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SUMMARY

Comparisons of high-performance computers based on their peak floating point performance are common
but seldom useful when comparing performance on real workloads. Factors that influence sustained
performance extend beyond a system’s floating-point units, and real applications exercise machines in
complex and diverse ways. Even when it is possible to compare systems based on their performance, other
considerations affect which machine is best for a given organization. These include the cost, the facilities
requirements (power, floorspace, etc.), the programming model, the existing code base, and so on. This paper
describes some of the important measures for evaluating high-performance computers. We present data for
many of these metrics based on our experience at Lawrence Livermore National Laboratory (LLNL), and
we compare them with published information on the Earth Simulator. We argue that evaluating systems
involves far more than comparing benchmarks and acquisition costs. We show that evaluating systems often
involves complex choices among a variety of factors that influence the value of a supercomputer to an
organization, and that the high-end computing community should view cost/performance comparisons of
different architectures with skepticism. Published in 2005 by John Wiley & Sons, Ltd.
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distributed computing

1. INTRODUCTION

Supercomputing technology has made incredible progress over the last 50 years as shown by the
exponential increase in processing power available to supercomputing users at Lawrence Livermore
National Laboratory (LLNL) in Figure 1. As documented by various sources including Patterson
et al. [1], Pfister [2], and Culler et al. [3], numerous technological and architectural improvements
have contributed to this dramatic advancement. For example, from the late 1970s through the early
1990s, Cray supercomputers, using vector processors, provided much of LLNL’s computing capability.
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1240 J. S. VETTER ET AL.

Figure 1. LLNL computer architecture and programming model history.

From the mid-1990s onward, several vendors furnished platforms to LLNL. These platforms were
based on mass-produced microprocessors from vendors serving many markets and not limited to
high-end computing (HEC). By using systems based on mass-produced microprocessors, LLNL
has continued to meet its customer’s computational demands, allowing our users to use the latest
microprocessor technology while balancing it against cost.

Simultaneously, a majority of organizations in the scientific computing community migrated
toward clusters of computing nodes, which were based on mass-produced microprocessors.
Most recently, many HEC sites, including LLNL, have built large parallel computers from commodity
workstations, connected by inexpensive networks—a strategy popularized by the Beowulf Project [4].
These commodity workstation clusters provide customers with low-cost and often dedicated access to
significant computing resources.

Although specific technologies tend to dominate HEC during any particular era, there has always
been an assortment of vendors and choices in the HEC marketplace. Many factors influence the value
of a technology or computer system to an organization. Developers of scientific applications and the
organizations that deploy computing systems for these applications have a vast array of requirements
and constraints for successful HEC. Obviously, price and performance are two metrics cited as the
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primary factors for these decisions; however, several other factors, such as software compatibility and
facility requirements, also impact these decisions. This paper examines some of the many factors that
affect a computer system’s value. Although many factors can be described numerically, their correct
values are often very difficult to measure. This difficulty is due, in part, to the rapidly changing
technology in computer architectures, and the lack of practical performance prediction technologies.
Furthermore, metrics, such as computer price, programming cost, and total cost of system ownership,
are closely held, proprietary information, making longitudinal studies impractical. Thus, deciding
which computer or technology is ‘best’ is often imprecise, and the ‘right’ answer often varies not
only from year to year but also from user to user.

Nevertheless, it is useful to describe the important considerations in evaluating a computer system;
this paper looks at several of these in Section 2. We then examine where a number of current
and proposed HEC platforms lie in the complex space of capabilities and features in Section 3.
Because technology changes so rapidly, the most important features of a computer system—those
that drive its cost or define its ability to meet user needs—also change rapidly. Section 4 considers
how current technology and future trends will influence the requirements and capabilities for HEC
systems, while Section 5 discusses how other considerations, such as software compatibility, counter
these trends. Finally, Section 6 explores how to evaluate different priorities for HEC platforms.

1.1. Advanced simulation and computing

Because user needs drive the purchase of a HEC platform, one must understand those needs before
evaluating specific metrics. To put our analysis in perspective, we describe the computing requirements
that have driven the acquisition of much of the HEC equipment at LLNL since the mid-1990s.

Since 1995, the U.S. Department of Energy (DOE) Advanced Simulation and Computing (ASCI)
program has funded the development of new scientific applications and a series of HEC platforms.
Several of these systems have been installed and used at LLNL. DOE established ASCI as part
of its shift from test-based confidence to science- and simulation-based confidence in the nuclear
stockpile. Now part of the DOE’s National Nuclear Security Administration (NNSA), ASCI focuses on
accelerating the development of simulation capabilities that far exceed what might have been achieved
in the absence of the program.

Using advanced weapon codes and HEC, ASCI is creating simulation capabilities that incorporate
more complete scientific models based on experimental results, past tests, and theory. The resulting
predictive simulations enable the U.S. to assess and to certify the safety, performance, and reliability of
nuclear systems. These simulation capabilities also help scientists understand weapons aging, predict
when to replace components, and evaluate the implications of changes in materials and fabrication
processes to the design life of the aging weapon systems. This science-based understanding is essential
to ensuring that changes due to aging or remanufacturing will not adversely affect the stockpile.

To meet the Stockpile Stewardship Program’s needs and requirements, ASCI has specific program
objectives in performance, safety, reliability, and sustainability.

• Performance: create predictive simulations of nuclear weapon systems to analyze behavior and
to assess performance without nuclear testing.

• Safety: predict with high certainty the behavior of full weapon systems in complex accident
scenarios.
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• Reliability: achieve validated predictive simulations sufficient to extend the lifetime of the
stockpile, to predict failure mechanisms, and to reduce routine maintenance.

• Sustainability: use virtual prototyping and modeling to understand how new production
processes and materials affect performance, safety, reliability, and aging and, thus, to help define
the right configuration of production and testing facilities to manage the stockpile for the next
several decades.

ASCI must solve progressively more difficult problems now that the U.S. has moved away from nuclear
testing. This requires applications to achieve higher resolution, higher fidelity, three-dimensional
physics, and full-system modeling capabilities to reduce reliance on empirical judgments. This level
of simulation requires HEC far beyond our current level of performance. This requirement motivates
several ASCI collaborations with industry to accelerate development of more powerful computing
hardware and the associated software environment to support development of applications that use the
new computing systems efficiently and productively. By 2005, the ASCI program is responsible for the
following deliverables.

• Development of high-performance, full-system, high-fidelity-physics predictive codes to support
weapon assessments, renewal process analyses, accident analyses, and certification.

• Stimulation of the U.S. computer manufacturing industry to create the HEC capability required
by ASCI applications.

• Creation of a computational infrastructure and operating environment that makes these
capabilities accessible and usable.

The ASCI Program has produced results that may well make it the most successful HEC program
in U.S. history. Table I shows ASCI’s planned and existing HEC platforms, including three of the
top five systems on the TOP500 of the World’s fastest computers for November 2002: White at
LLNL and two Q systems at Los Alamos National Laboratory (LANL) (number 5 on the list, LLNL’s
MCR Linux cluster, is not an ASCI machine). These systems in turn have been instrumental in first-
time, three-dimensional simulations involving components of a nuclear weapon during an explosion.
Such accomplishments are based on the successes of other elements of ASCI research, such as
scalable algorithms, programming techniques for thousands of processors, and unequaled visualization
capabilities. These accomplishments offer confidence that the challenging goals and objectives facing
the program can be achieved.

2. FACTORS INFLUENCING SUPERCOMPUTING VALUE

Ultimately, LLNL values supercomputers by the science they enable. Arguably, only two metrics
matter: Idea-to-Solution (ITS) and Total Cost of Ownership (TCO). ITS is the time from when a user
decides to solve a problem on a given platform until that user has an answer to that problem. TCO
includes not only the purchase price of the platform but also the related (and sometimes hidden or
overlooked) costs of using that platform. ITS and TCO are both difficult to measure; thus, purchases
are generally based on some subset of these factors.

