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Abstract. Computer system performance measurement and code opti-

mization have a long and illustrious history that can be traced to the

very �rst computers. With high-performance parallel systems, the prob-

lems become more complex and the need to achieve high fractions of

peak performance more critical. In this chapter, we describe key points

in the historical development of performance tools for parallel systems,

as well as sketching current research challenges.

1 Introduction

Simply put, the goal of performance analysis is to provide the data and insights

required to optimize the execution behavior of application or system components.

Using such data and insights, application and system developers can choose to

optimize software and execution environments along many axes, including ex-

ecution time, memory requirements, and resource use. Given the diversity of

performance optimization goals and the wide range of possible problems, a com-

plete performance analysis toolkit necessarily includes a broad range of tech-

niques. These range from mechanisms for simple code timings to multi-level

hardware/software measurement and correlation across networks, system soft-

ware, runtime libraries, compile-time code transformations, and adaptive execu-

tion.

High-performance parallel systems exacerbate already diÆcult performance-

optimization problems. Although performance is the raison detre for parallel

computing, subtle interactions among parallel software components can easily

lead to unexpected bottlenecks. More perniciously, Amdahl's law shows that se-

rialization of even a small fraction of a code can have dramatic e�ects on overall
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performance. Consequently, the history of parallel computing is replete with sto-

ries of application and system designs that failed to meet expected performance

goals.

For example, preliminary experiences with terascale systems (i.e., thousand

processor systems capable of more than 1012 operations per second), suggest that

the fraction of achieved performance can actually decline as one adds processors.

These systems are so complex that the resource demands of each large-scale, mul-

tidisciplinary application can expose portions of the behavioral-execution space

never before tested or explored. It is these unanticipated patterns of hardware,

system software, and application interaction that cause poor performance.

To understand and master the complexity of large-scale parallel systems, a

plethora of performance-analysis tools and techniques have been proposed and

developed. Despite their number and diversity, most tools and techniques lie

in one of three broad categories: analytic modeling, simulation, or empirical

performance measurement.

The attraction of analytic models (e.g., Petri nets, queueing networks, or

Markov models) lies in their ready parameterization and rapid solution, allow-

ing one to quickly predict performance over a broad range. Their major liability

is that tractability requirements often dictate restrictive assumptions (e.g., ser-

vice times with negative exponential distributions) that are violated in practice,

lessening accuracy.

In contrast, the 
exibility of discrete event simulation enables construction

of detailed, highly accurate models of system components. Furthermore these

models can be evaluated using realistic workloads. This 
exibility is not without

price | simulations must be carefully validated against empirical data, lest

generalizations from parametric simulation studies be based on faulty models.

Moreover, the time and computational cost demanded by detailed simulations,

particularly for large-scale systems, often precludes their use.

Given these constraints, experimental performance analysis remains the method

of choice for tuning large-scale, parallel systems. In this chapter, we begin by

discussing the typical cycle of performance analysis, emphasizing measurement,

data analysis and visualization, and system tuning.

The remainder of this chapter is structured as follows. In x3, we begin with

a detailed description of the range of basic instrumentation and measurement

techniques for parallel systems, followed in x4 by an assessment of more sophis-

ticated approaches to reducing and analyzing performance data sets. In x5, we

discuss a suite of performance visualization and presentation techniques for par-

allel systems. This is followed in x6 by an assessment of integrated methodologies

for instrumentation, analysis, and visualization, including analysis of the costs

for each. Finally, we conclude in x7 with a few observations on the performance

analysis process.



2 The Performance Analysis Cycle

The most common approach to experimental performance analysis relies on a

�ve phase cycle of instrumentation, measurement, analysis, presentation, and op-

timization. At present, the phases of this cycle span code preparation, execution,

and post-mortem analysis and optimization.

Instrumentation. Performance instrumentation can be either implicit or explicit.

Implicit instrumentation relies on monitoring daemons to capture performance

data; most pro�ling tools [20] rely on some variation of this approach. In con-

trast, explicit instrumentation modi�es software by directly inserting measure-

ment code. For application or system software, this explicit instrumentation can

be inserted automatically (e.g., via object code patching [32] or via instrumenting

parsers or compilers [1]) or manually by including calls to instrumentation library

routines. For hardware instrumentation, one needs either specialized probes or

software accessible counters or registers (e.g., the hardware counters now em-

bedded on most commodity microprocessors [48]).

