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1. INTRODUCTION

As we enter into the post-petascale era, the requirements of data processing and compu-
tation are growing exponentially. To meet this requirement, researchers have moved from
serial execution platforms to high-performance computing (HPC) platforms, such as mul-
ticore processors, FPGAs and GPUs etc. GPUs, in particular, have been widely used for
HPC applications due to their extremely high computational powers, and a large fraction
of supercomputers in Top500 list use GPU to achieve unprecedented computational power
[Top500 2013]. Thus, GPUs have become integral part of today’s mainstream computing
systems.
The high performance demands on GPUs, however, have influenced their design to be

optimized for higher performance, even at the cost of large power consumption. Hence,
recent years have witnessed marked increase in power consumption of GPUs. The elevated
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levels of power consumption of GPUs have significant impact on their reliability, economic
feasibility, architecture design, performance scaling and deployment into a wide range of
application domains. As a case in point, supercomputers built with CPU-GPU consume huge
amount of power, for example, Titan supercomputer consumes 8.2MW power [Top500 2013].
Further, it has been estimated that an exascale machine, built with the technology used in
today’s supercomputers will consume several giga watts of power [Miller 2013]. To manage
such high levels of power dissipation and continue to scale performance, power management
techniques are essential for both CPUs and GPUs. While the area of power management
in CPUs has been actively researched over years, the area of power management in GPUs
is yet to be fully explored. For these reasons, understanding the state-of-the-art in GPU
power management in extremely important for researchers to propose even more effective
solutions to address the power challenges and design “green” GPUs of tomorrow.
In this paper, we present a survey of research works aimed at analyzing and improving

energy efficiency of GPUs. We classify the techniques based on several parameters to provide
insights into their important features. We also review the research works which compare
the energy efficiency of GPUs with other computing systems such as CPUs, Cell processor,
FPGA etc. We believe that this will enable the readers to judge the energy efficiency of
GPUs vis-à-vis alternate computing platforms and make important decisions.
Since it is infeasible to review all the research ideas proposed in the literature, we adopt

the following approach to limit the scope of the paper. We include only those studies that
analyze GPU power consumption and the techniques which have been evaluated based on
GPU energy efficiency. We do not include those studies which have been shown to improve
only performance and not energy efficiency, even though the performance improvement is
likely to translate to better energy efficiency. We include application-level and architectural-
level techniques and not circuit-level techniques for improving energy efficiency. Further,
since different techniques have been evaluated using different experimentation platform
and methodologies, we only focus on their key ideas and generally do not present their
quantitative results.
This paper is organized as follows. Section 2 reviews the GPU terminology and also

highlights the need of power management. Section 3 reviews the studies on comparing GPU
energy efficiency with that of other computing systems. Section 4 discusses some power
management techniques in detail. In both of these sections, we first provide an overview
and classification of the methods; and then discuss some of the techniques in detail. We
finally provide concluding remarks and future research trends in Section 5.

2. BACKGROUND

2.1. GPU Terminology and Sources of Power Consumption

Recently, several researchers have proposed models and tools for measurement and estima-
tion of GPU power consumption [Hong and Kim 2010; Ramani et al. 2007; Nagasaka et al.
2010; Sheaffer et al. 2005a; Zhang et al. 2011; Jiao et al. 2010; Zhang et al. 2011; Chen et al.
2011; Suda and Ren 2009; Enos et al. 2010; Wang and Ranganathan 2011; Ren 2011; Ren
et al. 2012; Luo and Suda 2011; Pool et al. 2010; Stolz et al. 2010; Li et al. 2011; Wang and
Chen 2012; Collange et al. 2009; Wang et al. 2010; Vialle et al. 2011; Kasichayanula et al.
2012]. These models provide insights into the working of GPUs and relative contribution
of different components in the total power consumption. In what follows, we briefly review
the GPU architecture, terminology and sources of power consumption, as relevant for this
paper and refer the reader to above mentioned works for more details.
A GPU has several streaming multiprocessors, each of which has multiple cores. For

example, NVIDIA GeForce GTX 590 has dual GPUs; where each GPU has 16 streaming
multiprocessors (SMs); each of these SMs have 32 cores; for a total of 512 cores in each GPU
and 1024 cores in the overall GTX 590 graphics card [GeForce GTX 590 2013]. The cores
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of a typical GPU are composed of ALUs, thread-schedulers, load/store units, scratchpad
memory, register file and caches etc. A GPU is designed for stream or throughput computing,
which has little data reuse and hence, a GPU has much smaller sized cache (for example
16KB L1 and 256KB L2 [Wong et al. 2010]) than a typical CPU. The GPU is used as a co-
processor with a CPU and in such cases, GPU is referred to as the ‘device’ and the CPU as
the ‘host’. A GPU has its own device memory of a few GBs (gigabytes), and it is connected
to the host through a PCI-Express (PCIe) bus. A GPU is programmed as a sequence of
kernels. The code is executed in groups of 32 threads, called a warp. CUDA (Compute
Unified Device Architecture) and OpenCL (Open Computing Language) are widely-used
interfaces for programming GPUs.
The power consumption of GPU can be divided into two parts, namely leakage power

and dynamic power. The dynamic power is a function of operating temperature and circuit
technology. Leakage power is consumed when GPU is powered, even if there are no runtime
activities. The dynamic power arises from switching of transistors and is determined by
the runtime activities. Different components such as SMs and memories (e.g local, global,
shared) etc. contribute to this power consumption.

2.2. Need for Improving Energy Efficiency of GPUs

GPU power management is extremely important for the following reasons.

2.2.1. Addressing Inefficient Resource Usage. To meet the worst-case performance require-
ments, the chip designers need to over-provision the computing resources of GPUs; how-
ever, on average, the utilization of these resources remains low. Also, in several applications,
memory bandwidth of GPUs acts as a performance-bottleneck [Hong and Kim 2010; Daga
et al. 2011; Cebrian et al. 2012; Spafford et al. 2012], due to which the cores are not fully
utilized which leads to energy inefficiency. Further, unlike massively parallel applications,
regular parallel applications do not scale well beyond a certain number of cores and hence,
a large amount of power is wasted in idle cores or in synchronization. Finally, GPUs are
increasingly being used in cloud infrastructure and data centers [Amazon EC2 2013], which
experience highly varying usage patterns. Thus, dynamic power management techniques
can offset these sources of inefficiencies by using runtime adaption.

