
HECRTF White Paper

Performance Metrics for High End Computing
Jeffrey S. Vetter

Center for Applied Scientific Computing
LLNL

7000 East Ave
MS: L-560

Livermore, CA 94551
+1-925-424-6284
vetter3@llnl.gov

Theresa L. Windus
Molecular Science Software Group

PNNL
P.O. Box 999
MSIN: K8-91

Richland, WA 99352
509-376-4529

theresa.windus@pnl.gov

Brent Gorda
Future Technologies

LBNL
One Cyclotron Road

MS: 50A 1148
Berkeley, CA 94720

510-495-2493
bgorda@lbl.gov

Overview
This white paper addresses three separate questions in the HECRTF call for white papers: (2d)

performance metrics that quantify benefits; (5) practical performance measures for system procurement
that correlate well with realized performance of actual applications; and, (6) methods for deriving
system performance targets from actual or projected application requirements or other user needs.

Introduction
Performance of HEC systems is a well-studied topic [1-3]; this paper does not attempt to rework this

vast subject, but rather to draw attention to the important challenges for organizations that procure HEC
systems. As Figure 1 illustrates, many factors influence the value of a high-end computer of which
system performance is one component. For example, a major factor in most procurement activities is the
total cost of ownership and the price/performance ratio. Nevertheless, this white paper focuses on only
those factors that influence performance. Other HECRTF questions address additional factors, such as
total cost of ownership.

Most metrics can be separated into three
separate classes: application metrics, machine
metrics, and performance metrics. Application
metrics define the resource requirements of the
application, independent of any architecture.
Example application metrics include the
number of floating-point operations, load
instructions, amount of memory or disk
required for an algorithm solution. Machine
metrics are the specific capabilities and
resources offered by a candidate computer
system. Example metrics include peak
floating-point operation and peak memory
bandwidth rates. Other, perhaps more useful,
metrics include sustained floating-point
operations and sustained memory bandwidth,
usually measured with microbenchmarks.
Finally, performance metrics integrate application metrics with machine metrics to give an overall view
of the performance of a specific application on a particular computer system.

Figure 1: Factors that influence the value of a high end
computing system.

In addition, metrics are valuable during all phases of the HEC system lifecycle: design, procurement,
installation, and production. However, the selection and use of these metrics must balance two
competing criteria: they must be practical to calculate and they must be flexible so that they can be used
in a wide range of scenarios. Application metrics, for instance, are especially valuable in the design and

Page 1 5/16/2003

procurement stages of the lifecycle because they can drive the selection of an appropriate platform.
During installation and production use, performance metrics supply more detailed, diagnostic
information that affords users the opportunity to optimize their applications for specific platforms.

Performance metrics that quantify benefits [2(d)]
The single unifying performance metric of high end computing is Time-To-Solution (TTS). TTS

includes program development, setup, and execution time as necessary for the individual application to
produce a solution for the customer. Some of the factors that influence TTS are system component
characteristics, system architecture, programming environment, algorithm choice, and the suitability of
the system to the application. In this framework and in addition to the traditional metric of execution
time, TTS is inextricably tied to the development, and pre- and post-processing times for an application.

TTS is the single unifying metric of HEC; however, measuring the execution time and development
time on future computer systems is currently not practical, and this degrades the usefulness of TTS as a
metric. In many cases, performance expectations for a new procurement cannot be derived empirically,
either because the basic components of the system do not exist, or they do not exist at the scale required
for the final system. Few efficient and accurate techniques and tools exist for estimating the performance
of a system prior to its existence. Once the target computer system is built at the scale required, users
can empirically measure the execution time of their application. This is especially true for many
government systems that represent the very first system of that type (serial number '1').

Development, Pre-, Post-processing time
Development time depends directly on the programmability and performance stability of the target

system. Language, compilers, libraries, debuggers, performance tuning tools, and human programming
skills directly impact TTS. Any time lost in development delays the ability of the application to provide
a solution to the user. In addition, any pre- and post-processing activities, such as mesh generation, CAD
design, and visualization also unequivocally impact TTS. The HEC community needs to better
understand how development time influences the overall TTS. These activities impact TTS; however,
they are outside the scope of this document so we will not address them further.

Execution time
There are several methods for measuring and reporting performance of a system [1-3]. Generally,

users are interested either in reducing execution time of a specific task or in increasing throughput of a
set of tasks. Execution time can be defined in several ways; we use the wall-clock or elapsed time,
which is the time to complete a specific task including all sources of latency (e.g., I/O activities, OS
overheads, memory accesses). The set of tasks used is called the system workload. For high-end
applications, existing metrics such as relative speedup, parallel speedup, and parallel efficiency provide
a basis for performance measurement, comparison, and evaluation [1].

There are generally five levels of workloads for evaluating HEC systems: real applications, scripted
applications, kernels, toy benchmarks, and synthetic benchmarks. In selecting a workload, it is
imperative that the selected workloads are representative, well defined, and scale to the size of computer
system and input problem under consideration. For example, the workload should define configuration
parameters such as input problem size, numerical tolerances, definition of the algorithm, and initial
conditions; they must be clearly specified as part of the requirements for the benchmark. This restriction
allows for a comparison of results on a particular machine and among different machines. It also allows
for comparisons to be made between different applications that claim to use similar algorithms to solve a
particular problem.