Measurement. To capture performance data, one then observes the instrumented

system during execution, while the instrumentation software and hardware records

pertinent performance data. For application software instrumentation, this typ-

ically includes procedure, loop, and basic block execution counts and times,

communication (i.e., message passing or shared memory references) and syn-

chronization costs, I/O patterns and system calls. System software measures

often include network traÆc, virtual memory overhead, context switches and

task scheduling patterns, and disk traÆc. Finally, common hardware measures

include instruction mixes and stalls, as well as cache misses.

Data Reduction and Correlation. Following measurement, the resulting perfor-

mance data must be processed to yield compact and easily interpretable results.

If event tracing [36] was used to capture the pattern of software component

interactions (e.g., message passing, I/O, or procedure calls), statistical summa-

rization can transform large, unwieldy masses of raw data into succinct descrip-

tions. Alternatively, it may be necessary to relate measurements of executable

code to source code by inverting key compile-time code transformations (e.g.,

when high-level data parallel code was translated to message passing code during

compilation [1]).

Analysis and Presentation. The goal of instrumentation and measurement is in-

sight. Hence, one must present data in meaningful and intuitive ways. For simple

pro�les, standard tabular mechanisms suÆce. For more complex measurements

and subtle performance problems where one must trace problems from proxi-

mate to root causes, more powerful data analysis and presentation techniques

are required. Static color graphics, workstation animations, and immersive vir-

tual environments have all been used to visualize performance data [19].



System Optimization. Given an understanding of the causes of performance

problems, the �nal step is remediation. This requires either modifying the ap-

plication or system software, recon�guring or adding hardware, or changing ap-

plication or system parameters. Realizing these changes can be either trivial or

extraordinarily diÆcult. Moreover, one must weigh the intellectual and labor

costs of optimization against the perceived rewards. Rarely is optimizing exe-

cution time or system resource use the true goal. Instead, one seeks to reduce

execution time or resource use subject to some constraints.

2.1 Measurement Constraints

Within this �ve step cycle, users and performance analysts are free to choose

instrumentation, measurement, analysis, and presentation techniques that bal-

ance

{ resolution, the level of detail (e.g., pro�ling or tracing) and granularity (e.g.,

loop nest or procedure call) of measurements,

{ perturbation, the change in observed behavior from that when no instrumen-

tation is present,

{ 
exibility, the ability to apply performance tools in multiple contexts and

applications in con�gurable ways, and

{ accuracy, capturing the true behavior of the observed system, subject to

errors induced by perturbation.

Because many of these attributes are inimical (.e.g., high resolution is rarely pos-

sible without substantial perturbation), no single set of options is appropriate for

all performance optimization scenarios. For example, some techniques minimize

measurement perturbation by dynamically enabling instrumentation only when

needed [32], while other techniques attempt to estimate and remove perturba-

tion from measurements during analysis [29]. Both of these perturbation choices

a�ect accuracy and resolution.

2.2 In Vivo Optimization

The classic cycle of instrumentation, measurement, reduction, analysis, and op-

timization described above presumes that observed behaviors are repeatable,

namely that subsequent executions based on post-mortem optimization will yield

performance improvement because similar behavior will accrue. For the common

case of application program tuning on an otherwise quiescent sequential or par-

allel system, this assumption holds.

However, emerging applications are increasingly dynamic and adaptive and

execute on heterogeneous collections of distributed, shared resources. In such an

environment, the execution context is rarely repeatable, making post-mortem

tuning problematic. Instead, the conventional in vitro cycle of instrumentation,

measurement, assessment, and tuning must be replaced with in vivo optimization

techniques that instrument, measure, and tune software during its execution. We

will return to this topic in x4.



3 Instrumentation and Measurement Techniques

One can instrument systems at many levels, though the four most common are

hardware, system software, runtime systems, and application code. Given the

complexity of parallel systems and their sensitivity to small changes in compo-

nent interactions, correlating performance data across two or more of these levels

is normally required to understand the actual causes of performance problems.

