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The Cray X1 supercomputer,
introduced in 2002, has several interesting
architectural features. Two key features are
the X1’s distributed shared memory and its
vector multiprocessors. Recent studies of the
X1’s vector multiprocessors have shown sig-
nificant performance improvements on sev-
eral applications.1,2 In this article, we
characterize the performance of the X1’s dis-
tributed shared-memory system and its
interconnection network using microbench-
marks and applications.

The X1’s distributed shared-memory archi-
tecture presents a 64-bit global address space,
which is directly addressable from every
processor using traditional load and store
instructions. From the application perspec-
tive, this memory system behaves like a
nonuniform memory access (NUMA) archi-
tecture; however, this memory system does
not cache accesses between symmetric multi-
processor nodes. This hardware support for
global addressability naturally supports pro-
gramming models such as the Cray Shmem

API,3 Unified Parallel C (UPC),4 Co-Array
Fortran,5 and Global Arrays.6

Cray X1 overview
The Cray X1 is an attempt to incorporate

the best aspects of previous Cray vector sys-
tems and massively parallel processing systems
into one design. Like the Cray T90, the X1
has high memory bandwidth, which is key to
realizing a high percentage of theoretical peak
performance. Like the Cray T3E,7 the X1 has
a high-bandwidth, low-latency, scalable inter-
connect, and scalable system software. And,
like the Cray SV1, the X1 leverages commod-
ity CMOS technology and incorporates non-
traditional vector concepts, such as vector
caches and multistreaming processors (MSPs).

Multistreaming processor
The X1 has a hierarchical design with an

MSP basic building block capable of 12.8
Gflops/s for 64-bit operations (or 25.6
Gflops/s for 32-bit operations). As Figure 1
illustrates, each MSP consists of four single-
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streaming processors (SSPs), each with two
32-stage 64-bit floating-point vector units and
one 2-way superscalar unit. The SSP uses two
clock frequencies: 800 MHz for the vector
units and 400 MHz for the scalar unit. Each
SSP is capable of 3.2 Gflops/s for 64-bit oper-
ations. The four SSPs share a 2-Mbyte Ecache.

Although the Ecache has sufficient single-
stride bandwidth (accessing consecutive mem-
ory locations) to saturate the vector units of
the MSP, the Ecache is necessary because the
bandwidth to main memory is insufficient to
saturate the vector units without data reuse.
That is, memory bandwidth is roughly half the
saturation bandwidth. This design represents
a compromise between non-vector-cache sys-
tems, such as the NEC SX-6, and cache-
dependent systems, such as the IBM p690,
which has memory bandwidths that are an
order of magnitude less than the saturation
bandwidth. The X1, because of its short cache
lines and extra cache bandwidth, has a ran-
dom-stride scatter/gather memory access that
is just a factor of two slower than stride-one
access, not the factor of eight or more typical
of cache-based systems like those based on the
IBM Power4, Compaq Alpha, or Intel Itani-
um. The X1’s cache-based design only devi-
ates slightly from the full-bandwidth design
model. Each X1 MSP has the single-stride
bandwidth of an SX-6 processor; it is the X1’s
higher peak performance that creates an imbal-
ance. A relatively small amount of data reuse,
which most modern scientific applications do
exhibit, can enable the X1 to realize a very high
percentage of peak performance, and even dur-
ing worst-case data access, data reuse can still
provide double-digit efficiencies.

The X1 compiler has two options for using
the eight vector units of a single MSP. First, it
can use all eight when vectorizing a single
loop. Second, it can split up (or multistream)
the work in an unvectorized outer loop and
assign it to the four SSPs, each with two vec-
tor units and one scalar unit. (The compiler
can also vectorize a “long” outer loop and
multistream a shorter inner loop if the depen-
dency analysis allows it.)

The effective vector length of the first
option is 256 elements, the vector length of
the NEC SX-6. The second option, which
attacks parallelism at a different level, allows
a shorter vector length of 64 elements for a

vectorized loop. Cray also supports the option
of treating each SSP as a separate processor.