2.2.2. Ensuring Reliability. Large power consumption has significant effect on the reliability
of the computing systems. A 15 degree Celsius rise in temperature increases the compo-
nent failure rates by up to a factor of two [Anderson et al. 2003]. The device failures may
lead to system malfunction and as GPUs become increasingly employed in supercomputers
and business services, system malfunction may have serious economic impact. For exam-
ple, the service cost of merely one hour of downtime in brokerage operations and credit
card authorization can be $6,450,000 and $2,600,000, respectively [Feng 2003]. Thus, since
the performance-requirements grow at much faster pace than the effectiveness of cooling
solutions, power management techniques are extremely important to ensure longevity and
reliability.

2.2.3. Providing Economic Gains. For every watt of power dissipated in the computing equip-
ment, an additional 0.5 to 1W of power is consumed by the cooling system itself [Patel et al.
2003], and with increasing ratio of cooling power to computing power, compaction of devices
is inhibited, which results in increased operation costs. Due to these trends, in recent years,
the energy cost of high-performance computing clusters has been estimated to contribute
more than the hardware acquisition cost of IT equipment itself [Bianchini and Rajamony
2004; Mittal 2012].

2.2.4. Enabling Performance Scaling. The power challenges are expected to present most se-
vere obstacle to performance scaling and it has been shown that thermal and leakage power
constraints may disallow simultaneously using all the cores of a massively parallel proces-
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sor [Esmaeilzadeh et al. 2013]. Large power consumption may necessitate complex cooling
solutions (e.g. liquid cooling) which may increase chip complexity and offset the benefits of
performance boost obtained by using GPUs.

2.2.5. Enabling Deployment in Wide Range of Applications. The energy efficiency of GPUs,
relative to other alternatives (e.g. CPUs, FPGAs) will have a crucial role in deciding its
adoption in various application domains. In recent years, ongoing technological innovations
have greatly improved other computing systems. As we show in Section 3, for several ap-
plications FPGAs have been found to have better performance and energy efficiency than
GPUs. Moreover, while a few initial works have reported orders of magnitude difference in
performance of GPUs and CPUs, other researchers who apply careful optimization on both
CPUs and GPUs have reported much lower speedups of GPUs over CPUs, typically in the
range of 0.7× to 15× [Lee et al. 2010; Zou et al. 2012; Chandramowlishwaran et al. 2010].
Thus, to maintain their competitiveness and justify their use in product design, GPUs must
exhibit high energy efficiency.

2.2.6. Achieving the Goals of Sustainable Computing. It has been estimated that the carbon
emission of ICT (information and communication technology) will triple from 2002 to 2020
[Smarr 2010] and hence, the concerns for environment will force the policy-makers and
researchers to place higher emphasis on energy efficiency in the design of future computing
systems. Thus, improving the energy efficiency of GPUs is also important for achieving the
goals of sustainable computing.

3. RESEARCH WORKS ON ANALYZING GPU ENERGY EFFICIENCY

In this section, we review the research works which analyze energy efficiency of GPUs and
compare it with that of other computing systems. We first present an overview and then
discuss some of the research works in detail.

3.1. Overview

Modern GPUs consume significant amount of power. The high-end GPUs, such as NVIDIA
GeForce GTX 590 (40nm) and AMD Radeon HD 5970 (40nm) have a maximum power
consumption of 365W [GeForce GTX 590 2013], and 294W [RADEON 2013], respectively.
In contrast, Intel’s Core i7-3770T (22nm), Xeon E7-8870 (32nm) and have a maximum
power consumption of 45W and 150W, respectively [Intel Core i7 2013; Intel Xeon E7
2013]. Note, however, that for several applications, GPUs provide better performance than
CPUs which makes their energy efficiency better than those of CPUs.
In recent years, several researchers have compared the power consumption of GPUs with

that of other computing systems such as CPUs, Cell or FPGA. For certain applications and
platforms GPUs have been found to be more energy efficient than CPUs [Zandevakili et al.
2012; Huang et al. 2009; Anzt et al. 2011; Baker et al. 2007; Thomas et al. 2009; Hamada
et al. 2009; McIntosh-Smith et al. 2012; Lange et al. 2009; Ghosh et al. 2012; Udagawa and
Sekijima 2011; Zou et al. 2012; Hussain et al. 2011; De Schryver et al. 2011; Van Essen et al.
2012; Betkaoui et al. 2010; Timm et al. 2010; Goddeke et al. 2008; Scogland et al. 2010;
Danalis et al. 2010; Chung et al. 2010; Keckler et al. 2011; Brodtkorb et al. 2010; Chau et al.
2013; López-Portugués et al. 2011; Cong et al. 2011; Pedram et al. 2012; Chow et al. 2012;
Wang et al. 2012], while for other applications CPUs have been found to be more energy
efficient [Chandramowlishwaran et al. 2010; Kestur et al. 2010]. Some researchers also discuss
the conditions under which CPUs or GPUs may be more efficient [Datta et al. 2008; Anzt
et al. 2010; Calandrini et al. 2012; Fowers et al. 2013; Maghazeh et al. 2013]. For example,
Datta et al. [2008] show that taking into account the overhead of data communication
between CPU and GPU can significantly degrade GPU energy efficiency and can make
them less energy efficient than CPUs.
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Similarly, some authors have found FPGAs to be more energy-efficient than GPUs [Kestur
et al. 2010; Hefenbrock et al. 2010; Baker et al. 2007; Thomas et al. 2009; Pauwels et al.
2012; Birk et al. 2012; Hussain et al. 2011; Hamada et al. 2009; Gohringer et al. 2011; Zou
et al. 2012; Benkrid et al. 2012; De Schryver et al. 2011; Lange et al. 2009; Williams et al.
2008; Richardson et al. 2010; Lee et al. 2010; Van Essen et al. 2012; Brodtkorb et al. 2010;
Chau et al. 2013; Cong and Zou 2009; Llamocca et al. 2011; Cong et al. 2011; Waidyasooriya
et al. 2012; Chow et al. 2012; Wang et al. 2012; Struyf et al. 2014], while others have found
GPUs to be more energy efficient [Duan et al. 2011]. Similarly, some researchers observe
other computing systems such as Cell, DSP (digital signal processor) or ASIC to be more
energy efficient than GPUs [Chung et al. 2010; Baker et al. 2007; Benkrid et al. 2012; Mu
et al. 2011; Pedram et al. 2012].
From these works, it is clear that although for majority of works, FPGAs are more