Software instrumentation, for example, can capture the interaction of compiler-

synthesized code with runtime libraries and system software. However, to under-

stand the e�ects of superscalar instruction scheduling or cache hierarchies in a

distributed shared memory (DSM) system, one must capture and correlate both

software and hardware performance metrics.

Fortunately, new microprocessors commonly provide a set of performance

registers for low-overhead access to hardware performance data. For example,

the MIPS R10000 [33] includes registers that count hardware events, including

cycles, instruction and data cache misses, 
oating point instructions, and branch

mispredictions. Similar counters exist on other architectures.

These di�erent levels of instrumentation can be realized via several methods.

First, instrumentation can be inserted either statically, during code development

or compilation, or dynamically, during execution. Second, instrumentation can

be inserted manually or automatically. Finally, the nature of the data gathered

(e.g., hardware, application, or system software) depends on the measurement

technique.

3.1 Static and Dynamic Instrumentation

The most common instrumentation approach augments source code with calls

to speci�c instrumentation libraries. During execution, these library routines

collect behavioral data. Examples of static instrumentation systems include the

widely used UNIX prof and gprof [20], the Automated Instrumentation and

Monitoring System (AIMS) [47], the Executable Editing Library (EEL) [27],

and the Pablo performance environment toolkit [38].

The primary drawback of static instrumentation is its lack of 
exibility | it

cannot be modi�ed during program execution. Thus, changing the types of data

collected typically requires application re-instrumentation, recompilation, and a

new execution.

In contrast, dynamic instrumentation allows users to interactively change in-

strumentation points, focusing measurements on code regions where performance

problems have been detected. Paradyn [32] is the exemplar of such dynamic in-

strumentation systems. The drawback of dynamic instrumentation is that the

application must execute long enough for users or performance runtime systems

to �nd performance problems by incrementally modifying the instrumentation.

3.2 Interactive and Automatic Insertion

As we noted earlier, performance analysis tools can insert instrumentation either

automatically or interactively. The strength of interactive instrumentation is its




exibility; users can insert instrumentation library calls at arbitrary code points.

However, naive or excessive instrumentation can excessively perturb execution

behavior (e.g., by inhibiting compiler optimizations or by instrumenting fre-

quently executed inner loops). Conversely, automatic instrumentation relies on

the compiler or the runtime system to insert measurement code. This approach

reduces the risk of perturbation, but sacri�ces user control over instrumentation

points.

3.3 Instrumentation Methods

Regardless of the instrumentation level, there are four main approaches to per-

formance data capture: sampling, counting, timing, and tracing. Each re
ects a

di�erent balance among data volume, potential instrumentation perturbation,

accuracy, and implementation complexity. In addition, each can be implemented

in a variety of ways, ranging from extrinsic (e.g., an external hardware monitor

that counts data cache misses) to intrinsic (e.g., inserted code that computes a

histogram of procedure activation lifetimes).

Program Counter Sampling. By far the most common instrumentation

method is program counter sampling. The prof and gprof utilities [20] pe-

riodically sample the program counter and compute a histogram of program

counter locations. Pro�ling depends on an external sampling task, leading to

coarse granularity and requiring the total program execution time to be long

enough to accumulate a statistically meaningful sample set. Moreover, as dis-

cussed in x6.1, pro�lers often assume a simple mapping from object code to the

original source code, which is rarely true on parallel systems with aggressive

restructuring compilers.

Event Counting. Event counting eliminates some of sampling's limitations,

albeit with possibly increased perturbation for frequent events. Because counting

is not a statistical measure, the observed frequencies are accurate even for short

executions.

Some performance data capture toolkits combine sampling and counting. For

instance, the MIPS R10000 microprocessor includes two hardware performance

counters, each able to track one of 16 events per cycle. To capture more than one

event per counter, the operating system maintains a set of 32 virtual counters,

multiplexing (sampling) the physical counters across these. This multiplexing

mechanism sacri�ces accuracy but increases coverage, allowing a single program

execution to acquire data for all the desired counters.

Interval Timing. Interval timing combines counting with elapsed-time mea-

surements. Rather than simply sampling the program counter, interval timing

surrounds code fragments with calls to timing routines, accumulating cumulative

data and counts of code fragment execution time. This requires software access

to high-resolution, low overhead clock.