As Figure 2 illustrates, four MSPs, 16 mem-
ory controller chips (M-chips), and 32 mem-
ory daughter cards form a Cray X1 node. A
node’s memory banks provide 204 Gbytes/s
of bandwidth, enough to saturate the paths to
the local MSPs and service requests from
remote MSPs. Local memory latency is uni-
form for all processors within a node. These
banks have error-correcting-code memories,
which provide reliability by correcting single-
bit errors, detecting multiple-bit errors, and
providing chip-kill error detection.
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Each bank of shared memory connects to
several banks on remote nodes, with an aggre-
gate bandwidth of roughly 50 Gbytes/s
between nodes. This balance represents one
byte per floating-point operation (flop) of
interconnect bandwidth per computation
rate, compared to 0.25 bytes per flop on the
Japanese Earth Simulator,8 and less than 0.1
bytes per flop on an IBM p690 with the max-
imum number of High-Performance Switch
(HPS) connections.9

Interconnect overview
X1 routing modules connect the Cray X1

nodes. Each node has 32, 1.6 Gbytes/s full-
duplex links. Each memory module has an
even and odd 64-bit (data) link forming a
plane with the corresponding memory mod-
ules on neighboring nodes. Eight adjacent
nodes connected in this way form a processor
stack. The local memory bandwidth per node
is 204 Gbytes/s, enough to service both local
and remote memory requests.

An X1 cabinet consists of 16 node boards
and four routing boards (or two processor
stacks). Each routing board has eight routing
modules. The routing module ASIC is an
eight-way nonblocking crossbar switch sup-
porting worm hole routing. The routing mod-
ule supports prioritization based on credits or
aging. Ports connect to the node boards or
other router ports with 96-pin cables with a
maximum length of 4 meters. Data packets
carry a cyclic redundancy code (CRC), and if
the receiver detects a CRC error, the sending
node resends the packet. Communication
latency increases by about 500 ns per router
hop. The X1 routing module uses software-
loaded configuration tables for data flow map-
ping across the interconnection network. At
system boot, these tables are initialized, but
are reloadable, providing a means to recon-
figure the network around hardware failures.

Interstack connectivity allows several
options. First, a four-node X1 can intercon-
nect directly via the memory modules links.
Second, with eight or fewer cabinets (up to
128 nodes or 512 MSPs), the interconnect
topology is a 4D hypercube. Larger configu-
rations use an enhanced 3D torus, where one
dimension of the torus, the processor stack, is
fully connected.

The 3D torus topology has relatively low

bisection bandwidth compared to crossbar-
style interconnects,10 such as those on the IBM
SP and the Earth Simulator. Whereas bisec-
tion bandwidth scales as the number of nodes,
O(n), for crossbar-style interconnects, it scales
as the 2/3 root of the number of nodes, O(n2/3),
for a 3D torus. Despite this theoretical limita-
tion, mesh-based systems—such as the Intel
Paragon, the Cray T3E, and ASCI Red—have
scaled to thousands of processors.

Atomic in-memory operations (fast, submi-
crosecond, scalable locks and barriers) provide
synchronization.11 In particular, the X1 pro-
vides explicit memory ordering instructions for
local ordering (Lsync), MSP ordering (Msync),
and global ordering (Gsync). It also provides
basic atomic memory operations such as
fetch&op. Although these operations are effi-
cient because they do not require a cache line
of data, they are unordered with respect to
other memory references and require synchro-
nization using memory ordering instructions.

Local and remote memory accesses
A single four-MSP X1 node behaves like a

traditional SMP. Like the T3E, each processor
has the additional capability of directly address-
ing memory on any other node. Different,
however, is the fact that the processors direct-
ly issue these remote memory accesses as load
and store instructions, which go transparently
over the X1 interconnect to the target proces-
sor, bypassing the local cache. This mechanism
is more scalable than traditional shared mem-
ory, but it is not appropriate for shared-mem-
ory programming models, such as OpenMP
(http://www.openmp.org), outside of a given
four-MSP node. This remote-memory access
mechanism is a natural match for distributed-
memory programming models, particularly
those using one-sided put/get operations.

As Figure 3 shows, the X1 64-bit global vir-
tual address decomposes into two parts: two
bits to select the memory region and 48 bits
for a virtual page number, page boundaries,
and page offset. The page size can range from
64 Kbytes to 4 Gbytes, selectable at execution
time with different page sizes possible for text
and data areas.

The 48-bit physical address decomposes
into a 2-bit physical-address region marker, a
10-bit node number, and a 36-bit offset. The
10-bit node number limits the maximum X1
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configuration to 1,024 nodes (4,096 MSPs).
The address translation scheme uses 256-entry
table look-aside buffers (TLBs) on each node
and allows noncontiguous multinode jobs
(though this mode typically degrades perfor-
mance). When a job uses contiguously num-
bered nodes, it is possible to remotely translate
page offsets, so the TLB needs to hold trans-
lations for just one node. This design scheme
allows the system to scale with the number of
nodes with no additional TLB misses. Such a
design can hide memory latency with the com-
piler’s help; the hardware dynamically unrolls
loops, performs scalar and vector renaming,
and issues scalar and vector loads early. Vector
load buffers permit 2,048 outstanding loads
for each MSP. Nonallocating references can
bypass the cache for remote communication

to avoid cache pollution and to provide effi-
cient large-stride (or scatter/gather) support.