energy efficient than GPUs and GPUs, in turn, are more energy efficient than CPUs, a
single platform cannot be accepted as most energy efficient for all possible applications. The
results crucially depend on the devices and evaluation methodology used in the experiments.

3.2. Discussion

Keckler et al. [2011] discuss the level of energy efficiency required for building future exascale
machines. They show that for building an exascale machine with a power budget of 20MW
requires an energy efficiency of 20 picoJoules (pJ) per floating point operation. In contrast,
state-of-the-art CPUs and GPUs incur 1700 pJ and 225 pJ, respectively for each floating
point operation. This shows that although the GPUs are more energy efficient than CPUs,
their efficiency needs to be improved further to fulfill exascale challenge.
Chandramowlishwaran et al. [2010] compare the performance and energy efficiency of

a GPU with a multi-core CPU for fast multipole method. They have observed that on
applying suitable optimization and parallelization, the CPU is nearly 1.7× faster than a
single GPU and achieves 0.75× the performance of two GPUs. In terms of energy efficiency,
the CPU is nearly 2.4× and 1.8× as energy-efficient as the systems accelerated using one
or two GPUs, respectively.
Datta et al. [2008] compare the performance and energy efficiency of a GPU with a CPU

for stencil (nearest-neighbor) computations. They observe that while use of large number
of cores gives significant performance and power advantage to GPU over the CPU; when
it is used as an accelerator offload engine for applications that primarily run on the host
CPU, the performance and energy efficiency are severely degraded due to limited CPU-
GPU bandwidth and low reuse within GPU device memory. Since the GPU can access
CPU memory only through PCI-express (PCIe) bus, for applications which require larger
on-board memory than what is available on the GPU, the performance is significantly
degraded.
Huang et al. [2009] evaluate the energy efficiency and performance of a GPU for a scientific

computing benchmark, namely GEM software which is used to compute the electrostatic
potential map of macromolecules in a water solution. The CPU code is parallelized using
Pthread (POSIX threads). They observe that although the GPU consumes significantly
higher power than the CPU, the execution time of GPU version of code is much smaller and
hence, the EDP (energy-delay product) of the GPU implementation is orders of magnitude
better than that of both serial and parallel version of CPU implementation. Moreover, using
a single-precision code improves the energy efficiency of GPU even more.
McIntosh-Smith et al. [2012] compare the energy efficiency of a GPU with that of a

multi-core CPU for a molecular mechanics problem. They observe that of the different GPU
implementations tested, the best implementation outperforms all CPU implementations in
both performance and energy efficiency. Moreover, for the real world case where the data
set become larger, the benefits of GPU become even larger.
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Kestur et al. [2010] compare the energy efficiency and performance of a GPU with that
of a multi-core CPU and an FPGA, for double-precision floating point programs from Basic
Linear Algebra Subroutines (BLAS) library. They have shown that the FPGA offers compa-
rable performance to GPU while providing significantly better energy efficiency. Moreover,
the multi-core CPU also provides better performance and energy efficiency than the GPU.
Llamocca et al. [2011] compare a GPU and an FPGA for 2D FIR (finite-impulse response)

filter program which has application in video processing. They observe that due to its higher
frequency and ability to exploit massive parallelization present in the algorithm, the GPU
provides better performance than the FPGA. However, the FPGA consumes up to an order
of magnitude less energy than the GPU.
Baker et al. [2007] compare the energy efficiency and performance of matched filter on

an FPGA, an IBM Cell, a GPU and a CPU. Matched filter is a signal processing kernel
which is used for extracting useful data from hyperspectral imagery. Relative to the CPU,
the speedup of other computing systems is calculated and then a comparison is made on
the metric of speedup and speed up per kilo Watt values. The authors observe that both
Cell and FPGA outperform the GPU in performance and energy efficiency. Further, the
GPU provides better performance and energy efficiency than the CPU.
Hefenbrock et al. [2010] implement Viola-Jones face detection algorithm using multi-

GPU and compare its performance and power consumption with that of fastest known
FPGA implementation of the same algorithm. They observe that using 4-GPUs provides
comparable performance with the design using a single FPGA, while the energy efficiency
of FPGA design was orders of magnitude better than that of the 4-GPUs based design.
Lange et al. [2009] compare the performance and energy efficiency of a GPU with an

FPGA and a multi-core CPU for geometric algebra computations. They observe that the
GPU is less energy efficient than the FPGA, but more efficient than the CPU. They also
note that taking data transfer overhead into account degrades the energy efficiency of the
GPU.
Hussain et al. [2011] compare the energy efficiency of a GPU with that of an FPGA and

a CPU for k-means clustering algorithm, which is used in data mining. They observe that
the FPGA provide better performance and energy efficiency than the GPU. Also, the GPU
shows much better energy efficiency than the CPU.
De Schryver et al. [2011] compare the energy efficiency of a GPU and a multi-core CPU

with that of a hybrid FPGA-CPU implementation, for Monte Carlo option pricing with the
Heston model. This program finds applications in financial domains. The hybrid FPGA-
CPU implementation divides the work between FPGA and CPU, such that computation-
intensive kernels are executed on FPGAs. They observe that compared to the GPU imple-
mentation, the hybrid FPGA-CPU implementation provides less performance but higher
energy efficiency. Moreover, the GPU implementation excels CPU in both performance and
energy efficiency.
Thomas et al. [2009] compare energy efficiency of a GPU with an FPGA and a multi-