Realistically, several factors influence ITS, such as execution time, programmability, reliability, and
solution quality. Clearly, a fundamental criterion is performance—the time to run the application
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that provides the answer. However, other factors can impact ITS as significantly as performance:
programmability—the time to the first correct solution; compatibility—the time to port an existing
application to the platform at acceptable performance; and reliability—the time lost due to
platform component failures and downtime. Several system aspects influence these ITS components
including the software environment, the platform’s similarity to those used previously by application
programmers and designers and the level of technical support that the platform vendor provides.
All factors, including performance, are formidable to measure a priori, when purchase decisions are
made. Thus, most procurements must speculate about these factors to some degree.

Like ITS, several factors determine TCO. The platform’s initial purchase price is the most visible
and most frequently cited. However, other factors such as the building to house it, the power to operate
and cool it, the salaries of support staff, and auxiliary systems (e.g. file systems) required to use it
effectively can dominate TCO. Like those of ITS, TCO components are proprietary, or hidden in a web
of indirect expenses.

The remainder of this section looks at some of the components of ITS and TCO and metrics that
estimate those components in more detail. These metrics evaluate how well a system provides a high-
performance, stable, familiar computing environment to our users at a reasonable cost to our sponsors.
Taken together, they drive our analysis of HEC procurement alternatives.

2.1. Performance

Although numerous performance measures exist, the HEC community has yet to define one that is
universally accepted. For over 40 years, the community has proposed, implemented, refined, and
eventually ignored a large number of performance metrics and benchmarks [5]. In this section,
we define and evaluate several important performance metrics. Clearly, real application performance
is a critical metric in any evaluation, but since real applications place a broad spectrum of demands on
architectures, it has proven impossible to capture overall performance through any one metric.

Several methods exist for measuring and reporting HEC performance. Generally, users are interested
in reducing execution time of a specific task or in increasing the throughput of tasks (i.e. in reducing
the execution time of a set of tasks). Execution time can be defined in several ways. We use the wall-
clock time or the elapsed time, which is the latency to complete a specific task including all sources
of latency (e.g. I/O activities, OS overheads, memory accesses). The set of tasks used to calculate this
latency is the system workload. There are generally five levels of tasks for evaluating HEC systems:
real applications, scripted applications, kernels, toy benchmarks, and synthetic benchmarks.

The increasingly competitive market for HEC systems has led companies to invest heavily in
improving the performance on sets of applications that users measure. These efforts often lead to
contention in the selection of benchmarks for evaluating cost–performance tradeoffs. The Standard
Performance Evaluation Corporation (SPEC) [6] created a standardized benchmark suite and the
rules for reporting its performance in the late 1980s. SPEC has since refined this suite and produced
additional versions that target communities for which other system workloads are most relevant.
These suites, and others like them [7,8], are useful; nonetheless, most platform RFPs include
performance targets for applications specifically of interest to the purchaser.

In the HEC community, four metrics have emerged as widely quoted measures of system
performance: peak performance rate, sustained performance rate, time-to-solution, and scalability.
Several additional factors influence these performance metrics, as described below.
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2.1.1. Performance metrics

The execution time required for a computing system to solve a specific task is commonly referred to
as the time to solution (TTS). In the context of HEC, this metric is the wall-clock time from the start of
the application experiment until the solution is produced: T = Tstop − Tstart. TTS is straightforward to
calculate.

With this perspective on application performance, we must realize that all system technologies
contribute to TTS, as discussed in Section 4. Any improvement in the performance of one system
technology is limited by the amount of time the application can exploit that technology. Specifically,
TTS for real applications has several constituent parts: computation, communication, and I/O. In close
analogy to Amdahl’s Law [9], the overall improvement in TTS due to improvements in one specific
technology is limited by the scope of that technology’s contribution to TTS. For example, if an
application’s original TTS is weighted with 90% of its time spent in communication, any improvement
in computation technology is limited to an improvement in TTS of 11% (1/0.9). The important
consequence of this observation is that a widely quoted performance measure such as peak flop
rate may be largely irrelevant to the performance of some real-world applications. Moreover, the
system technology that governs overall performance can vary between machines and between
applications.

All HEC systems have a maximum number of floating point operations per second that the
architecture can compute, often referred to as the peak floating point rate (PEAK). Table I shows
PEAK is easy to calculate, even for future HEC platforms, given the instruction latency and throughput
information for its microprocessor. For example, IBM’s POWER3-II microprocessor can calculate two
fused multiply add (FMA) instructions on every clock cycle—one FMA in each floating point unit.
With a clock rate of 375 MHz, the POWER3-II processor has a PEAK of 1500 Mflops. Further, we can
compute PEAK for a cluster of microprocessors by simply multiplying by the number of processors,
ignoring communication between processors or processors and their local memory.

Calculating other performance metrics is not as simple as calculating PEAK. Sustained floating point
rate (SUSTAINED) provides a more realistic measure of the rate at which applications effectively use
the HEC platform. SUSTAINED is the number of actual floating point operations (flops) performed
by a workload divided by the execution time required for those operations. Percentage of PEAK
(%PEAK)—SUSTAINED divided by PEAK—is often cited as the efficiency of an application or a
system workload on a target architecture. SUSTAINED can be measured in several ways. Users can
manually count the flops in the code and then time the code region. Alternatively, microprocessor
hardware performance counters can be used to calculate flops. The difference between these choices
can be substantial, primarily due to the hazards of using performance counters. Counter definitions
vary by platform—for example, some platforms count FMAs as one flop, others as two. Further, a
complicated operation such as division or square root may be counted as multiple flops even though
users consistently view them as a single flop. Different compilers may generate different flops for the
same user-level code; if they run in the same time, is the one with more flops better? More distressingly,
algorithmic changes can increase flops, and improve SUSTAINED while increasing TTS, the real
metric of interest.

With current applications running on scalable clusters of multiprocessors with hundreds, or
thousands of processors [10,11], scalability of applications and platforms is another important property.
By scalability, we mean the ability of a parallel algorithm on a parallel architecture to effectively utilize
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1246 J. S. VETTER ET AL.

an increasing number of processors [3,12,13]. In particular, speedup is defined as T (1)/T (n), where
T (1) is the single processor timing and T (n) is the n processor timing.

Parallel efficiency is defined as speedup/n (expressed as a percentage). A parallel efficiency of 100%
corresponds to the ideal situation that n processors produce the result n times faster—perfect scalability.
On occasion, it is desirable to base the speedup and parallel efficiency calculation on other than a
single-processor baseline, for instance, when the problem does not fit in the memory of one processor,
or performs uncommonly well or poorly in that case.

Other important metrics measure system capabilities beyond its floating-point performance.
Latency measures the time for the system to complete a minimal-size operation. Memory latency,
network latency and IO latency can be important factors in TTS. Bandwidth measures the system’s
ability to perform sustained operations. Memory bandwidth, network bandwidth or IO bandwidth
frequently dominates TTS on a given platform for many system workloads.

2.1.2. Observations

All of these performance metrics have strengths and weaknesses. PEAK is a commonly accepted
performance metric since it does not require measurement and, thus, it is easy to calculate. However,
PEAK is not fully correlated with TTS since %PEAK varies with the platform and the system
workload. By contrast, SUSTAINED, %PEAK and scalability require that users select a workload
along with their respective input datasets and configuration. For all three, users must estimate the
execution time on the platform through empirical measurement, simulation, or analytical modeling—
an increasingly difficult task given the complexity of modern architectures and applications. Further,
the selected workload, datasets and configuration are often minimized to reduce simulation or modeling
effort. In addition, factors such as application development that occur after the platform purchase or
the classified or confidential nature of the real datasets and configuration lead to more complexity.