With increasing processor speeds, the standard UNIX timing facility, often

with 50 or 60 Hz resolution, is unacceptably coarse. Only with microsecond

resolution (or better) clocks and low overhead access routines can one accurately

measure small code fragments.

Event Tracing. Event tracing is the most general of instrumentation techniques

| from an event trace, one can compute counts or times; the converse is not true.

The primary disadvantages of tracing are the large data volume and the potential

instrumentation perturbation. For example, instrumenting procedures to record

entry and exit can easily generate 16 KB/second on a single processor if the

mean procedure activation lifetime is 500 microseconds and the data associated

with each event includes only a four-byte event identi�er and a four-byte time

stamp. On a parallel system with hundreds or thousands of processors, the data

volume can be many megabytes/second.

Runtime summarization can reduce event tracing's data volume by trading

computation overhead for data volume. Rather than generating trace �les, the

instrumentation system computes metric values during execution, generating

periodic statistical summaries. In x4, we discuss summarization techniques in

more detail.

In general, perturbation, resolution, and accuracy are dependent on the in-

strumentation method; no single instrumentation approach is appropriate for all

cases. The choice of a particular method is dictated by the desired information

and the constraints of the available instrumentation | some measurements may

not be possible in a particular environment.

4 Performance Data Analysis

The main goal of performance analysis is identifying bottlenecks or sources of

poor performance. However, with increased software and parallel system com-

plexity, identifying these bottlenecks becomes commensurately more diÆcult.

Performance bottlenecks may lie in instruction schedulers, memory-hierarchy

management, wide-area or local communication protocols, scheduling algorithms,

or application load balance. Consequently, the metrics that highlight perfor-

mance problems are highly dependent on the execution context; determining

appropriate metrics and assessing the resulting data is the goal of performance

analysis.

4.1 Data Management Techniques

The simplest form of analysis �lters data that do not meet user-speci�ed, crite-

ria, retaining and computing metrics from only the pertinent data (e.g., standard

statistical metrics such as the mean, minimum, maximum, percentiles, variance,

and coeÆcient of variation). Often, these metrics suÆce | the causes of perfor-

mance problems are obvious once even simple measurements are examined.



For more complex performance problems, detailed analysis based on event

traces may be required. However, the potentially large volume of event trace

data, the large number of possible performance metrics, and consequent be-

havioral perturbations make this approach impractical for large, long-running

applications. To retain the advantages of event tracing while minimizing data

volume and intrusion, analysts must reduce both the number of metrics that

are needed to identify bottlenecks (metric dimensionality) and the number of

locations where data must be captured (metric plurality).

As a basis for discussing event trace reduction, consider a set of n dynamic

performance metrics, each measured on a set of P parallel tasks. Conceptually,

an event trace de�nes a set of n dynamic performance metrics, mi(t), on each

of P tasks

(m1(t);m2(t); :::;mn(t))p p 2 [1::P ]

that describe parallel system characteristics as a function of time t. Following

[35], if Ri denotes the range of metric mi(t), we call the Cartesian product

M = R1 �R2 � :::�Rn

a performance metric space. Thus, the ordered n-tuples

(m1(t) 2 R1;m2(t) 2 R2; :::;mn(t) 2 Rn)

are points in M(t), and the event trace de�nes the temporal evolution of these

P points in an n dimensional space.

There are several possible approaches to reducing metric dimensionality and

plurality. Below, we describe two | statistical clustering and projection pursuit.

Statistical clustering reduces the number of measurement points (i.e., P ) by elid-

ing data from groups of processors with similar behavior. Conversely, projection

pursuit reduces the dimensionality of the metric space (i.e., n) by identifying

\important" metrics.

Statistical Clustering. Programs for parallel systems generally use the Sin-

gle Process Multiple Data (SPMD) model (e.g., using MPI), the data-parallel

or object-parallel models (e.g., using HPF or parallel C++ ), or simple func-

tional decompositions. In the �rst three models, the same code executes on all

processors, with behavior di�erentiated by data-dependent control 
ow. In the

functional decompositions, similar code executes on several processor groups.

Regardless of the programming model, tasks executing the same code with

similar data form behavioral equivalence classes with comparable trajectories in

the metric space. Statistical clustering groups processors (or tasks) in equivalence

classes whose performance metrics trace similar trajectories in the metric space

and chooses one member of each grouping as a representative of the others.