core CPU for random number generation. The authors experiment with different random
number generation programs and compute geometric mean of energy efficiency (number
of samples generated per joule of energy). They observe that FPGAs provide an order of
magnitude better energy efficiency than the GPU. Moreover, the GPU is found to be an
order of magnitude more energy efficient than the CPU.
Van Essen et al. [2012] implement random forest classification problem used in machine

learning on a GPU, an FPGA and a multi-core CPU. They observe that the FPGA provides
highest performance, but requires multi-board system even for modest size problems which
increases its cost. Further, on performance per watt metric, the FPGA implementation is
an order of magnitude better than the GPU implementation, which, in turn, is better than
the CPU implementation.
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Duan et al. [2011] compare a GPU with an FPGA and a multi-core CPU on floating-point
FFT implementation. For GPU and CPU implementation they use standard libraries and
for FPGA they develop their own implementation. They observe that the GPU is more
energy efficient than the FPGA and the CPU for radix-2 FFT. They, however, observe a
degradation in performance of the GPU for mixed-radix FFT.
Hamada et al. [2009] make a comparative study of a GPU, an FPGA, an ASIC and a CPU

for gravitational force calculation in N -body simulation in the context of astrophysics. They
observe that the GPU outperforms the ASIC and the CPU in energy efficiency (performance
per watt); however, its energy efficiency is an order of magnitude less than that of the FPGA.
Birk et al. [2012] compare the performance and energy efficiency of a GPU and an FPGA

for 3D ultrasound computer tomography which is used for medical imaging. They observe
that the performance of the GPU is comparable with that of the FPGA, however, the FPGA
offer much better energy efficiency.
Betkaoui et al. [2010] compare the energy efficiency of a GPU with an FPGA and a

single and a multi-core CPU for three throughput computing applications, viz. FFT, gen-
eral (dense) matrix multiplication (GEMM) and Monte Carlo method (MCM). Of these,
GEMM is limited by computations, FFT by memory latency and MCM is embarrassingly
parallel and hence is limited only by available parallelism. They use standard libraries for
implementing these applications. They observe that for all the three applications, the GPU
outperforms the CPU on energy efficiency. Further, for GEMM, the GPU is more energy
efficient than the FPGA, while for FFT and MCM, the FPGA is more energy efficient than
the GPU. They note that the FPGA provides advantage over the GPU for applications
which exhibit poor data locality and low memory bandwidth requirement.
Zou et al. [2012] compare a GPU with a CPU and an FPGA for Smith-Waterman (S-W)

algorithm. S-W algorithm is used for performing pair-wise local sequence alignment in the
field of bioinformatics. They highlight the need of making suitable optimizations on all the
three platforms for making meaningful comparisons. They observe that on the metric of
performance per unit power, the FPGA is more energy efficient than the GPU, which in
turn is more energy efficient than the CPU; although the advantage of GPU over CPU is
small. The FPGA also provides higher performance than both GPU and CPU.
Benkrid et al. [2012] compare a GPU with a CPU, an FPGA and Cell BE (broadband

engine) for Smith-Waterman algorithm. They observe that on energy efficiency (performance
per watt) metric, the FPGA and Cell BE perform better than the GPU, while the GPU
performs better than the CPU. They further note that results also depend on the devices
used and performance optimizations performed on each platform.
Pauwels et al. [2012] compare a GPU with an FPGA for the computation of phase-based

optical flow, stereo, and local image features which is used in computer vision. They observe
that while the GPU offers better performance and accuracy than the FPGA, the FPGA is
more energy efficient than the GPU.
Fowers et al. [2013] compare the energy efficiency of a GPU with that of an FPGA and a

multi-core CPU for convolution problem which has applications in digital signal processing.
They observe that for very small signal sizes, the CPU is most energy efficient. However as
the signal size increases, the energy efficiency of the GPU and the FPGA increase and for
very large signal sizes, the FPGA outperforms GPU in energy efficiency.
Mu et al. [2011] implement high performance embedded computing (HPEC) benchmark

suite on a GPU and compare the performance and energy efficiency of the GPU with
that of a DSP for this benchmark suite. This benchmark includes a broad range of signal
processing applications. They have observed that while the GPU provides at least an order
of magnitude better performance than the DSP, its energy efficiency measured in terms of
performance per watt is inferior to that of the DSP.
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4. TECHNIQUES FOR IMPROVING GPU ENERGY EFFICIENCY

In this section, we discuss techniques for improving GPU energy efficiency.

4.1. Overview

For the purpose of this study, we classify the techniques into the following categories.

(1) DVFS (dynamic voltage/frequency scaling) based techniques [Liu et al. 2011; Nam et al.
2007; Jiao et al. 2010; Lee et al. 2007; Ma et al. 2012; Cebrian et al. 2012; Lee et al.
2011; Sheaffer et al. 2005b; Chang et al. 2008; Wang et al. 2010; Liu et al. 2012; Ren
2011; Anzt et al. 2011; Ren et al. 2012; Lin et al. 2011; Zhao et al. 2012; Huo et al.
2012; Keller and Gruber 2010; Abe et al. 2012; Park et al. 2006; Leng et al. 2013; Paul
et al. 2013]

(2) CPU-GPU workload division based techniques [Takizawa et al. 2008; Rofouei et al.
2008; Ma et al. 2012; Luk et al. 2009; Liu et al. 2012; Liu et al. 2011; Hamano et al.
2009] and GPU workload consolidation [Li et al. 2011]

(3) Architectural techniques for saving energy in specific GPU components, such as caches
[Wang et al. 2012; Lee et al. 2011; Lashgar et al. 2013; Arnau et al. 2012; Rogers et al.
2013; Lee and Kim 2012], global memory [Wang et al. 2013; Rhu et al. 2013], pixel shader
[Pool et al. 2011], vertex shader [Pool et al. 2008], core data-path, registers, pipeline
and thread-scheduling [Abdel-Majeed et al. 2013; Chu et al. 2011; Gebhart et al. 2011;
Gilani et al. 2013; Jing et al. 2013; Yu et al. 2011; Abdel-Majeed and Annavaram 2013;
Gilani et al. 2012; Sethia et al. 2013].