Each computational science area has its own set of metrics that are useful to that community and are
generally meaningful only to those in the field. However, to the scientist, these metrics have the most
meaning since they are directly related to the science that can be accomplished. For example, climate-
modeling applications often use the number of years that can be simulated in an hour (throughput).

Page 2 5/16/2003

Whereas, in the field of chemistry, a molecular dynamics simulation of a biological system might use
the wall clock time to simulate a nanosecond simulation with femtosecond time steps. Again, in each of
these examples, the complete specification for the benchmark needs to be described and special
conditions need to be noted.

In addition to TTS, users must have reasonable response time to their job submissions for their
production jobs as well as their software development jobs. If a user's job stalls in a job queue for days
in order to execute the application, then the effectiveness of that platform in the user’s perspective is
degraded. ESP, described later, is one such benchmark that can help evaluate the effectiveness of job
response times.

Practical performance measures for system procurement that correlate well with
realized performance of actual applications [5]

Numerous benchmarks correlate reasonably well with mission applications, however, this statement
is entirely dependent on each code's respective computation and communication characteristics.
Example benchmarks include LINPACK (used for the Top500), the SPEC benchmark suite, the NAS
Parallel Benchmarks, and the Streams benchmark. It is well known that the LINPACK benchmark
correlates positively with the theoretical peak of a platform and with applications that rely on dense-
matrix calculations for the majority of their execution. However, LINPACK is not a reliable predictor of
performance for applications that utilize other popular and necessary computational science tools, such
as unstructured meshes, adaptively refined meshes, or sparse matrix solutions. Further, dense-matrix
computations do not have a good correlation to applications utilizing contemporary software design such
as modular design, object-oriented design, component technology, or other information hiding
techniques. The peak performance metric is often not directly correlated to sustained performance for
important applications; however, it is a practical and low risk specification that is measurable for most
any computer system - past, present, future.

Several computer centers, such as the Molecular Sciences Computing Facility at PNNL , concentrate
on a few scientific disciplines, and have a very detailed picture of many of the applications that are
executed on their systems (i.e. what percentage of time is spent on each application and the individual
models used in these applications). In these cases, it is possible to develop benchmarks that are
representative of the workload and scalability using the types of TTS execution metrics discussed
earlier. Generally, a throughput model is also developed that simulates a particular mix of applications
and specifies exactly how many jobs must be in the batch queue at the same time, the percent usage of
the machine that must be met, and the total time for these jobs to complete. This is, of course, a daunting
task and requires extensive knowledge of the current job mix and a projection of the future job mix.

Making predictions of realized performance on yet-to-be-built computer systems is an inexact
science at best. Few, if any, simulation and modeling tools provide both the requisite accuracy in
performance prediction and the ability to efficiently analyze more than toy codes. Because of this, most
procurements include requirements for other metrics to insure that the entire system provides a useable
platform. For example, most DOE procurements include requirements for memory capacity, reliability,
serviceability, and byte/flop ratios for memory, interconnect, and IO. Finally, it is often impractical to
expect vendors to assemble a platform at scale for the sole purpose of running benchmarks for a
procurement activity. In many cases the processors, compute nodes, or interconnect technology may not
even be available for the performance testing. Thus, performance measures from a slightly different
system must be suspect, and different from the actual performance measured on the final delivery
system. To this end, the HEC community needs new, systematic performance measurement, modeling,
and simulation tools to allow the analysis and evaluation of these metrics for both future and existing
systems. Existing tools, such as cycle accurate simulators, can inefficient, while high-level analytical
modeling techniques can be difficult to create and validate for a wide range of applications and
architectures.

Page 3 5/16/2003

Effective System Performance (ESP) Rating
A recent addition to procurement practices in the field is the Effective Systems Performance Rating,

or ESP. ESP is designed to evaluate systems for overall effectiveness, independent of processor
performance. The ESP test suite simulates “a day in the life of a production platform” by measuring
system utilization under simulated real world conditions taking into account both hardware and system
software performance. Developed by NERSC as part of a major system procurement process, ESP is
designed to predict the effectiveness of a system before purchase, as well as to evaluate system changes
before they are put into production use.

The goals of the ESP rating include: determining how well an existing system supports a particular
scientific workload, assess systems for that workload before purchase, provide quantitative effectiveness
information regarding system enhancements, compare different systems on a single workload or
discipline, compare system-level performance on workloads derived from different disciplines, focus on
real world system attributes like job launch and termination, and job scheduling for a workload with
wildly varying CPU count and runtime requirements and system resiliency under reboot.