As already discussed, counting flops complicates measuring and estimating SUSTAINED and,
thus, %PEAK. Lack of advanced architectural feature standardization further complicates measuring
%PEAK. For example, many processors, such as the IBM PowerPC series and the Intel Itanium series,
implement FMAs. FMAs are valuable in technical computing because they are common operations
in many matrix and vector calculations. Unfortunately, FMAs are not part of the IEEE floating-point
standard, so vendors implement them differently, which, in turn, leads to different numerical results
across platforms. Although the FMA can be more precise than distinct multiply and add operations, this
lack of standardization forces users to disable FMAs when reproducibility across platforms is required.
Nevertheless, FMAs are used in calculating PEAK. Ergo, for any application that must disable FMAs,
%PEAK is immediately reduced to 50% of the advertised PEAK, even before accounting for the impact
of the latency and bandwidth of other system components.

Given the ambiguity of these metrics, vendors often try to reduce procurement activity risk by
focusing on unambiguous and reasonably easy-to-calculate metrics. Because procurement activities
often contain performance specifications [14], PEAK helps to reduce risk because as a theoretical
metric, it is invariant to workloads, compilers, memory, communication, and I/O subsystems.

2.2. Acquisition cost

Another important HEC system aspect is cost. When comparing HEC platforms, it is natural to ask
which offers the best performance for the money. An organization buying a computer can answer this
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Figure 2. A rough estimate of cost/performance is the ratio of the performance on a standard benchmark, such as
LINPACK, to the published acquisition cost (PP).

question relatively easily in terms of the purchase price (PP) if it has received bids from competing
vendors. The buyer can then estimate TCO based on the bids, accounting for power consumption
and other facilities costs based on details of the proposals. Differences in the details of the proposed
systems’ hardware and software can make comparisons inexact, and the buyer may need to rely on
estimates of the systems’ performance on the intended workload. Nevertheless, the comparison is
relatively straightforward since the systems are designed for the same purpose, for purchase by the
same buyer at the same time.

It is much more complicated for the HEC community as a whole to make cost/performance
comparisons because this involves comparisons of classes of technology rather than individual systems.
It is easy to estimate the performance per unit cost by dividing a machine’s published PEAK or its
performance on a well-known benchmark, such as LINPACK, by its announced price (that is, the
publicly stated price) (see Figure 2). However, this estimate is misleading, primarily because true
costs of the systems are uncertain, technology costs decline precipitously over time, and the difficulty
associated with the aforementioned performance metrics issues.

2.2.1. Uncertainties in announced prices

The PP of an HEC platform often bears little connection to the buyer’s actual cost to field a stable,
fully supported system. At the computer market’s highest end, vendors oftentimes offer a discount in
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exchange for the prestige of building one of the world’s fastest computers. Vendors may also subsidize
the cost to gain experience with new technology before introducing it to a broader product line.
Thus, PP may be lower than the publicly visible cost of a competing platform. Buyers, for their part,
sometimes pay for the development of technology that will eventually appear in future products [15].
This early support, which lowers the PP of later systems, can be through either a research contract with
is own announced price and deliverables or a collaborative arrangement in which each party devotes
staff time and expertise to solve a problem of mutual interest. PP may also be more complicated than
a simple machine purchase. For example, it may pay for a lease rather than a purchase, or the vendor
may agree to upgrade certain system components over time.

As an example of HEC purchase complexity, consider the November 2002, agreement between IBM
and the DOE to build the ASCI Purple and BlueGene/L (BG/L) computers [16]. The contract’s total
value is $290 million, of which $267 million will be paid to IBM, and the rest to other suppliers.
The computers will have PEAKs of 100 Tflops s−1 for ASCI Purple and 180–360 Tflops s−1 for
BG/L§, both scheduled for delivery in late 2004. One might assume that the costs of the two machines
will be proportional to their PEAK. In fact, BG/L is likely to be considerably cheaper than Purple—in
terms of both PP, because BG/L uses simpler processors and less memory and in terms of TCO because
BG/L uses less floor space and less power as well as having a lower PP [17]. However, BG/L targets
a narrower scope of applications than Purple. This shows that simply dividing the cost by a single
performance measure can be misleading: BG/L clearly offers better PEAK per dollar, even though it
targets a bounded set of applications when contrasted with ASCI Purple.

This contract also contained two early delivery platforms not described in the contract’s press
releases. One is a Linux cluster, and the other will be a scaled-down version of Purple, with fewer
processors and an earlier generation of the processor and interconnect. Thus, the $290 million
announced price includes four large platforms, not two, that will be delivered over about two years
(early 2003 to late 2004). IBM and LLNL have not announced separate prices for each platform,
however BG/L accounts for less than $100 million of the cost. The announced price does not
include the cost of several collaborations that DOE completed with IBM and other vendors to
develop new interconnect, storage, and software technology, some of which will be used in Purple
and BG/L. In addition to the contract for the purchase of BG/L, for example, $21 million between
IBM and LLNL help to develop BG/L technology. Two other contracts, worth about $15 million
each, with IBM and Quadrics developed interconnect and switching technology used in ASCI Q,
the ASCI Linux Cluster and other machines. Current work is developing new file system technology
under a contract worth about $8 million with Cluster File Systems. This technology may be used
with BG/L.

The announced cost also excludes the hundreds of staff years that DOE and laboratory staff will
spend on planning, collaborative development, testing, system integration, and all of the other effort
necessary to field working systems. For example, DOE’s personnel costs in support of ASCI Purple
over the lifetime of the system, including system support and system software but not applications
development, will likely exceed $100 million.

§The range for BG/L performance estimates arises from the question of whether one processor per node will be dedicated to
communication rather than being available for computation.
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2.2.2. Differing capabilities

Evaluating performance for the purpose of cost/performance comparisons raises further questions.
As described in Section 2.1, PEAK and other flop-based metrics are an incomplete description of a
computer’s capabilities. Other important measures include memory capacity, secondary and tertiary
storage capacity, memory bandwidth, and interconnect latency and bandwidth. In well-designed
systems, these parameters should be chosen to produce a computer with a good balance of capabilities
for the intended workload.

The range of reasonable choices for the various platform components is quite broad, so one cannot
expect the system parameters for different computers to vary in proportion to their PEAK. For example,
ASCI White’s PEAK is 12.3 Tflop s−1 and it has 8 TB of main memory [18] while the Earth Simulator
(ES) has a PEAK of 40 Tflop s−1 but only 10 TB of main memory [19]. Comparing these systems’
cost/performance ratios based only on PEAK would ignore the value of the extra memory per flop in
ASCI White. Our experience shows that as the processing capability increases, so does the memory
capacity requirements of many traditional scientific applications.

The same consideration applies more subtly to software and support costs. Many HEC
purchases include software development tools and run-time software, such as compilers, debuggers,
message-passing libraries, mathematical libraries, job scheduling software, and file system software.
The purchase may also include vendor technical support and on-site support personnel. These extras
add nothing to PEAK. Nevertheless, they are essential because they directly impact the
programmability and compatibility components of ITS. Thus, comparisons of the cost per PEAK of
different systems should exclude costs that do not contribute to PEAK.

This point is especially important when comparing user-built systems and Linux clusters to
traditional HEC platforms. Clusters derive cost savings partly from the use of open-source software
and from the lack of vendor technical support. Organizations like universities, which have access to
inexpensive labor, can often provide their own support and software development services at lower cost
than vendors can, so the choice of a cluster or user-built system is sensible. The same system would
cost more to operate at a company or a government laboratory, where labor costs are higher. For these
buyers, vendor-supported systems may be more economical in the long run, even though PP is higher.