(4) Techniques which exploit workload-variation to dynamically allocate resources [Jarar-
weh and Hariri 2012; Liu et al. 2011; Lee et al. 2011; Hong and Kim 2010; Alonso et al.
2012; Cebrian et al. 2012; Wang and Ranganathan 2011; Keller and Gruber 2010]

(5) Application-specific and programming-level techniques for power analysis and manage-
ment [Alonso et al. 2012; Chandramowlishwaran et al. 2010; Ren and Suda 2009; Datta
et al. 2008; Jiao et al. 2010; Zandevakili et al. 2012; Anzt et al. 2011; Ren et al. 2012;
Padoin et al. 2012; Wang et al. 2010; Ghosh et al. 2012; Dreßler and Steinke 2012;
Zhang et al. 2012; Wang et al. 2010; Yang et al. 2012; Hsiao et al. 2013]

We now discuss these techniques in detail. As seen through the above classification, several
techniques can be classified in more than one groups. For sake of clarity, we discuss them
in one group only.

4.2. DVFS Based Techniques

Dynamic voltage and frequency scaling (DVFS) is a well-known power-management tech-
nique which works by dynamically adjusting the clock frequency of a processor to allow a
corresponding reduction in the supply voltage to achieve power saving. The relation between
power and frequency is captured by the following formula [Rabaey et al. 2002]:

P ∝ FV 2 (1)

Here F shows the operating frequency and V shows the supply voltage. By intelligently
reducing the frequency, the voltage at which the circuit needs to be operated for stable
operation can also be reduced, leading to power saving. However, since the reduction in
frequency also harms the performance, the scaling of voltage/frequency needs to be carefully
performed. Also note that in some of the works discussed below, the frequency scaling is
actually applied to CPU; however, we still include these works since the power saving is
achieved in the entire system and power management of CPU is done while taking into
account the properties of GPU.
Nam et al. [2007] propose a low-power GPU for hand-held devices. The proposed GPU

uses logarithmic arithmetic to optimize area and power consumption. The use of logarithmic
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arithmetic leads to some computation error, however, due to the small screen of the hand-
held devices, the error can be tolerated. They divide the chip into three power domains,
viz. vertex shader, rendering engine and RISC processor, and DVFS is individually applied
to each of the three domains. The power management unit decides the supply voltage and
frequency of each domain based on its workload for saving power while maintaining the
desired performance level.
Ren et al. [2012] discuss an approach for saving system energy in a heterogeneous CPU-

GPU computing system. They suggest that, instead of using a single GPU with each CPU,
using multiple GPUs with each CPU enables achieving speedup in execution time and
improving the usage of CPU, which improves the energy efficiency of the system. Further,
since during the execution of CUDA kernel, the host CPU remains in polling loop without
doing useful work, the frequency of CPU can be reduced for saving energy while always
ensuring that CPU frequency is greater than the PCIe bus between CPU and GPU. Since
the range of high-performance CPU frequencies are generally larger than that of PCIe bus,
CPU frequency can be scaled without affecting GPU performance. They demonstrate their
approach by parallelizing 3-D finite element mesh refinement on GPU.
Anzt et al. [2011] propose techniques for reducing energy consumption in CPU-GPU

heterogeneous systems for executing iterative linear solvers. They propose using DVFS for
saving energy in CPU while it stays in busy-wait waiting for GPU to complete computations.
Since during this time, CPU performs no useful work, use of DVFS gives large energy saving
with little performance loss. Further, since the conjugate gradient iterative linear solver
consumes nearly same time in different iterations; by noting this duration once, the CPU
can be transitioned to sleep state for this duration in further calls to the kernel; which leads
to further energy savings. They also remark that use of this technique is useful when the
calls to kernels consume a sufficiently large amount of time.
Jiao et al. [2010] study the the performance and power consumption of GPU for three

computationally diverse applications for varying processor and memory frequencies. Specif-
ically, they study dense matrix multiplication (compute-intensive), dense matrix transpose
(memory-intensive), and fast Fourier transform (hybrid). They have observed that the power
consumption of GPUs is primarily dependent on the ratio of global memory transactions
to computation instructions and the rate of issuing instructions. These two metrics decide
whether an application is memory-intensive or computation-intensive, respectively. Based
on these characteristics, the frequency of GPU cores and memory is adjusted to save energy.
Lin et al. [2011] propose use of software-prefetching and dynamic voltage scaling to save

GPU energy. Software-prefetching is a technique which aims to improve performance by
overlapping the computing and memory access latencies. It works by inserting prefetch
instructions into the program so that data is fetched into registers or caches well-before time
and processor-stall on memory access instructions is avoided. Since prefetching increases
the number of instructions, it also increases the power consumption and hence, it must be
balanced with suitable performance enhancement. Their technique analyzes the program to
insert prefetching instructions and then iteratively uses DVFS to find a suitable frequency
such that performance constraint is met while saving largest possible amount of energy.

4.3. CPU-GPU Work Division to to Improve Energy Efficiency

Researchers have shown that different ratios of work-division between CPUs and GPUs may
lead to different performance and energy efficiency levels [Ma et al. 2012; Luk et al. 2009].
Based on this observation, several techniques have been proposed which dynamically choose
between CPU and GPU as a platform of execution of a kernel based on the expected energy
efficiency on those platforms.
Ma et al. [2012] propose an energy-management framework for GPU-CPU heterogeneous

architectures. Their technique works in two steps. In the first step, the workload is divided
between CPU and GPU based on the workload characteristics, in a manner that both sides
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may complete their tasks approximately at the same time. As an example, the task shared
of CPU and GPU may be 15% and 85%, respectively. This step ensures load-balancing
which also avoids the energy-waste due to idling. In the second step, the frequency of GPU
cores and memory are adjusted, along with the frequency and voltage of the CPU to achieve
largest possible energy savings with minimal performance degradation.
Luk et al. [2009] propose an automatic technique for mapping computations of process-