As an example, consider an SPMD code that relies on a master task to read

initialization data and allocate work to a set of N worker tasks. If all workers

behave similarly, clustering identi�es two clusters, the �rst with cardinality one,



the master, and a second with cardinality N , the workers. Only two tasks, the

master and any one of the remaining tasks, fully represent the range of applica-

tion behavior. By periodically computing clusters using real-time data, an event

tracing system need record data only for the representatives of each cluster,

dramatically reducing the total data volume [35].

Projection Pursuit. Statistical clustering reduces the number of processors

(or tasks) P from which event data must be recorded, but it does not reduce

the number of metrics n, the dimensionality of the metric space. Projection

pursuit [25], a statistical variant of principal component analysis, identi�es a

subset of the metrics that captures most of the statistical variation.

Conceptually, at any time t, many of the n metrics are highly correlated.

Multidimensional projection pursuit selects the least correlated k metrics from

the multidimensional metric space; typically, k is two or three (i.e., two or three-

dimensional projection pursuit). Using projection pursuit, real-time event trac-

ing need record only that subset of the metrics deemed \important" by the

projection.

As Fig. 1 suggests, combining statistical clustering and projection pursuit

can potentially reduce both the number of processors and the number of metrics

that an event tracing system must record during program execution [41]. How-

ever, the possible data reduction from clustering and projection pursuit must

be balanced against the additional computational overhead and decreased mea-

surement accuracy.

Between successive application of clustering and projection pursuit, only data

from the representative processors and metrics is recorded. If the algorithms are

applied too infrequently, application phase changes may be missed (i.e., the

recorded data may no longer be representative). Conversely, if applied too fre-

quently, the computational overhead may excessively perturb application behav-

ior. Hence, developing adaptive windowing algorithms for triggering clustering

and projection pursuit remains a key research problem.

4.2 Performance Prediction

In standard practice, performance analysis is remedial, identifying problems cre-

ated earlier, during design of hardware, application or system software. However,

if it were possible to estimate application or system performance during rather

than after design, performance analysis tools could lessen the high intellectual

cost of developing and optimizing parallel applications. This would allow devel-

opers to understand the interactions of architectural parameters, problem size,

application structure, and number of processors, identifying and eliminating po-

tential bottlenecks during design.

Because performance bottlenecks may shift as these values change, a broad

characterization of the parameter space would both enable creation of applica-

tions with portable performance and place system design on a solid performance
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engineering foundation. These characterizations need not be quantitatively ex-

act, only qualitatively correct. Thus, large performance prediction errors are ac-

ceptable if the predictions accurately identify bottlenecks and track their move-

ment with changing assumptions and parameters.

Several groups have developed tools and techniques to support performance

prediction, including estimating the e�ectiveness of data partitioning strategies

[3] and the execution time of parallel applications [22]. Most of these tools esti-

mate only total execution time, rather than identifying bottlenecks by estimat-

ing the behavior of individual code fragments; P3T [16] is one notable exception.

Moreover, they assume regular program structure with repeatable behavior.

To truly understand the interplay of complex program structure and observed

performance, one must tightly integrate compile-time symbolic analysis [17] and

performance measurement to analyze both aggregate application behavior and

individual code fragments Using a symbolic manipulator, a compiler could create

cost models for multiple code variants, evaluate the resulting expressions for

speci�c numbers of processors and problem sizes, and synthesize the the code

variants with the highest predicted performance. By augmenting and validating

these symbolic models with dynamic performance data from program executions,

the compiler could incrementally re�ne the quality of its predictions and code

generation choices.

In this model, compilation and performance analysis are a closed loop, with

both symbolic performance predictions and quantitative measurements guiding

the compilation process [30]. However, for symbolic control 
ow analysis to be

broadly e�ective, it must be extended to include both linear and non-linear

expressions, more powerful simpli�cation mechanisms, and relations between

input data and output information.



4.3 Scalability Analysis

Assessing the scalability of algorithms, applications, and architectures is a spe-

ci�c aspect of performance prediction. Like symbolic analysis, most automated

scalability techniques require deep compiler/performance tool integration.