2.2.3. Different purchase dates

A final consideration in comparing prices is the date of purchase and delivery. The rapid decline in
computer hardware costs means that systems delivered roughly a year or more apart will have different
cost/performance ratios. To properly account for declining costs, any discussion of prices and machines
must consider purchase or delivery dates. Since cost declines (or compute power per unit cost increases)
roughly by half every 18 months, we apply a discount of 4% per month between the system’s delivery
date and a reference date to compute indexed costs. For example, ASCI White, delivered in September
2000 at a PP of $85 million, has an indexed PP of $27 million in February 2003.

2.2.4. Toward a rational cost/performance measure

Clearly, estimating cost/performance ratios based on PP and PEAK only gives highly approximate
results. However, some rational cost measure is necessary for comparisons of computing technology.
A rational cost measure should:
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• make all costs visible (this may preclude the use of PP, since it does not account for hidden costs
and discounts, which vary between buyers);

• include only the components that impact the measured functionality;
• be indexed so as to apply the same delivery date to different systems.

Unfortunately, following these guidelines exactly is often impractical. One cannot always define which
components contribute to a performance measure, and separate pricing information for them may
not be available. Nevertheless, following this guidance can provide more accurate cost/performance
estimates. However, PP will likely continue as the most common estimate of cost, just as PEAK will
likely continue as a shorthand description of a system’s performance.

For estimates of the cost per PEAK, we propose the list price (LP) of a single node as a cost measure.
This includes minimal secondary storage, no interconnect, and no extra-cost software. It includes the
main memory bus and main memory. Systems should be configured with comparable amounts of main
memory. While LP may not be the actual price that all customers will pay, it is an objective measure that
avoids hidden costs and discounts. Consider, for example, LP for two current supercomputer nodes, the
IBM RS6000/SP and the Cray/NEC SX-7. Table II lists price, PEAK, and estimated LINPACK data for
the two systems. Of course, LINPACK does not represent real workloads, and delivered performance
on complex applications is often far less. However, the data show that even when the vector system is
nearly three times as efficient, it still costs more than twice as much per sustained Gflops s−1 on this
measurement.

We should emphasize that we propose this measure only for the purpose of evaluating competing
technologies for carrying out floating-point calculations. Obviously, different metrics would apply to
other subsystems. Moreover, considerations other than monetary cost might make one system more
attractive than another as discussed in the next section.

2.3. Operating costs

The costs of operating modern HEC platforms include prodigious power and cooling requirements, and
a substantial support staff. They are typically part of a larger computing center, so that the total facilities
challenge is compounded by the needs of large file systems and data archives, high-end visualization
and other data services, extensive communications infrastructure and networking equipment, security
and other infrastructure services, and the workplace needs of the support organization. Further, these
diverse costs are typically shared across multiple platforms so determining their TCO contribution is
not simple.

Operating costs (OCs) are an important challenge to the ownership of modern HEC platforms.
By OCs, we mean those costs associated with the operation of the platform, other than the PP of
the platform or the construction costs (CCs) of preparing the facilities to house it. The TCO for
HEC platforms will come as a rueful surprise to institutions that have not carefully analyzed the OCs
prior to a major acquisition. At LLNL, staff costs (about 60%), facility expenses (about 20%), and
electrical power (about 10%) dominate the total non-capital, non-construction portion of HEC TCO.
Combined, these three items account for about 90% of the non-capital, non-construction portion of our
HEC TCO.

OCs are generally shared over a wide set of platforms—between ASCI and other programs,
LLNL currently operates nine platforms with more than 100 CPUs. These platforms use diverse
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Table II. List prices and performance for two supercomputer nodes, as of late 2002. LINPACK data
for IBM are from IBM tests; estimated LINPACK data for NEC are based on approximately 95%

efficiency of several NEC SX-6 systems reported on the TOP500 Web site.

Cost per
List price PEAK LINPACK Gflops s−1

System (U.S.$) (Gflops s−1) (Gflops s−1) (U.S.$) Configuration

IBM pSeries 690 860 000 83.2 28 31 000 16 × Power4,
32 GB memory

Cray/NEC SX-7 2 200 000 35.3 34 65 000 4 × SX-7,
32 GB memory

technologies with diverse power, maintenance and system administration requirements. In addition,
the computer center also operates a number of smaller systems, visualization servers and data archives.
Clearly, proportionally dividing LLNL OCs across its HEC platforms based on PEAK is inaccurate.
Alternatively, adding a new system is less expensive than adding a first system due to economies of
scale—existing buildings and staff greatly simplify the process, as demonstrated by the recent MCR
acquisition.

Often, substantial CCs (for new facilities or extensive modifications to existing facilities) must be
borne in order to house new HEC platforms. For example, the Metropolis Center for Modeling and
Simulation [20] was built to house ASCI Q and future LANL platforms. This state-of-the-art HEC
facility features a 43 500 ft2 (4040 m2) machine room floor, 7.1 MW of electrical power (expandable
to 30 MW), and 3600 tons (13 MW) of cooling capacity. Other examples include the facility in
Yokahama dedicated to ES (34 000 ft2/3200 m2 machine floor), and the Terascale Simulation Facility
(two 24 000 ft2/2200 m2 machine floors) under construction to house ASCI Purple and future LLNL
systems. Assigning CCs, like OCs, to specific platforms is difficult since these facilities will serve
several platform generations. If an existing building can house a new platform, are its CCs zero or are
the CCs of the existing platforms decreased?

The costs for large facilities and high power use impact commercial computing as well as scientific
HEC. In commercial server colocation, a third party provides multiple companies with floor space,
power, cooling, communications services, and security for their computers. Facilities with tens of
thousands of square feet of floor space, and power and cooling capacity in the many megawatt range
are common [21]. Although they do not house systems of the same class as LLNL’s HEC platforms, the
facilities are very similar. Consequently, we expect commercial systems to follow trends that minimize
footprint and power consumption, similarly to BG/L [17].

2.3.1. Physical characteristics of platforms

Table I lists the physical characteristics of recent and planned ASCI platforms at LLNL, along
with those for ES. The power number listed is the electrical power used directly by the
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Figure 3. Comparison of the peak speed of ASCI platforms, MCR, and the ES.

computing equipment. The total power required for cooling and other support equipment increases
this number by about 70%.

As would be expected, computing capability increases with time for these HEC platforms. Figure 3
shows the PEAK of the major ASCI platforms and ES, plotted against the year of installation.
The dashed curve represents a doubling time of 12 months, a remarkable accomplishment, sustained
over a 6-year period. Viewed on this scale, the performance of ES is substantially in line with the overall
trend of the ASCI platforms. Although it is on the high side of the curve, as Table V in Section 3
illustrates, its performance is more in line with the other platforms when the performance is scaled
by PP.

While the platforms’ PEAKs follow a similar trend, we see more differences in their space and
power requirements. Compared with LLNL’s platforms, ES has a significantly larger footprint, and
uses considerably more power.

Table I shows that the size of an HEC platform significantly impacts the need for facilities
construction. For Blue-Pacific and BG/L, the smallest systems listed, existing computing facilities
were used with relatively minor modification. White, a somewhat larger system, required a substantial
modification to a building through construction of a ‘popout’ to expand the building. New facilities, at
substantial construction costs, were built to house ES and Purple.
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Table III. Metrics for a facilities-based comparison of LLNL ASCI platforms and the ES.