ing elements on a CPU/GPU heterogeneous system. Compared to other approaches which
require the programmer to manually perform the computations to processor mapping, their
technique uses run-time adaptation to automatically perform the mapping. Their technique
provides an API (application programming interface) for writing parallelizable programs.
Through the API, the computations are explicitly expressed and hence, the compiler is not
required to extract parallelism from the serial code. While OpenMP can exploit parallelism
only on CPU, their technique can exploit parallelism on both the CPU and the GPU. Since
the optimal mapping changes with different applications, hardware/software configurations
and input problem sizes, the adaptive mapping outperforms hand-tuned mapping in both
performance and energy efficiency.
Liu et al. [2012] discuss a technique for finding power-efficient mappings of time-critical

applications onto CPU/GPU heterogeneous systems. Their technique works in two steps. In
the first step, their technique maps the application to either CPU or GPU, such that their
deadlines are met and execution time is minimized. In the second step, DVFS techniques
are applied to both CPU and GPU to save energy. The mapping of applications can be done
in both offline and online manner. To keep the performance high and avoid resource-idling,
their technique also aims to achieve load-balancing. Moreover, their technique utilizes the
fact that typically average-case execution times are less than their worst-case execution time
and hence, early completion provides a slack which can be exploited using DVFS to save
large amount of energy.
Takizawa et al. [2008] propose SPRAT (stream programming with runtime auto-tuning),

a runtime environment for dynamically selecting a CPU or GPU with a view to improve
the energy efficiency. They introduce a performance model which takes into account the
relative execution time and energy consumption on CPU and GPU and the data transfer
time between CPU and GPU. This model is especially suited for applications that require
frequent data transfers between CPU and GPU. Based on the runtime behavior, SPRAT
can dynamically select the computing platform (CPU or GPU) for executing a kernel such
that system energy is minimized.
Rofouei et al. [2008] experimentally evaluate the power and energy cost of GPU opera-

tions and compare it that of CPU for convolution problem. They find the relation between
execution time and energy consumption and show that that GPU is more energy efficient
when it provides application performance improvement above a certain threshold. Based on
this, the decision about running the application on CPU or GPU can be taken. Ren and
Suda [2009] discuss a scenario where the performance benefit provided by using two GPUs
(instead of one) offsets the power consumption overhead of the extra GPU and leads to
power saving. They demonstrate their approach for multiplication of large matrices.
Liu et al. [2011] develop an energy saving algorithm for large scale GPU cluster systems

based on the waterfall model. In their cluster, each node may have many CPU-GPU pairs.
Their method divides the energy consumption of overall system into three different levels
based on different energy saving strategies deployed. Their method formulates the energy
saving problem as an optimization task, where the energy consumption needs to be min-
imized while meeting task deadlines. Their technique transitions the node in one among
three states, namely busy (all CPUs and GPUs inside a node are executing task), spare
(at least one CPU-GPU pair is free) and sleep (all CPU-GPU pairs are free). At the time
of reduced workload, the node in sleep state is powered off to save energy and at time of
additional workload, a node is woken up. Also, their technique selects an appropriate task
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from the set of available tasks and schedules it on optimal CPU-GPU pair such that the ex-
ecution time of the task is minimized. Further, the voltage of the CPU is adaptively scaled
to save energy while meeting task deadline. Finally, they also utilize β-migration policy,
where a small fraction (β) of the GPU’s share of task is migrated to the CPU in the same
CPU-GPU pair for achieving load-balancing.

4.4. Saving Energy in GPU components

Several techniques make architecture-level changes to GPUs to optimize the energy spent
in individual components of the GPU. These techniques utilize the specific usage pattern
of GPU components to make runtime adaptation for saving energy.
Gebhart et al. [2011] present a technique for saving energy in core datapath of GPU.

Since GPUs employ a large number of threads, storing the register context of these threads
requires a large amount of on-chip storage. Also, the thread-scheduler in GPU needs to
select a thread to execute from a large number of threads. For these reasons, accessing large
register files and scheduling among a large number of threads consumes substantial amount
of energy. To address this, Gebhart et al. present two improvements. First, a small storage
structure is added to register files which acts like a cache and captures the working set
of registers to reduce energy consumption. Second, the threads are logically divided into
two types, namely, active threads (which are currently issuing instructions or waiting on
relatively short latency operations), and pending threads (which are waiting on long memory
latencies). Thus, in any cycle, the scheduler needs to consider only the active threads which
are much smaller in number. This leads to significant energy savings.
Wang et al. [2012] propose a technique for saving static energy in both L1 and L2 caches.

They propose putting L1 cache (which is private to each core) in state-preserving1 low-
leakage mode when there are no threads that are ready to be scheduled. Further, L2 cache
is transitioned to low-leakage mode when there is no memory request. They also discuss the
microarchitectural optimizations which ensure that the latency of detecting cache inactivity
and transitioning a cache to low-power and back to normal power are completely hidden.
Lashgar et al. [2013] propose the use of filter-cache to save energy in GPUs by reducing

accesses to instruction cache. Their technique is based on “inter-warp instruction tempo-
ral locality” which means that during short execution intervals, a small number of static
instructions account for a significant portion of dynamic instructions fetched and decoded
within the same stream multiprocessor. Thus, the probability that a recently fetched in-
struction will be fetched again is high. They propose using a small filter-cache to cache
these instructions and reduce the number of accesses to instruction cache, which improves
the energy efficiency of the fetch engine. Filter-cache has been used in CPUs also, however,
in GPUs the instruction temporal locality is even higher. This is because GPUs interleave
thousands of threads per core, which are grouped in warps. The warp scheduler continu-
ously issues instructions from different warps which fills the warp, thus fetching the same
instruction for all warps during short intervals.
A unified local memory design for GPUs is presented by Gebhart et al. [2012]. The existing

GPUs use rigid partition sizes of registers, cache, and scratchpad, however, different GPU
workloads have different requirements of registers, caches and scratchpad (also called shared
memory). Based on the characterization study of different workloads, they observe that
different kernels and applications have different requirements of cache, shared memory etc.
To address this issue, they propose a unified memory architecture that aggregates these three
types of storage and allows for a flexible allocation on a per-kernel basis. Before the launch
of each kernel, the system reconfigures the memory banks to change the partitioning of the

