

Table 1. The steering system’s effects on application
performance.

AVERAGE RUNTIME RELATIVE

APPLICATION STATE (SECONDS) PERFORMANCE

Multigrid Optimized 132 1
Instrumented 137 1.04
Debug 312 2.37

Heat diffusion Optimized 204 1
Instrumented 223 1.09
Debug 500 2.45
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ing system such as Magellan can arm
actuators in a similar amount of time.
Ignoring the other costs, ωsteering is 1/(23
+ 23) µs ≈ 21,739 Hz.

Transport times for both monitoring
and steering depend greatly on the
underlying network protocol and oper-
ating system. TCP/IP, for example, has
a single one-way message send of about
1 ms over a traditional 10-Mbyte Ether-
net on Unix. Adding the transportation
costs to ωsteering produces 1/(46 + 1,000 +
1,000) µs ≈ 488 Hz.

The response time for the steering
agent is directly a function of the com-
plexity of the steering agent. The agent
can be as simple as a five-line C pro-
gram or as complex as a virtual reality
environment. Assuming there is a
human in the loop for interactivity, we
can ignore the actual costs of the inter-
face technology and conservatively esti-
mate the human user response time of
about 100 ms. Given this estimate, the
final ωsteering is 1/(46 + 2,000 + 100,000)
µs ≈ 10 Hz. The costs for this architec-
ture are ∆agent >> ∆mt, ∆st >> ∆me, ∆ma, ∆ss,
∆se, which leads to hierarchical costs and
limitations for this type of steering sys-
tem. This conservative estimate demon-
strates that the frequency of interactive
computational steering with a brute-
force system approaches 10 Hz. By
forcing all monitoring events and steer-
ing commands to flow through the
entire loop, this strategy limits the fre-
quency with which the system can
respond to applications and users.7
Algorithmic steering would certainly
improve this degradation by reducing
the agent response time, but this would
also limit steering flexibility.

Steering frequency for the
Magellan steering system

The language strategy (strategy 3)
changes Equation 2 to recognize that
ACSL commands can take advantage
of spatial locality and obviate manda-
tory communication latencies. If the
optimizer determines that the
requested command can be propagated
closer to the application with respect to
latency, it does so. This opportunity
vastly improves steering frequency by

reducing the latencies of steering com-
mands. First, because the steering com-
mand is close to the application, the
steering system can receive monitoring
information at higher rates and execute
steering decisions at a higher fre-
quency. Second, because the server
digests monitoring information early
in the process, the steering infrastruc-
ture is not overwhelmed with data.
Third, ACSL maintains flexibility
because the system migrates steering
commands to the servers only when the
commands satisfy the optimization pre-
requisites. Furthermore, because users
can compose ACSL commands, this
strategy does not limit the types of
steering for the application.

For Magellan, on the heat-diffusion
code, ∆steercycle was 49 µs for steering per-
formed directly at the steering server,
which led to a ωsteering of approximately
20,400 Hz. Forcing Magellan to route
data through the client raised ∆steercycle to
approximately 3 ms, dropping the steer-
ing frequency to 333 Hz.

The performance steering results in
Figure 9 demonstrate the importance of
steering frequency. In this experiment,
we changed only the steering action’s
latency. We executed the heat-diffusion
application, with Magellan balancing the
load as described earlier. In this config-

uration, we tested two different steering
frequencies for the application. An effi-
cient steering system, such as Magellan
with its language approach, can have a
high steering frequency of 20,000 Hz,
because commands are closer to the
application and small amounts of data
must cross process boundaries. 

To test the effects of a slower system,
we induced a latency in the decision
process to lower the steering frequency
to approximately 300 Hz. Although
both applications eventually achieved a
reasonable load, the higher steering fre-
quency of 20,000 Hz achieved balance
at about 10 time steps before the lower
frequency of 300 Hz did. This fre-
quency is unimportant in later time
steps when the load balance becomes
stable.

Interestingly, the lower frequency of
300 causes a mismatch between the sen-
sor events and the arming of actuators,
as Figure 10 shows. If the time between
event generation and actuator arming is
too long, the actuator cannot inject its
requested change until some later time
step—essentially losing the steering
opportunity for that time step. Never-
theless, it is important that the steering
cycle ∆steercycle be fast relative to the appli-
cation to prevent these missed steering
opportunities.

Figure 9. Speedup versus application time step. The heat-diffusion simulation
executes on 10 threads with an unbalanced initial distribution. As the simulation
executes, the steering system attempts to balance the load. A higher steering
frequency of 20,000 Hz provides a quicker initial balance than does the lower
setting of 300 Hz.
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OUR INITIAL experience with Magellan
has been positive, and we have met most
of the major design criteria. However,
several improvements would help this
approach to computational steering.
First, ACSL cannot optimize all com-
mands. In some cases, the user’s steering
request demands brute-force tactics to
retrieve data and steer the system. Sec-
ond, although it is clear that application-
specific visualizations and steering can
be very useful, generic tools must be
developed that help users identify steer-
ing opportunities in the code. For exam-
ple, some applications have thousands of
variables and procedures. Even with
advanced visualization techniques, forc-
ing the user to compare and correlate
these items is unattractive. Finally, it is
also clear that the system must allow
more complex forms of steering. Our
language provides a basis for these
abstractions, but more work is necessary.

Although ACSL is specified with an
LALR(1) grammar, it is congruent with
graphical user interfaces for steering.
GUIs can use the language to control
the steering system. Although ACSL
provides a technique for steering appli-
cations, it does not enforce any policies
and, by design, forces developers to
create their own policies. Analysis of
policies for computational steering
remains an open area. Each application
can have thousands of parameters, and
various application experts must apply
application steering to their own
domains to determine the most appro-
priate policies for computational steer-
ing. We are currently experimenting

with large-scale applications and sim-
ple steering policies. We expect that
such experimentation will result in a
richer set of ACSL constructs and addi-
tional optimizations for sets of ACSL
statements.
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Figure 10. Missed steering opportunities. If the lag time from the generation
of the monitoring data to the enactment of the steering command is too long,
the actuator might have to wait until later opportunities to make its change.
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