Figure 2: ESP Timeline

The Effective System Performance (ESP) is defined there as:
()

()321
21

ESPESPESP
AMTAMTESP ++

+=

The three ESP components (throughput, multi-mode and reboot) absolute minimum times (AMT1
and AMT2) and observed ESP components (ESP1, ESP2 and ESP3) are defined in Figure 2. Given a
total amount of work for each application, a hypothetical absolute minimum time, (AMT), can be
computed by dividing the work by the system size. Since all components of ESP are positive and the
numerator is always less then the denominator, 10 ≤≤ ESP (ESP values closer to unity are better).

Example: Suppose the proposed system has 12,288 CPUs and the scheduler is able to schedule the
throughput workload at 95% utilization and the multi-mode workload at 90% utilization (quite possible
with a fully integrated gang-scheduler utilizing parallel system initiated checkpoint/restart) and the
measured ESP reboot time is 2 hours. Then ESP = (3.00+3.06)/(3.00/0.95+3.06/0.90+2.00) = .71. At a
lower level than the ESP are design metrics and associated requirements that most procurement teams
specify. Recent procurements, such as ASCI Purple, have included detailed metric requirements on
byte/flop ratios for memory, interconnect, and IO. Additionally, with the scale of these new systems,
contracts are growing to include requirements for facilities: power, cooling, floor space, etc.

Procurement/Design Metrics
Many procurement activities include a peak and sustained floating-point rate. Because of the risk

involved in estimating TTS on future platforms, procurers and vendors alike gravitate toward peak
floating point operations per second as a metric. Vendors can simply multiply the number of processors
by the peak floating point rate of target processor to generate an exact measure for aggregate peak
floating point rate. As mentioned earlier, virtually all of the other metrics here, including TTS, require
that vendors project the running time of an application on a target architecture, which at the time of

Page 4 5/16/2003

award, may not be available because it has not been built yet, or a system of that scale cannot be
practically assembled for a few experiments. Typically, these targets for sustained floating-point rates
are derived from previous experience on similar platforms, if such platforms exist.

Performance Diagnostic Metrics
While TTS is the single most important metric, it alone does not help users understand or optimize

their HEC system for a particular application. Performance diagnostic metrics help users analyze and
quantify the performance of an application on a specific architecture and are often not general across
architectures. For example the vector operational ratio metric is important for vector computers, while
the cache miss ratio is important for cache-based computers. Clearly no finite set of execution metrics
captures all performance features for all HEC systems.

We have found, however, that good performance models are useful in predicting general
performance on different platforms. For example, in a computationally expensive kernel of the
algorithm, a particular communication, I/O or computational pattern can be extracted to give a general
idea of performance. For example, several applications rely on distributed matrix multiplications.
Knowing the layout of the distributed data and the computational requirements allows the researcher to
develop an educated performance model including computational speed, communication, and I/O
bandwidth. While not easy to create, performance models that delve into some detail and examine the
algorithm closely, not only allow for additional information in procurement activities, they also allow
the code developer to understand bottlenecks for their algorithms (even before they are implemented).

Methods for deriving system performance targets from actual or projected application
requirements or other user needs [6]

The computational workloads and communication patterns for scientific applications vary
dramatically, depending, in part, on the nature of the problem the applications are solving. Though
diverse, the computation and communication requirements for these applications play a critical role in
the design of next-generation architectures and software. These requirements when combined with
scalable performance models provide powerful evidence to drive forward the design of new systems.
Although several teams have investigated the scalability, architectural requirements, and inherent
behavioral characteristics of various scientific applications [4,5], few such comprehensive, in-depth
studies exist for contemporary scalable HEC applications.

Users are often intensely involved in the procurement process. They are consulted to help understand
their current and future application requirements. A good example of this is [4], which is published
every three years and contains descriptions of user capabilities today in addition to their expectations,
given more computational capability. Many of the contributions also contain a blue-sky scenario: how
much capability the user would need to do what they consider to be the next level of interesting, high
impact science.

References
[1] D.J. Kuck, High performance computing: challenges for future systems. New York: Oxford University Press, 1996.
[2] L. Derose, M. Pantano, J.S. Vetter, and D.A. Reed, “Performance Issues in Parallel Processing Systems,” in

Performance Evaluation - Origins and Directions, G. Haring, C. Lindemann et al., Eds.: Springer-Verlag, 2000.
[3] D.E. Culler, J.P. Singh, and A. Gupta, Parallel computer architecture: a hardware software approach. San

Francisco: Morgan Kaufmann Publishers, 1999.
[4] NERSC Greenbook.
[5] J.S. Vetter and F. Mueller, “Communication Characteristics of Large-Scale Scientific Applications for

Contemporary Cluster Architectures,” Proc. International Parallel and Distributed Processing Symposium (IPDPS),
2002.

Page 5 5/16/2003

	Overview
	Introduction
	Performance metrics that quantify benefits [2(d)]
	Development, Pre-, Post-processing time
	Execution time

	Practical performance measures for system procurement that correlate well with realized performance of actual applications [5]
	Effective System Performance (ESP) Rating
	Procurement/Design Metrics
	Performance Diagnostic Metrics

	Methods for deriving system performance targets from actual or projected application requirements or other user needs [6]
	References