As a feasibility test of performance scalability analysis, Mendes extended

the Rice Fortran D95 compiler to predict the scalability of regular data parallel

codes [31, 1]. The extended compiler translated data parallel code and generated

a symbolic cost model for the execution time of each code fragment in the orig-

inal data parallel source code. The scalability of these fragments could then be

evaluated as a function of program size and number of processors.

In a similar e�ort, Sun et al extended the Vienna Fortran Compilation Sys-

tem (VFCS) [4] for scalability prediction [45]. The integrated system combines

performance data from measurements on a small number of processors with a

cost model of the application. The scalability is then automatically predicted as

the number of processors varies in proportion to the problem size.

These experiments have shown that the automatic scalability prediction is

feasible for small, regular codes. However, general techniques are needed that

can predict performance scaling for large, irregular applications.

5 Performance Visualization

Because it allows users to grasp essential features of large, complex data sets,

visualization is now a standard part of the scienti�c process. These same qualities

also make visualization highly attractive for performance data analysis [24, 26,

44, 39], especially on parallel systems where data collections grow very large.

Scienti�c and performance data visualization share many features and design

goals, though they also di�er in important, though subtle ways.

{ Flexibility. Given the diversity of performance data, visualization systems

must allow users to bind data to those graphical representations the users

�nd useful and intuitive (e.g., it should be possible to represent the same data

multiple ways and di�erent data using the same representations). Further,

when a binding is not obvious, visualizations should allow users to explore

a variety of bindings and data perspectives [40].

{ Multiple levels of detail. Because performance problems can arise at every

hardware and software level, visualizations must enable users to focus on

interesting yet complex behavior while eliding irrelevant or tedious details.

Consider a distributed computation that spans several geographically dis-

tributed sites. A performance analyst might wish to view the wide-area com-

munication traÆc and aggregate performance at each site, examine the task

scheduling on one node, or, explore the data locality of a code fragment. Vi-

sualization techniques should encourage users to freely navigate among the

many levels of performance data associated with such a distributed compu-

tation.



{ Data management. As we have discussed, detailed event tracing of large par-

allel or distributed systems can quickly produce large volumes of data. Unlike

traditional scienti�c data, performance data is often of high dimension, and

very sparse | it contains multiple, time varying metrics captured on each of

hundreds or thousands of processors. Performance data management systems

must �lter, extract, and correlate data subsets in response to user queries.

Clustering, statistical summarization, projection pursuit, binning, surface

contouring, and volume visualization [43] all reduce the data management

burden by extracting important features from the data set while discarding

repetitive or uninteresting data.
{ User interfaces and interaction. Visualizations should provide natural and

intuitive user interfaces and methods for users to manipulate large data

collections. Although static visualizations of data collections are useful and

common, comprehension generally improves when users can interactively

explore their data [42].
{ Scalability. Given the volume of performance data generated by parallel sys-

tems, visualizations must scale to large numbers of processors and support

analysis of codes that run hours or days. For very large executions, this

mandates real-time measurement and display.

Attempts to satisfy these con
icting goals have resulted in large numbers of

performance analysis and visualization systems for high-end computers. Notable

examples include the seminal Seecube toolkit [14], ParaGraph [23], Medea [9],

and Pablo [38]. Despite the diversity of tools, their displays can be broadly

classi�ed along �ve axes.

{ Statistical visualizations. Because many performance metrics are statistical

measures, a large class of performance displays are variants of common sta-

tistical data visualizations [12] (e.g., scatterplots or histograms). The gener-

ality of these displays is both a strength and a weakness. They can represent

virtually any performance metric. However, they do not easily scale to large

numbers of metrics nor do these simple animations readily convey evolution-

ary behavior.
{ Specialized performance visualizations. In contrast to generic statistical data

displays, several research groups have developed domain-speci�c performance

displays that directly represent some important feature of parallel hardware

or software. Among the best known of these are procedure call graph displays

[37], network topologies [23], and geographic traÆc displays [19]. Many of

these domain-speci�c displays are tightly coupled to speci�c programming

models (e.g., message passing with PVM or MPI). For example, ParaGraph

[23] includes a wide variety of hypercube topology projections, each animated

with message traÆc patterns.
{ Animations. Because the majority of performance data consists of time se-

ries, animation is often used to represent evolutionary behavior. For large

data volumes and long-running computations, animation is often the only

practical method to create scalable displays | displays lack suÆcient reso-

lution to display entire execution lifetimes without abstracting detail.