ASCI Blue-Pacific ASCI White ES ASCI Purple∗ BG/L

Installation date 10/1998 9/2000 2/2002 ∼12/2004 ∼12/2004
Compute-power efficiency 6 12 4 22 100–200‡

(Gflops s−1 kW−1)†

Compute-space efficiency 8 13 13 91 750–1500
(Gflops s−1 m−2)
Memory-space efficiency 6 9 3 45 70–140¶

(GiB m−2)§

∗Target specifications.
†Gigaflops = 109 floating-point operations per second.
‡System operating in either communications co-processor mode, or virtual node mode.
§GibiBytes = 230 bytes = 1 073 741 824 bytes [23].
¶Memory per node of either 256 MiB, or 512 MiB.

The data in Table I imply significant energy costs. Assuming a rate of $0.6 million MW-year−1, the
annual power bill for the facilities housing these systems range from about $0.6 million year−1 for
Blue-Pacific to about $10 million year−1 for ES. This is enough electricity to power about 500–8000
average U.S. households¶.

2.3.2. Facility efficiency metrics

Considering the importance of space and power in the TCO, non-traditional metrics should become
standard for characterization of HEC platforms. Table III reveals that LLNL’s ASCI platforms
(Blue-Pacific, White and Purple) have demonstrated continuous improvements in these metrics, and
are considerably more ‘facility friendly’ than ES. Moreover, these metrics emphasize the dramatic
improvement in effectiveness of the BG/L design. This comparison helps explain the NNSA’s keen
interest in BG/L as it promises to be a strategy that effectively scales to platform sizes not obtainable
with current architectures.

2.4. Portability and compatibility

As mentioned in Section 1, many LLNL applications have a lifetime measured in decades.
Until the early 1990s, most platforms and development environments lasted for at least that
duration. However, the competitive marketplace for HEC systems has given compatibility and

¶The average residential household in the U.S. consumes about 11 000 kWh year−1 [22].
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Table IV. Metrics for HEC system evaluation.

Ease of measure
Metric Description (unequivocal) Comments

ITS Idea to solution No Sum of multiple development and
execution time components

TTS Time to solution No Actual execution time of application
PEAK Peak performance Yes Not fully correlated to TTS
SUSTAINED Sustained performance No Flop count divided by TTS
%PEAK Percentage of peak No SUSTAINED divided by PEAK
TCO Total cost of ownership No Sum of multiple cost components
PP Purchase price No Costs hidden by development

agreements, discounts, marketing
value

OC Operating cost (power, No Shared across multiple platforms
cooling, floorspace) concurrently

CC Construction cost No Shared across multiple
generations of platforms

Portability and Effort required to move No
compatibility applications to new

architecture

portability increased significance. Applications must rely on conservative, open, and widely supported
standards. For example, many LLNL applications employ MPI, OpenMP, ANSI C, ANSI C++, and
FORTRAN 90. Many vendors provide these in their development environments. Furthermore, since
many of our applications are under development, correctness and performance tools must support
these language and library standards. As evidenced by the recent ASCI Purple procurement [14],
DOE requires vendors to provide these capabilities. We are finding that many tool vendors are
supporting only mass-market platforms (e.g. Intel) for mass-market operating systems (e.g. Microsoft
WindowsTM, Linux).

2.5. Summary

Table IV summarizes many important metrics beyond peak performance and initial system price
of HEC platforms, which as this section has shown, are often difficult to define unequivocally.
In addition, several other important factors beyond cost and performance can play a critical role in
HEC evaluation. These factors include reliability, robustness, availability, upgradability, and system
balance. Another example is the commitment by the vendor to support HEC after the initial purchase.
As the TOP500 demonstrates, the set of vendors in HEC has changed dramatically over time [24].
A proliferation of architectures and companies dotted the HEC landscape in the late 1980s and early
1990s but they then left the HEC market for a variety of reasons [25].
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3. EVALUATION

We now present data for several metrics described in Section 2. As we have noted, some of the data are
difficult to measure precisely. Nevertheless, our data demonstrate approximate comparisons of several
large, well-known systems.

3.1. Programmability

In order for organizations to exploit new technologies, as they become available, they must use widely
accepted standards in their applications. However, even if an application runs correctly on a new
platform, it may not run efficiently if the platform has significantly different architectural characteristics
from current platforms. For example, many codes had to be rewritten when commodity cache-based
processors replaced vector-based platforms. The vector-based codes were designed to present long
streams of independent computations to the vector processors—the wrong strategy for cache-based
systems, which perform best when data are loaded into cache and used repeatedly. Good performance
is possible on either, but moving between them can require a large investment.

To estimate the cost of converting a code to a new architecture, consider the average productivity
of programmers. A common metric is lines of code (LOC) per day. Estimates vary widely, as does
the productivity of individual programmers; we use 20 lines per day as an optimistic estimate [26,27].
Using 250 workdays per year and a typical programmer cost of $250 000 per year (this includes salary,
benefits, office space, etc.), we estimate that code modifications cost at least $50 per line. For an
existing code base of 10 million lines (which might represent half a dozen or so large applications),
changing even 10% of the code to optimize it for a new architecture would cost around $50 million.
The lost productivity would perhaps be an even larger burden than the cost: rewriting a million LOC
would take 200 programmers a year. Clearly, organizations cannot incur these costs for every new
platform.

This is not to say that programs can never be modified or that new architectures can never be
accommodated, but it is clear that an organization interested in reducing TCO and ITS cannot ignore
the cost of major architectural changes.

3.2. Cost/Performance

Efficiency comparisons may be the most controversial question in the discussion of vector versus
commodity processors. The LINPACK numbers shows a distinct advantage for the vector machine,
but LINPACK is not a real world code. It is sometimes possible to run the same code on the two
different architectures, but since most codes are initially developed for one or the other, a bias may
exist toward better performance on the code’s ‘native’ system. Another possibility is to consider the
winners of the Gordon Bell Prize. This has the advantage of comparing codes that are optimized to run
on the machines where they are measured. The disadvantage is that the codes are likely to do different
types of calculations, so results between any two codes are not comparable. Nevertheless, if we average
the performance of several codes, we may get an idea of the general trend. In 2002, three of the Gordon
Bell finalists ran on ES [19,25,29]. They achieved 26.6, 16.4, and 14.9 Tflops s−1, corresponding to
65, 40, and 36% of peak for that machine. Two other finalists ran on traditional MPPs. One ran on a
Compaq Alpha cluster [30], and the other ran on ASCI Red (an Intel system) and ASCI White [31].
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These codes achieved 12, 30, and 23% of peak, respectively. All achieved noteworthy performance
yet there is obviously a wide range of performance levels, even among the three ES codes. A crude
measure of the performance advantage of floating-point efficiency that the vector machine offers can
be calculated as the ratio of the average percentages of peak for the two categories of codes. This works
out to about 2.2.

We use a ratio of 2.5 to be generous to ES and adjust the advertised peak of non-vector platforms
downward to account for the apparent performance advantage of the vector machines. Table V shows
how this adjustment affects the relative costs of the systems. It also accounts for the power usage,
and it shows PP indexed by delivery dates. ASCI Purple and BG/L are not considered here because
of the greater uncertainty in PP for them and because we have no experience yet on which to base
performance estimates for BG/L.

We estimate each platform has a five-year lifetime and compute the cost of the total delivered
flops (the aggregate number, not the rate). We assume that each platform delivers its full-sustained
performance 24 h a day over its entire lifetime, so our estimate does not account for differences in
reliability and availability. Interestingly, ASCI White and ES are essentially identical by this rough
measure. The most expensive platform in this list is Blue-Pacific, even accounting for the declining
cost of computer power. One reason may be that the Blue-Pacific contract included several smaller
systems. The cheapest platform by far on our list is LLNL’s MCR Cluster. Its low cost arises in part
from the use of commodity hardware and open source software. However, its PP did not include much
of the support software that came with the IBM platforms.