Performance
This section describes some of our results

in evaluating the Cray X1 and its memory
hierarchy. We conducted these tests on the
eight-cabinet, 512-MSP X1 located at Oak
Ridge National Laboratory (ORNL). Our
evaluation uses both standard and custom
benchmarks as well as application kernels and
full applications. Table 1 provides the basic
configurations of each platform used in this
experimental evaluation.

Programming models
An X1 node (four MSPs) supports a cache-

coherent shared memory, and Cray supports
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Figure 3. Cray X1 address translation.

Table 1. Platform configurations.

Characteristic SGI Altix Alpha SC Earth Simulator IBM SP4 Cray X1
Processor Intel Itanium 2 Compaq Alpha EV67 NEC SX-6 IBM Power4 Cray X1
Interconnect Numalink Quadrics (Elan3) Custom crossbar HPS or SP Switch2 Cray X1
Processor speed (MHz) 1,500 667 500 1,300 800
Memory/node (Gbytes) 512 2 16 32 16
L1 cache size (Kbytes) 32 64 NA 32 16 (scalar)
L2 cache size (Mbytes) 0.256 8 NA 1.5 2 (per MSP)
L3 cache size (Mbytes) 6 NA NA 128 NA
Processor peak 

performance (Mflops) 6,000 1,334 8,000 5,200 12,800
Peak memory bandwidth 6.4 5.2 32 (per each 51 (per mutichip 26 (per each 

(Gbytes/s) processor) modules) MSP)



OpenMP System V shared memory, and Posix
threads shared-memory programming (SMP)
models. In addition, the compilers can treat
the node processors as four streaming MSPs
(in MSP mode) or 16 individual SSPs (in SSP
mode). Each node can have from 8 to 32
Gbytes of local memory.

Cray supports several distributed-memory
programming models for the X1, including
the Message Passing Interface (MPI),12

Shmem, Co-Array Fortran, and UPC. For
MPI message passing, the minimum address-
able unit is an MSP (or an SSP if the job is
compiled in SSP mode). For UPC and Co-
Array Fortran, the compiler can overlap com-
putation with remote memory requests,
because the decoupled microarchitecture
allows the scalar unit to prepare operands and
addresses for the vector unit.

The programmer can mix node-level SMP
with both MPI and direct access (Shmem,
UPC, or Co-Array Fortran) to remote mem-
ory. Hardware handles synchronization (locks
and barriers). Exploiting this diverse set of
programming models is one of the X1’s
opportunities.

The compilers also provide directives to
assist in parallelization and the management

of external memory (that is,
there is no caching for desig-
nated variables). Scientific
libraries provide efficient
management for the Ecache
and vector pipes. The user
can specify page size for text
and data areas when initiat-
ing an executable. The
resource management system
provides processor allocation,
job migration, and batch
scheduling.

Microbenchmarks
We use a collection of

microbenchmarks to charac-
terize the performance of the
underlying hardware, com-
pilers, and software libraries.
The triad memory band-
width for the Stream bench-
mark (http://www.cs.virginia.
edu/stream) is 24 Gbytes/s
for a streaming MSP or 40

Gbytes/s (aggregate) for 4 SSPs. The aggre-
gate Stream triad memory bandwidth for an
X1 SMP node is 84 Gbytes/s for 4 MSPs and
90 Gbytes/s for 16 SSPs. This compares favor-
ably with the 30 Gbytes/s of bandwidth for
one processor of the modified NEC SX-6 in
the Earth Simulator and the 213 Gbytes/s for
an eight-processor SMP. Remote memory
access bandwidth peaks at about 30 Gbytes/s
for the X1 (using Co-Array Fortran).

Figure 4 illustrates the effect of remote
accesses on local-memory performance.
Processor 0 is executing a Stream triad. With
no memory interference, the triad runs at 24
Gbytes/s. The figure shows the effect of an
increasing number of processors doing Co-
Array Fortran gets from or puts to processor
0. If more than five processors are executing
gets, it reduces the triad performance, but puts
have no effect on triad performance. The
local-memory activity (triad) has little effect
on the aggregate throughput of the gets and
puts.