{ Source code browsers. As noted in x6, with increasingly sophisticated compil-

ers, the behavior of compiler-synthesized code may di�er dramatically from

that written by the user (e.g., by transforming data parallel code into mes-

sage passing code for a distributed memory parallel system). For users to

optimize their code, performance measurement and display systems must

relate dynamic performance data to the original source code. Not only does

this require deep integration of compilers and performance tools, it encour-

ages creation of source code browsers that display both source code and

performance data. Source code browsers like SvPablo [15] display hardware

metrics (e.g., cache behavior and instruction mixes) beside lines of source

code, allowing users to explore performance within the context of their source

code.
{ Immersive environments. With high-end systems emerging with thousands

of processors, performance presentation systems must either elide increasing

detail to represent aggregate performance on workstation displays or adopt

new, high resolution, high modality systems that can display more data.

Immersive virtual environments not only have multi-megapixel resolution,

they exploit sound and haptics to create immersive experiences | one is

surrounded by dynamic performance data. As an example, Virtue [37] sup-

ports collaborative, immersive performance analysis and real-time display.

Real-time data streams are mapped to a hierarchy of displays, ranging from

geographic representations of wide-area traÆc, through \time tunnel" repre-

sentations of parallel system behavior, to dynamic call graphs of execution on

a single tasks. By touching graph components, users can expand or contract

subgraphs and change the behavior of executing software.

With a brief description of performance instrumentation, analysis, and dis-

play techniques, we turn now to integration of the components.

6 Deeply Integrated Performance Environments

For performance evaluation tools to be truly e�ective, they must integrate mea-

surement, data analysis, visualization, and performance remediation. Ideally,

they should also scale to thousands of processors, support analysis of distributed

computations, and be portable across a wide variety of parallel systems. As we

noted earlier, scalability means that the tools must not only capture and analyze

data from large numbers of processors or tasks but also present the data in ways

that are intuitive and instructive.

Early performance visualization systems focused on single architectural and

programming models (e.g., message passing) and represented the states of in-

dividual processors (e.g., by a colored square for each processor) and commu-

nication links (e.g., by communication network animations). In consequence,

workstation screen real estate limited these displays to a few hundred proces-

sors.

Complex applications now involve code written in a variety of languages and

programming models, all executing on multiple parallel architectures. Without



performance tool portability and 
exibility, users must learn a new tool each

time the programming model or parallel architecture changes.

Today, the de facto standard for performance instrumentation and analysis

remains application pro�ling with post-mortem analysis of performance bottle-

necks. This model was adequate for parallel codes written in sequential languages

for homogeneous parallel systems and for compiler-generated object code that

directly re
ects source code control. However, sophisticated parallelizing com-

pilers, high-level languages like HPF, and object-parallel models like parallel

C++ mean that an application software developer's mental model of a program

and the actual code that executes on a particular parallel system can be quite

di�erent. Concurrently, execution environments have expanded to include het-

erogeneous collections of parallel systems with time-varying resource availability.

New performance tools must guide optimization at the semantic level where

code is developed. Thus, they must integrate dynamic performance data with

compile-time data that describes the mapping from the high-level source to

the low-level, explicitly parallel code, minimizing total performance data vol-

ume while still enabling users to interactively drill down to identify performance

problems on remote systems. Moreover, they must accommodate execution het-

erogeneity and non-reproducible behavior, replacing post-mortem analysis with

real-time analysis and optimization. Below, we outline the challenges inherent

in integrating compilers and performance tools.

6.1 Integrated Compiler Support

To support source-level performance analysis of transformed programs, compilers

must share data on the mapping from the low-level, executable code to the

original source [1]. Conversely, a restructuring compiler should exploit dynamic

performance data code generation during subsequent recompilation.