3.3. ASCI application performance study

In this section, we present performance data for three important benchmark applications included in
the set used for the procurement of ASCI Purple. We measured the performance of these applications
across several platforms with different hardware and software configurations. Generally, our results
show steady improvement of each application’s performance as new platforms are designed.

3.3.1. sPPM

sPPM [11] solves a three-dimensional gas dynamics problem on a uniform Cartesian mesh, using a
simplified version of the Piecewise Parabolic Method. The algorithm uses a split scheme of X, Y , and
Z Lagrangian and remap steps, which are computed as three separate sweeps through the mesh per
timestep. Message passing updates ghost cells from neighboring domains three times per timestep.

Three versions of this application exist. DEFAULT is the original application as distributed on the
ASCI Purple Web site. The COMP version shows improvements in sPPM performance that resulted
from manual optimizations being integrated into the compiler, leaving the source code unchanged.
The HAND version of the code allows any changes to the source code, including a total rewrite
of the application for a target system. These three cases demonstrate the potential improvements in
application performance that can result from considerable optimization effort. That said, these types
of extensive optimization efforts must be balanced against other organization goals and the number of
target platforms.

Figure 4 shows the scaled speedup for sPPM across seven platforms. Although the speedup in sPPM
is less than that of our other two applications, the trends in improved TTS are obvious.
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3.3.2. UMT

UMT is a three-dimensional, deterministic, multigroup, unstructured mesh photon transport code.
The algorithm solves the first-order form of the steady-state Boltzmann transport equation.
The equation’s energy dependence is modeled using multiple photon energy groups, and the angular
dependence is modeled using a collocation of discrete directions. The spatial variable is modeled with
an upstream corner balance finite volume differencing technique. The solution proceeds by tracking
through the mesh in the direction of each ordinate. For each ordinate direction all energy groups are
transported, accumulating the desired solution on each zone in the mesh. The code generates the mesh
at run-time using a 2D unstructured mesh that it extrudes it in the third dimension using a user-specified
amount.

Figure 5 shows the scaled speedup for UMT across several platforms. As the experiments
demonstrate, the speedup in UMT improves across platforms. The best performance for UMT is on
ASCI Q.

3.3.3. IRS

IRS [32] is an implicit radiation code that solves the radiation transport equation by the flux-limited
diffusion approximation using an implicit matrix. IRS uses the preconditioned conjugate gradient
method (PCCG) for inverting a matrix equation. A planar radiation wave diffuses through a rectangular
mesh from one end to another in the algorithm. The problems execute for longer than it takes to traverse
the spatial problem. This increases the radiation iteration count dramatically, which stresses certain
aspects of parallel communications. As Figure 6 depicts, the scaled speedup of IRS has continued to
improve on LLNL platforms over the last five years.
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4. SYSTEM TECHNOLOGY

In this section, we examine the technologies underlying the components of HEC platforms. It is
important to understand HEC system component technology trends since the critical element in making
a cost-effective computer changes over time. For example, the looming Memory Wall, that is the
difference in the rates of improvement of processor and main memory speeds [33]; indicates that
memory subsystems will grow in importance in the near-term future.
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HEC systems have dozens of technology decision points that reflect the requirements and the
budgets of the system purchasers. These decision points range from commodity components that
provide reasonable performance at a low cost to specialized components that satisfy parochial
requirements, often for a high cost. For our purposes, commodity components are not only mass-
produced components but also are essentially identical components available from multiple vendors in
large volumes.

In today’s HEC environment, many low-cost computer systems, such as the Beowulf systems [14],
are true commodity platforms that use only commodity components. At the opposite extreme,
specialized (proprietary) computer systems employ numerous proprietary components yet a large
portion of these systems remain commodity platforms. For example, even specialized systems like
GRAPE [34] and QCDSP use traditional commodity RAM main memory and commodity storage
subsystem components.

We examine trends for four essential components of HEC platforms: microprocessors; memory
subsystems; interconnects and storage subsystems. Technology and market trends drive all of these
individual components. Thus, we examine semiconductor trends before discussing the individual
components.

4.1. Semiconductor technology trends

Primary technology advances that impact HEC have come in the area of semiconductor devices,
principally CMOS logic and DRAM, and related areas such as packaging, pins, and cooling [23].
Advances in optical communication are also beginning to contribute to high-end systems, primarily as
inter-rack interconnect, and will play a more substantial role in the future. Although it is unclear how
and when emerging technologies, such as MRAM and nanotechnology-based circuits and devices, will
also affect future directions.

Semiconductor devices will continue to increase significantly in logic density, storage capacity,
clock rates, and I/O. CMOS circuits will achieve 1 billion logic transistors per die and clock
rates that approach 10 GHz, although chip-wide clock signal distribution may be somewhat
slower. Memory capacity per chip will reach 1 billion bytes of DRAM storage. While the pins
available for signaling will grow slowly, they are likely to approach 1000 pins for some dies, with
signaling rates between 2 and 8 GHz. Achieving these pin counts and signaling rates may require
differential pairs for improved signal to noise, which will reduce the total number of available
I/O ports.

These continued improvements will aggravate several aspects of component operation. The delays
measured in clock cycles due to communication latencies, contention for shared resources, and
overhead functions for managing concurrent activities and parallel resources will increase by as much
as an order of magnitude due to the product of increased clock rates and greater system diameter of the
largest systems. Bandwidth to processor chips must increase as both the number of arithmetic units per
processor and the per-processor switching speeds are increased.

4.2. Microprocessors

The history of microprocessor technology, as voluminously documented in textbooks, technical
papers, and the press, demonstrates that until recently there was an ample difference between the
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performance of the mass-market microprocessor and those used in costly high-end workstations
and supercomputers. However, a dramatic convergence in the capabilities of these microprocessors
has created a situation where some of the most powerful microprocessors are available in personal
computers. Furthermore, the technology trends in semiconductor capability continue to track Moore’s
law and will continue to do so for at least the next 5–10 years.

Currently, microprocessors have several architectural trends [36–38] including advanced superscalar
processors, processors in memory (PIM), simultaneous multithreading (SMT), multiprocessors on
a chip, and raw processors. Microprocessor chips for high-end computers will continue to evolve
significantly from today’s conventional designs. One approach, referred to as ‘system on a chip’
(SOC) [39], will put an entire computer node on a single die [40]. The microprocessor, its cache, and
DRAM memory along with external I/O interface ports will be a single integrated element. A second
approach will put a number of microprocessors on a single chip each with their own caches and
sharing an L3 cache. This ‘SMP on a chip’ or chip multiprocessor (CMP) [41,42] strategy will support
full cache coherence among the multiple processors on the chips and have them all work out of a
common external main memory. BG/L will employ dual processors per chip with shared caches (but
independent L1 caches for which hardware coherence is not provided). In both cases, the processors are
similar to those architectures of today but benefit from the denser integration that new semiconductor
technologies will enable.

More radical designs for both processor and memory will be possible. Processors may have far
greater numbers of arithmetic units organized in large arrays programmable on a per instruction
basis (e.g. Streams, Trips). Substantial logic may be integrated directly within the memory chips.
These ‘processor in memory’ or PIM architectures can provide limited memory-oriented operation
support such as buffering multiple simultaneous memory requests, handling sophisticated compound
atomic operations (e.g. fetch and add), or doing content addressable searches. Alternatively,
PIMs [43,44] may be designed to perform sophisticated programmable functions directly in the
memory where low temporal locality precludes effective use of processor caches.