Figure 5 and Figure 6 show the MPI intra-
and internode bandwidths. We used the Park-
Bench comms1 benchmark code to measure
MPI communication performance between
two processors on the same node and then two
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different nodes. MPI latency was 7.3 µs (one-
way) for an 8-byte message between X1 nodes.
Each additional hop in the torus network
requires less than 0.5 µs. MPI bandwidth for
ping-pong reaches 12 Gbytes/s between
nodes. The X1 demonstrates a significant
advantage over the other platforms when mes-
sage sizes rise above 8 Kbytes.

MPI is not yet fully optimized for the X1,
and Shmem and Co-Array Fortran usually
perform better for small message sizes. Figure
7 shows how the various X1 programming
paradigms perform a Halo operation13 on 16
MSPs. The Halo benchmark simulates the
nearest neighbor exchange of a 1 to 2 row or
column “halo” from a 2D array. This is a com-
mon operation in domain decomposition.
Latency dominates small-message perfor-
mance, whereas bandwidth limits the perfor-
mance for larger messages. The Co-Array
paradigm performs the best, partially because
the compiler can hide some of the latency.

Figure 8 illustrates the time to perform an
allreduce—a common operation in scientific
applications—using a double-word sum oper-

ator implemented in various programming
paradigms. For the Co-Array Fortran, Shmem,
and UPC implementations, the algorithm
gathered data to a single process, summed it,
then broadcasted it. MPI_Allreduce can use a
different algorithm. As with the Halo opera-
tion, the Co-Array Fortran implementation
performed the best, and Cray has not yet opti-
mized the UPC performance. Viewed in this
light, it is clear that choosing the appropriate
programming paradigm can be important to
efficiently use the underlying hardware. How-
ever, barriers for the various programming
models use the same underlying hardware and
average about 5 µs, essentially independent of
the number of participating processors at the
current scale (up to 512 MSPs).

Applications
These impressive performance results for

microbenchmarks on the X1 are uninterest-
ing unless they also translate into performance
improvements in applications. Two such
application areas at ORNL are climate mod-
eling and fusion simulations.
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Climate modeling
The Parallel Ocean Program (POP)14 is an

ocean modeling code developed at Los Alam-
os National Laboratory (LANL); it serves as
the ocean component in the Community Sys-
tem Climate Model coupled climate model.
Figure 9 compares the performance of this
code on the X1 when using a pure MPI imple-
mentation and when using Co-Array Fortran
for two routines: a halo update and an allre-
duce. Both routines are used in a conjugate
gradient linear system solver: the halo update
in calculating residuals and the allreduce 
in calculating inner products. Figure 9 
shows performance on a Hewlett-Packard
AlphaServer SC, an IBM p690 cluster, the
Earth Simulator, and an SGI Altix. POP’s per-
formance scalability is very sensitive to laten-
cy, and MPI latency limits performance on
the Cray X1 compared to that achievable
using Co-Array Fortran.

Fusion simulation
Gyro is an Eulerian, gyrokinetic Maxwell

solver developed by R.E. Waltz and J. Candy at

General Atomics.15 It is used to study plasma
microturbulence in fusion research. Figure 10
compares the performance of Gyro on the X1,
the SGI Altix, and an IBM p690 cluster using
both SP Switch2 and High Performance Switch
(HPS) interconnects. Gyro uses the MPI_ALL-
TOALL command to transpose the distributed
data structures; it is more sensitive to band-
width than to latency. As Figure 11 shows, the
IBM results indicate the sensitivity of perfor-
mance to bandwidth, because the primary dif-
ference in performance between the SP Switch2
and HPS results is in message-passing perfor-
mance. For this benchmark, MPI bandwidth
on the X1 does not limit scalability.

Our experiments show that the high band-
width and low latency for X1 intercon-

nect translates into improved application
performance on diverse applications, such as
the POP ocean model and the Gyro gyroki-
netic Maxwell solver. Our benchmark results
also demonstrate that it can be important to
select the appropriate programming models
to exploit these benefits. For the most recent
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results and additional performance data com-
paring the X1 with other systems, see
http://www.ccs.ornl.gov/evaluation.

We plan to continue our investigations of
other core technologies for high-performance
computing, which will include future gener-
ations of Cray systems, including the X1E and
Black Widow. Most importantly, we plan to
investigate next-generation interconnects,
such as Infiniband, and the proprietary inter-
connects of the Cray XD1, the Cray XT3, and
the Cray Rainier architectures. MICRO
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