1State-preserving refers to the low-power state where the contents stored in the block are not lost. This is
in contrast with state-destroying low-power state where the block contents are lost in the low-power mode
[Mittal et al. 2013].
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memory. By effectively using the local-storage, their design reduces the accesses to main
memory. They have shown that using their approach broadens the range of applications that
can be efficiently executed on GPUs and also provides improved performance and energy
efficiency.
To filter a large fraction of memory requests that are serviced by the first level cache

or scratchpad memory, Sankaranarayanan et al. [2013] propose adding small sized caches
(termed as tinyCaches) between each lane in a streaming multiprocessor (SM) and the L1
data cache which is shared by all the lanes in an SM. Further, using some unique features of
CUDA/OpenCL programming model, these tinyCaches avoid the need of complex coherence
schemes and thus, they can be implemented with low-cost. They have shown that their
design leads to improvement in the energy efficiency of the GPU.
Rhu et al. [2013] propose a technique for finding the right data-fetch granularity for

improving performance and energy-efficiency of GPUs. They observe that only few appli-
cations use all the four 32B sectors of the 128B cache-block, which leads to over-fetching of
data from the memory. To address this issue, their technique first decides the appropriate
granularity (coarse-grain or fine-grain) of data fetch. Based on this, a hardware predictor
adaptively adjusts the memory access granularity without programmer or runtime system
intervention. Thus, their approach enables adaptively adjusting the memory access granu-
larity depending on the spatial locality present in the application.
In a CPU-GPU heterogeneous computing system (HCS) with shared last level cache

(LLC), interference between CPU and GPU threads can lead to degradation in perfor-
mance and energy efficiency. This is especially critical since the GPU has much larger
number of threads than the CPU, and hence, the large number of accesses from GPU are
likely to evict data brought in cache by the CPU threads. Some authors propose techniques
to address this issue [Lee and Kim 2012; Mekkat et al. 2013]. Lee and Kim [2012] propose a
thread-level parallelism (TLP) aware cache management policy for such systems. Due to the
presence of deep-multithreading, a cache policy does not directly affect the performance in
GPUs. Hence, to estimate the effect of cache behavior on GPU performance, they propose
a core-sampling approach, which leverages the fact that most GPU applications show sym-
metric behavior across the running cores. Based on this, core sampling applies a different
policy (e.g. a cache replacement policy) to each core and periodically collects samples to
see how the policies work. A large difference in performance of these cores indicates that
GPU performance is affected by the cache policy and vice versa. Using this, the best cache
management policy can be chosen. Further, to alleviate the interference, they introduce
cache block lifetime normalization approach, which ensures that statistics collected for each
application are normalized by the access rate of each application. Using this, along with a
cache partitioning mechanism, cache is partitioned between CPU and GPU, such that cache
is allocated to GPU only if it benefits from the cache.
Mekkat et al. [2013] propose a technique which leverages GPU’s ability to tolerate memory

access latency to throttle GPU LLC accesses to provide cache space to latency-sensitive
CPU applications. Based on the observation that the TLP available in an application is a
good indicator of cache sensitivity of an application, their technique allows GPU memory
traffic to selectively bypass the shared LLC if GPU cores exhibit sufficient TLP to tolerate
memory access latency or when GPU is not sensitive to LLC performance. A large number
of wavefronts that are ready to be scheduled indicates a higher amount of TLP. Using
core-sampling, they apply two different bypassing thresholds to two different cores to find
the impact of bypassing on GPU performance. Also, using cache set-sampling, the effect of
GPU bypassing on CPU performance is estimated. Using these, the rate of GPU bypassing
is periodically adjusted to improve performance and save energy.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2014.



A Survey of Methods For Analyzing and Improving GPU Energy Efficiency A:13

4.5. Dynamic Resource Allocation Based Techniques

It is well-known that there exists large intra-application and inter-application variation in
the resource requirements of different applications. In fact, several real-world applications
rarely utilize all the computational capabilities of GPU. Thus, significant amount of en-
ergy saving can be achieved by dynamically adapting the components which exhibit low
utilization levels.
Hong and Kim [2010] propose an integrated power and performance prediction system

to save energy in GPUs. For a given GPU kernel, their method predicts both performance
and power; and then uses these predictions to choose the optimal number of cores which
can lead to highest performance per watt value. Based on this, only desired number of cores
can be activated, while the remaining cores can be turned-off using power-gating. Note that
power-gating is a circuit-level scheme to remove leakage by shutting-off the supply voltage
to unused circuits.
Wang et al. [2011] propose power-gating strategies for saving energy in GPUs. In graphics

applications, different scenes have different complexities (e.g. number of objects) and hence,
the amount of computing resources which are required to provide a satisfactory visual
perception varies across different frames. By predicting the required shader resources for
providing desired frame-rate, the extra shader resources can be turned-off using power-
gating. To avoid the overhead of power-gating, their technique ensures that the idle period
of the unused circuits is long enough to compensate the switching overhead.
Wang and Ranganathan [2011] present an offline profiling based technique to estimate the

appropriate number of GPU cores for a given application to save energy. Their technique
uses the profile of PTX (parallel thread execution) codes generated during compilation
of the application to decide the number of cores to be used for achieving highest energy
efficiency. During actual run, in place of using programmer-specified number of cores, only
the desired number of cores can be activated to save energy.
Among the commercial products, AMD uses PowerPlay technology [AMD PowerPlay

2013] for dynamic power management. It dynamically transitions the GPU between low,
medium and high states, based on the load on the GPU. For example, while a graphics
application is running, the demand on GPU is high and hence it runs in high power state.
Conversely, while typing emails, the load on GPU is minimal and hence, it runs in low
power state. The power saving also reduces system temperatures and the fan noise. Similarly,
NVIDIA uses PowerMizer technology for dynamic power management [NVIDIA PowerMizer
2013].