Advances in microprocessor technology will be influenced heavily by the cost of process technology
and fabrication plants. Since these costs increase exponentially with decreases in feature size, massive
capital investments are required to implement new architectures and technologies (Moore’s second
law [45,46]). For example, since 2001, Intel has spent nearly $12 billion on new equipment [45] for
chip manufacturing. Another example includes IBM’s recent $2.5 billion semiconductor manufacturing
facility investment [47]. This massive initial investment in high-end technology combines with the
small margins of commodity markets to limit the number of alternatives available to the market.

4.3. Memory subsystem

Memory system design and performance are critical factors for the overall performance for scientific
computing workloads. Crucial differences in memory system technologies exist not only between
proprietary and commodity systems, but also within commodity systems. In this section, we discuss
the wide variety of components and designs used to implement memory systems.

Any random access memory (RAM) consists of arrays of memory cells—electronic devices that
retain a charge to represent a one. There are two types of memory cells—static RAM (SRAM) cells use
a small set (four to six) of transistors to retain the charge, while dynamic RAM (DRAM) cells consist
of a single transistor and a capacitor to store the charge. The basic difference in cell design implies that
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DRAM devices are denser than SRAM devices, generally providing four to six times as many cells per
unit area when implemented with similar process technologies. Thus, DRAM devices are significantly
less expensive in general than similar capacity SRAM devices. Alternatively, the SRAM memory cell
design provides lower latency and zero wait state accessibility.

Traditionally, SRAM has been preferred for on-chip and cache memories since these levels of the
memory hierarchy are on or close to the critical path. Also, DRAM processes were incompatible with
CPU processes so DRAM devices could not be included in logic devices [48]. However, embedded
DRAM (eDRAM) is now common [49] and will be used more frequently as modern applications
require larger caches. Already, POWER4 systems use two 16 MB eDRAM chips to implement the
off-chip L3 cache [50], while the BG/L compute ASIC will include a 4 MB L3 implemented in
eDRAM [17]. Since eDRAM latencies will improve relative to those of SRAM, eDRAM will be used
more and more frequently [51]. However, eDRAM latencies will remain higher than those of SRAM,
so portions of the memory hierarchy, such as L1 caches, will continue to use SRAM.

Main memories have almost used DRAM because of the significantly higher cell densities. Fast-Page
Mode (FPM) DRAM, Extended Data Out (EDO) DRAM, Synchronous DRAM (SDRAM), Double
Data Rate (DDR) SDRAM and Enhanced SDRAM (ESDRAM) [52] represent a straightforward
evolutionary technology path of advances to how the DRAM is accessed and of caching within
the DRAM device from the basic design of an array of memory cells [53,54]. SyncLink DRAM
(SLDRAM) [55] and Direct Rambus (RDRAM) [56], two of the most recent main memory
technologies to emerge, use address/control packet protocols to support higher frequencies and provide
performance gains through critical-word-first-ordering over smaller width buses [57]. It is unclear
which of these technologies will become the most prevalent.

Figure 7 presents the lowest price found for a variety of DRAM technologies during an Internet
survey of DIMM or RIMM prices conducted in January 2003. This survey demonstrates that DRAM
costs have dropped significantly over time—all of the prices were below $1 per MB. Not surprisingly,
the most recent and highest performance technologies tend to cost more. However, this trend actually
is reversed over time—although not shown, we found that FPM and EDO DRAMs were the most
expensive per MB. Figure 7 does not include SLDRAM, which is not yet widely available in
commodity DRAMs.

The memory subsystems of today’s vector-based and scalar-based systems have many similarities.
Highly banked main memories originated in early vector systems. Experiences with vector memory
systems helped motivate current DRAM designs such as RDRAM and SLDRAM. We expect
other aspects of vector memory systems, such as the Impulse memory controller support for
scatter/gather [58], to become common in scalar-based systems. Alternatively, early vector machines,
such as the Cray I, had SRAM main memories. However, current main memory sizes make SRAM
prohibitively expensive [59] so current vector systems and SMPs use similar DRAMs: the Cray X1
accesses its standard RDRAM through a crossbar interconnect [60], while the IBM Nighthawk II used
in ASCI White accesses its standard SDRAM through a crossbar interconnect.

Although the memory systems of scalar and vector systems still diverge significantly above the main
memory level, they are becoming more similar. Original vector systems used little or no cache, instead
using the equivalent chip space for large vector register banks. However, vector systems now include
caches—the scalar units of the ES processors have 64 KB data caches, while the Cray X1 processor
has instruction and data caches associated with each of its four scalar units and 2 MB that the units and
associated vector pipes share.
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Figure 7. Memory capacity and cost ratios.

4.4. Interconnection network technologies

A high-performance interconnection network converts a collection of nodes into a single HEC system
and its performance has been shown to dramatically impact the performance of scientific applications.
Designers of today’s HEC platforms can select from an array of interconnect choices: Gigabit Ethernet,
Quadrics QsNet, Scalable Coherent Interface, Myrinet, Infiniband, and a collection of proprietary
interconnects, such as the IBM SPSwitch2. ASCI White and Blue-Pacific use an SPSwitch2. ASCI
Q and MCR use Quadrics QsNet. These choices offer a range of topologies, switching strategies,
scalability, price, and performance parameters. The basic performance model for these networks can
be divided into network latency and bandwidth, which result from system design parameters like the
network topology and switching strategy.

Most systems have more than one network. Many systems use Ethernet for a reliable, inexpensive
RAS network for managing nodes and a high-performance interconnect like Quadrics QsNet for
application communication and, possibly, IO. Similarly, BG/L will have five networks including a
three-dimensional torus, a global tree, and a Gigabit Ethernet, each targeting specific communication
tasks.
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Several less public concerns also impact design choices, such as the installation and weight of
network cabling. For example, ASCI White uses almost 83 miles of cabling with its SPSwitch2 while
the 83 000 copper cables of ES’s single stage crossbar switch span approximately 1800 miles.

4.5. Storage subsystem

Scientific applications perform three main types of input and output [61]:

• required I/O, including reading input data and storing final results;
• checkpoint I/O, which saves a computation’s intermediate state so that it can be restarted later in

case the system fails or the job is interrupted;
• data staging, which is moving data between main memory and disk when the full data set is too

large to fit in main memory.

These I/O operations demand several features from I/O subsystems, including the following:

• low access time (measured from when an I/O request is issued until the first byte arrives at its
destination);

• high transfer rate (number of bytes moved per unit time);
• globally accessible files (all files accessible from all nodes);
• efficient concurrent access from multiple nodes to a single file.

Not every form of I/O needs all these features at once, but a general-purpose HEC platform must offer
reasonable solutions for all forms of I/O. As a result, some HEC platforms use multiple I/O systems
with different combinations of features. Three types of I/O systems are used in parallel computers:
node-attached disks; parallel file systems using the message-passing network; and parallel file systems
using a storage-area network (SAN).

Node-attached disks, disks that are directly connected to compute nodes (by the term ‘disk’, we
mean an individual disk drive or a multiple-disk storage device) meet the requirement for fast access
and rapid transfers (from individual nodes) well. They avoid contention for network bandwidth and the
latency that arises when data traverse multiple links. For these reasons, node-attached disks are often
used for checkpointing and data staging. This solution implies costs in ease of use: node-attached disks
require explicit data movement from larger, centralized storage systems for data-staging and required
I/O; for checkpoint, explicit data movement is also required or the job must be restarted on the same
set of nodes. Further, some large systems do not offer node-attached disks because they add to the cost,
power consumption, and size of a system.

Node-attached disks do not offer globally accessible files or concurrent access is poorly suited for
the required I/O. To make files available to all the nodes, most HEC platforms use a global file system.
These systems connect storage devices to compute nodes through a network, either the interconnection
network that the system uses for message passing or a separate SAN. Global file system software makes
all files accessible to all nodes on the network. A global file system is called a parallel file system if it
uses file striping to distribute data over multiple storage devices so that nodes can access an individual
file in parallel, which improves the aggregate transfer rate.