Compiler Data Sharing. Several academic and vendor groups have devel-

oped integrated compilation and performance analysis systems. For example, we

integrated Pablo with the Rice Fortran D restructuring compiler to create an

integrated system that could relate the performance of measured object code to

regular data parallel source [1, 2]. During compilation, the Fortran D compiler

emitted both instrumented code and the sequence of source code transformations

applied, tying each synthesized code fragment to a portion of the original data

parallel source code. Later, during program execution, the instrumentation sys-

tem captured data from the compiler-synthesized code. Finally, a post-processing

phase exploited the program transformation data to map performance metrics

to the original data parallel source code. These metrics included both execution

times and array reference data locality.

In a related e�ort, Calzarossa et al [10] integrated Medea [9] with the VFC

compiler's instrumentation system [6]. This integration provides a comprehen-

sive view of the performance of irregular applications written in HPF+ [5]. For

independent loops, each individual phase (work distribution, inspector, gather,



executor, and scatter) is automatically instrumented by the compiler during

the code transformation. Medea analyzes the collected performance data and

presents a detailed assessment of the performance in each phase.

Finally, Malony et al [34] have developed complementary approaches for par-

allel, object-oriented pC++ [8], capturing data on object method invocations.

Building on the Sage's [7] support for pC++, TAU includes routine and data

access pro�le and parallel execution extrapolation displays.

Although promising, all of these are research e�orts. Robust integration of

performance measurement and compilers will require new committments from

vendors to expose software interfaces and exchange performance data.

Performance-Directed Code Optimization. The compiler-performance tool

partnership can aid compilers as well as performance tools by providing compil-

ers with data not available from code analysis (e.g., likely loop bounds or branch

directions). For example, trace scheduling for very long instruction word (VLIW)

processors [18, 13] can use pro�le data to optimize execution of the most prob-

able code execution paths. Commercially, Silicon Graphics compilers use prof

or gprof data to order procedure object code, based on procedure invocation

frequencies, to reduce page faults and instruction cache misses.

More recently, Hwu et al [11] have developed even more aggressive pro�le-

based optimization techniques for superscalar and VLIW code generation. These

approaches are an integral part of the code generator for the new HP/Intel

Merced processor.

For data parallel and object parallel codes, it is also possible to exploit data

on interprocessor communication frequencies and method invocations to choose

or optimize data distributions [3]. However, this and other performance-directed

optimizations require concurrent, coordinated development of compilers and per-

formance tools; market pressures often make this impractical. Simply put, de-

spite the great promise of performance-directed code generation, much work

remains to balance ease of use and possible performance gains.

6.2 Dynamic Resource Management

Although post-mortem performance analysis remains the method of choice, it is

ill-suited to emerging multidisciplinary applications with time-varying resource

demands that execute on heterogeneous collections of geographically distributed

computing resources. Not only may the execution context not be repeatable

across program executions, resource availability may change during execution. In

such chaotic environments, only real-time measurement and dynamic optimiza-

tion can adapt to changing application resource demands and system resource

availability.

Dynamic optimization can be either interactive, based on real-time visualiza-

tion and human-in-the-loop adaptation, or software-mediated by an intelligent

decision support system. In both cases, the performance analyst must formu-

late general-purpose, performance-optimization rules that can be applied by the

adaptive infrastructure.



Several groups have built interactive or software-mediated adaptive control

systems [46]. Notable examples include Leblanc's [28] adaptive real-time system

for robotic control, Schwan et al's Falcon adaptive control toolkit [21], and our

own Autopilot distributed control system [41].

Autopilot, built atop the Globus wide-area communication system [19], in-

cludes a set of con�gurable performance sensors and resource policy actuators.

These sensors and actuators are managed by a fuzzy logic control system whose

rules are triggered by sensor data. Rule outputs activate remote policy actuators

to adjust application or system behavior for maximal performance. For interac-

tive visualization and control, the fuzzy logic rule system can be replaced with

our Virtue immersive visualization system [37].

7 Conclusions

As the space of high-performance computing evolves to include ever more com-

plex, distributed collections of parallel systems, analyzing and tuning applica-

tion, system software, and architecture designs becomes increasingly diÆcult.

To understand and master the complexity of these systems, a plethora of per-

formance analysis tools and techniques have been proposed and developed. Al-

though great progress has been made, many open problems remain, including

accurate performance prediction for large-scale applications, real-time adaptive

control for wide-area computations, and visualizations that highlight important

performance problems.
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