4.6. Application-specific and programming-level techniques

It has been observed that source-code level transformations and application-specific opti-
mizations can significantly improve the resource-utilization, performance and energy effi-
ciency of GPUs. Thus, by performing manually or automatically optimizing GPU imple-
mentation and addressing performance bottlenecks, large energy savings can be obtained.
Wang et al. [2010] propose a method for saving energy in GPU using kernel-fusion. Kernel

fusion combines the computation of two kernels into a single thread. Thus, it leads to
balancing the demand of hardware resources, which improves utilization of resources and
thus, improves the energy efficiency. The authors formulate the task of kernel-fusion as a
dynamic programming problem, which can be solved using conventional tools.
Alonso et al. [2012] propose a technique to save energy in task-parallel execution of dense

linear algebra operations (viz. Cholesky and LU factorization), by intelligently replacing
the busy-waits with a power-friendly blocking state. Execution of these tasks involves CPU
thread issuing the kernel (for execution on GPU) and then waiting for the next ready task
in a busy-wait polling loop. This leads to wastage of energy. To avoid this, their technique
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blocks the CPU thread on a synchronization primitive when waiting for the GPU to finish
work; thus leading to saving of energy.
Ghosh et al. [2012] study the energy efficiency of HPC application kernels (viz. matrix-

matrix multiplication, FFT, pseudo-random number generation and 3D finite difference)
on multi-GPU and multicore CPU platforms. The kernel implementations are taken from
standard libraries. They observe that while the absolute ‘power’ consumption (in Watts) of
multi-GPU is larger than that of the multicore CPU, the ‘energy efficiency’ (in Giga Flops
per Watt ) of GPUs is much superior than that of CPUs. They observe that for GPUs, the
number of global memory accesses and operations per unit time have significant influence
on the power consumption. Also, a large computation to communication ratio per device is
important for hiding data transfer latency and realizing energy efficiency in GPUs.
Yang et al. [2012] evaluate several open-source GPU projects and suggest ways to change

the program code to improve GPU usage, performance and energy efficiency. These projects
are taken from a wide range of disciplines, such as atmosphere science, computational
physics, machine learning, bioinformatics and mathematics. They identify the common code
patterns which lead to inefficient hardware use. For example, adjustment of thread-block
dimension can improve the way global memory data are accessed and reused in either shared
memory or hardware caches. Further, choice of global memory data types and use of texture
and constant memory has significant effect on achieved bandwidth. Also, by optimizing the
program for specific GPU (e.g. AMD GPU or NVIDIA GPU), the hardware-specific features
can be exploited to obtain higher performance and energy efficiency.

5. FUTURE RESEARCH TRENDS AND CONCLUSION

We believe that in the near future, the challenges of GPU power consumption would need
to be simultaneously addressed at different levels at the same time. At the chip-design level,
researchers are aiming to develop energy-efficient throughput cores and memory design to
exploit instruction-level, data-level and fine-grained task-level parallelism. At the architec-
ture level, CPU and GPU need to be efficiently integrated on the same chip with a unified
memory architecture [Foley et al. 2012; Yuffe et al. 2011]. This will address the memory
bandwidth bottleneck and also avoid the replicated chip infrastructure and the need of
managing separate memory spaces. At the programming level, per-application tuning is in-
evitable to achieve a fine balance between demands of the application and the resources of
the GPU. Finally, at the system level, policies for intelligent scheduling and work-division
between CPU and GPU are required, so that their individual competencies are integrated
and they complement each other.
The 3D die stacking holds the promise of mitigating memory bandwidth bottleneck in

GPUs, as it enables use of shorter, high-bandwidth and power-efficient global interconnect
and provides denser form factor. 3D stacking also enables integration of heterogeneous
technologies, which allows use of non-volatile memory (NVM), such as phase change RAM
(PCM) and spin transfer torque RAM (STT-RAM) in the design of GPU memory [Mittal
2013]. NVMs consume negligible leakage power and provide higher density than SRAM
and DRAM, however, their write latency and energy are significantly higher than those of
SRAM and DRAM. It is expected that leveraging the benefits of 3D stacking and NVM
would be a major step in improving the energy efficiency of GPUs and it would require
novel solutions at device, architecture and system level.
As GPUs become deployed in large-scale data-centers and supercomputers, the challenges

of power management are expected to grow. For such large systems, power management
needs to be done at the level of both intra-node and inter-node. These nodes may be remotely
situated and may have different configurations (e.g. CPU, GPU, FPGA etc. or different in-
terconnection). Managing power consumption of such systems while taking into account
load-balancing, temperature reduction and performance-target will be an interesting re-
search problem for the designers. On the other side of the spectrum, in battery-operated
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devices such as smartphones, where the need of processing visually compelling graphics
within a small power budget increases with each new generation, the requirement for ag-
gressive energy optimization will pose novel challenges for the computer architects.
Virtualization technology enables multiple computing environments to be consolidated in

a single physical machine and thus, increases resource utilization efficiency and reduces to-
tal cost of ownership (TCO). Specifically, in cloud computing, virtualization is key enabling
technology since flexible resource provisioning is essential for unpredictable user demands.
Very recently, GPUs have been used in cloud-computing and virtual-machine (VM) plat-
forms [NVIDIA 2014; Jo et al. 2013; Shi et al. 2012; Amazon EC2 2013]. By adding or
removing GPUs in each VM in on-demand manner, VMs in the same physical host can use
the GPUs in time-sharing manner [Jo et al. 2013], which also leads to significant reduction
in idle power of GPUs. We believe that much research still needs to be done to leverage
virtualization for minimizing power and TCO of GPU computing infrastructure.
In this paper, we surveyed several methods aimed at analyzing and improving the energy

efficiency of GPUs. We underscored the need of power management in GPUs and iden-
tified important trends which are worthy of future investigation. Further, we presented a
classification of different research works to highlight the underlying similarities and dif-
ferences between them. We believe that this survey will provide the researchers valuable
insights into the state-of-the-art in GPU power management techniques and motivate them
to create breakthrough inventions for designing green GPUs of the future exascale era.
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