Files are usually striped over a subset of nodes that serve as I/O nodes, each connected to a large
storage device, when the global file system uses the message-passing network. When multiple nodes
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read or write concurrently, the aggregate transfer rate can be quite high. On the other hand, the access
time is greater than it would be for node-attached disks because of the time to traverse the network, the
I/O node, and finally the connection to the storage device.

A newer approach to parallel file systems uses a SAN and network-attached storage devices instead
of the message passing network and I/O nodes. SAN-based systems have several advantages over file
systems that use the message-passing network. First, they use dedicated resources for moving and
processing data instead of compute nodes and message-passing network capacity. Second, intelligent
storage devices can be directly connected to the SAN. Third, and most importantly for sites like LLNL
that have several HEC platforms, SAN-based systems can serve multiple systems since they are not
tied to a specific system and can work with different computer architectures. This last advantage allows
users to generate data on a system designed for computing power and then visualize it on one designed
for rendering without using explicit data movement between them. Further, it will save money on
storage hardware in the long run since it eliminates the need to duplicate files across multiple file
systems. Sharing access to files over a network has been in use for many years through, for example,
the Network File System (NFS) [62]. However, these early systems were not designed to handle striped
files or to support efficient concurrent writing from multiple nodes. Although SAN-based parallel I/O
systems are not yet widely used, several implementations are under way, including Lustre [63].

5. PROGRAMMING MODELS

ASCI programming environments stress most software development tools due to the scale of the
hardware architecture, software complexity, and the requirement of compatibility/portability across
ASCI platforms. Development, testing, and validation of multi-physics applications require 4–6 years.
These codes have at least a 10-year lifespan and may be used for several decades. Thus, they must run
on not only today’s HEC platforms, but also future ones.

This long lifespan implies strategic importance for the programming model choice: code portability
and longevity are major objectives. ASCI codes use standards-conforming languages and do not
exploit idiosyncratic processor-specific optimizations or non-standard compiler features since they
must execute at all three ASCI sites (LLNL, LANL and Sandia National Laboratories). While small
code modifications to improve performance on one specific platform do occur, major changes that tie
one application to one platform are avoided since the performance improvement can be limited and
predicted improvement must outweigh other priorities, such as adding new features to the application.

Figure 1 illustrates that our users could rely on a relatively stable development environment for
almost 25 years. For example, users programming on the CDC 6600 in 1972 could rely on the
same vendor and general operating environment for nearly 15 years. During the mid-1990s, a wide
range of platforms became available and challenged this stability. The difficulties presented by this
environment led to the ASCI program paying significant attention to the portability and compatibility
of programming models, languages, and software environments.

ASCI’s platform diversity has led nearly all of today’s LLNL applications to use a combination
of three programming models: the serial model, the symmetric multiprocessor model using OpenMP,
and the message-passing model using MPI. Most applications use MPI for coarse-grain concurrency,
and OpenMP, or possibly POSIX threads, for fine-grain concurrency. All three programming models
combine with standard languages, such as ANSI C and FORTRAN 90, to provide a portable and
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compatible software development environment across all current major HEC platforms. ASCI has also
invested in software tools to provide a consistent development environment across important platforms
including the Etnus’ TotalviewTM debugger and the Pallas’ VampirTM performance analysis tool.

6. CONCLUSIONS AND RECOMMENDATIONS

We conclude our analysis with four primary conclusions and four recommendations. Overall, we find
that there are no universal metrics, models or benchmarks for determining what HEC platform will
best serve a given user community and that rational purchasing decisions must account for a number
of extrinsic factors, like portability/compatibility and risk.

6.1. Universal metrics

The HEC community has long understood that PEAK correlates only roughly to TTS for an application
of interest. As noted in Section 2.1, other features of an architecture, such as latency and bandwidth,
also influence TTS. Measures, such as %PEAK and cache utilization, can show how a particular
application interacts with a particular architectural component, and this information can be useful in
the process of tuning a code. However, because algorithms exercise computers in such complex ways,
no single metric fully and accurately describes the performance of real applications on a machine.
We state this obvious and uncontroversial conclusion because PEAK and %PEAK will likely continue
to be used as shorthand measures of architectural and application performance. The HEC community
should beware of assigning too much importance to them.

6.2. Diverse workloads limit feasibility of one benchmark

Many benchmark codes capture a HEC platform’s performance more accurately than a single metric
can. For workloads with only one major application, or a set of applications with similar performance
characteristics, a few benchmark results may describe performance completely. However, workloads
with a wider variety of applications [64,65] are much harder to benchmark. For example, a platform
may deliver %PEAK values for different algorithms that vary by more than a factor of 10. To predict
overall performance accurately, one would have to weight benchmark results by the expected usage
of different algorithms in real applications. However, this information may not be known in advance,
since different inputs to the same application may change the proportion of time it spends in different
algorithms. In general, the broader the mixture of algorithms, the harder it is to predict a machine’s
performance based on benchmarks.

6.3. Extrinsic factors matter

Even the most accurate benchmarks describe only a part of a platform’s value. Other intrinsic features,
such as power consumption and facilities requirements, impact a system’s cost. So do many extrinsic
features, such as acquisition cost and the cost of writing or modifying software to run efficiently on the
platform. Code developers may specifically tune algorithms to run well on one platform, or they may
write code that is easy to maintain and port but not well optimized for any one system. Given the long
lifespan of most large scientific codes, sacrificing some performance in favor of portability often pays
off in the long run.
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Yet another extrinsic factor is the risk involved in buying a cutting-edge HEC platform.
Organizations must consider whether a new system is likely to meet technical goals on schedule and
whether its vendor will remain in business to support it throughout its lifetime. The consequence of
failure can be a loss of both money and time. These risks are difficult to quantify precisely because
the community of HEC vendors changes continually, so previous experience is not always an accurate
guide.

6.4. Procurement evaluations must reflect organizational requirements

The reemergence of vector architectures and the growing use of commodity clusters has increased the
need for a rational approach to evaluating HEC platforms. We have presented several measures for
their utility and cost. It is tempting to combine these measures into a model that projects the total
cost per unit of delivered computational work. However, we believe that no model can provide reliable
broad conclusions about the relative value of different types of platforms since there are too many
uncertainties. First, TTS, which is the performance measure that really matters, depends intimately
on the details of the algorithms in use and the problems being solved. Purchase price, TCO, and risk
introduce further uncertainties. Finally, and often unacknowledged, the cost of porting a code base to a
new machine can vary drastically among organizations based on the state of the existing code and the
organization’s willingness to spend time and money on system-specific optimizations.

6.5. Recommendations

We make four recommendations based on our analysis.
First, the industry’s reliance on PEAK demonstrates the dearth of accurate performance prediction

capabilities. Further, the lack of powerful application analysis and architecture design tools limits
the consideration of possible alternative architectures. Thus, we recommend the development of
capabilities in this area, such as efficient simulators and hardware-assisted monitoring, so that users
and designers will be better able to explore the design space of HEC platforms.

Second, our historical data demonstrate that factors other than performance, such as facilities and
power requirements, will become increasingly important as constraining metrics. Thus, we recommend
an increased industry focus on power efficient hardware designs to ameliorate HEC facility costs.

Third, custom ASICs based on commodity designs such as that used in BG/L [17] provide
affordable alternatives to commodity microprocessors. Since scientific applications present specialized
needs compared with other application workloads, we recommend continued exploration of hybrid
custom/commodity designs to provide more efficient use of power, transistors, and capabilities.

Finally, organizations should evaluate HEC platforms based on a broad set of measures that describe
their needs and costs, and for the HEC community as a whole to look skeptically on oversimplified
claims of cost and performance.
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